Calculus Review Unit 11 page 1

In problems 1-3, use the indicated method to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral. Express your final answers rounded to 3 significant digits. Show all of your work, including your answer, neatly organized on the graph paper provided.

1. The region bounded by the line $\mathbf{y}=-5$ and the curve $\mathbf{y}=\mathbf{x}^{2}-9$ is rotated about the line $\mathbf{y}=-5$. (Use disks.)
2. The region between the line $y=3 x$ and the curve $y=x^{2}$ is rotated about the line $x=-1$. (Use washers.)
3. The region between the line $y=3 x$ and the curve $y=x^{2}$ is rotated about the line $y=-2$. (Use shells.)
4. In this problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral. Express your final answers rounded to 3 significant digits. Show all of your work, including your answer, neatly organized.
The base of a solid is the circle $\mathbf{x}^{2}+\mathbf{y}^{2}=25$. Each cross section by a plane perpendicular to the \mathbf{x}-axis is an isosceles right triangle with one leg in the base of the solid.

Calculus Review Unit 11 page 2

Use the specified technique to approximate the definite integral below. In each case divide $[-1,2]$ into 6 subintervals. Show all of your work neatly organized.

$$
\int_{-1}^{2}\left(x^{4}+1\right) d x
$$

5. $\mathrm{S}_{\mathrm{L}}=$ \qquad
6. $S_{R}=$ \qquad
7. $S_{\mathrm{M}}=$ \qquad
8. $\mathrm{S}_{\mathrm{T}}=$ \qquad
9. $\mathrm{S}_{\mathrm{s}}=$ \qquad
