Calculus Worksheet \#4 Unit 11

Known Cross Section
In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Show all of your work neatly organized on graph paper.

1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the \mathbf{x}-axis is an isosceles right triangle with one leg in the base of the solid.
2. The base of a solid is the ellipse $x^{2}+4 y^{2}=16$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
3. The base of a solid is the region bounded by the curves $y=8-2 x^{2}$ and $y=4-x^{2}$. Each cross section by a plane perpendicular to the \mathbf{x}-axis is a circle with diameter in the base of the solid.
4. The base of a solid is the region bounded by the curve $y=x^{2}+1$ and the line $y=5$. Each cross section by a plane perpendicular to the \mathbf{y}-axis is an isosceles right triangle with its hypotenuse in the base of the solid.
