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The purpose of this lesson is to introduce several numerical 
methods that can be used to approximate the value of a 
definite integral.
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Notice that the region is divided into n ‘strips’, with 
areas A1, A2, A3, …, An.  Rectangles can be used to 
approximate the area of these strips.  
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The first of the ‘rectangular’ approximations uses the length of
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the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Step 2:  Calculate the xi’s.

∆x = b – a
n = 5 – 2

6 = 0.5

x0 = a = 2
x1 = 2.5
x2 =

Add ∆x.



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Step 2:  Calculate the xi’s.

∆x = b – a
n = 5 – 2

6 = 0.5

x0 = a = 2
x1 = 2.5
x2 = 3

Add ∆x.



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Step 2:  Calculate the xi’s.

∆x = b – a
n = 5 – 2

6 = 0.5

x0 = a = 2
x1 = 2.5
x2 = 3



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Step 2:  Calculate the xi’s.

∆x = b – a
n = 5 – 2

6 = 0.5

x0 = a = 2
x1 = 2.5
x2 = 3
x3 =



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Step 2:  Calculate the xi’s.

∆x = b – a
n = 5 – 2

6 = 0.5

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Step 2:  Calculate the xi’s.

∆x = b – a
n = 5 – 2

6 = 0.5

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Step 2:  Calculate the xi’s.

∆x = b – a
n = 5 – 2

6 = 0.5

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Step 2:  Calculate the xi’s.

∆x = b – a
n = 5 – 2

6 = 0.5

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Step 2:  Calculate the xi’s.

∆x = b – a
n = 5 – 2

6 = 0.5

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

∆x = b – a
n = 5 – 2

6 = 0.5



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) =



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√
24√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√
24√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√
24√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

24√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

24√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

24√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

24√

61√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

24√

61√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

24√

61√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) =

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Step 3:  Calculate the f(xi’s).

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

∑
i = 1

n
f(xi–1)∆xSL =



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

∑
i = 1

n
f(xi–1)∆xSL =

n = 6



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

∑
i = 1

6
f(xi–1)∆xSL =

∑
i = 1

n
f(xi–1)∆xSL =

n = 6



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

∑
i = 1

6
f(xi–1)∆xSL =

SL = f(x0)∆x + f(x1)∆x + f(x2)∆x +
+ f(x3)∆x + f(x4)∆x + f(x5)∆x 

∑
i = 1

n
f(xi–1)∆xSL =



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

∑
i = 1

6
f(xi–1)∆xSL =

SL = f(x0)∆x + f(x1)∆x + f(x2)∆x +
+ f(x3)∆x + f(x4)∆x + f(x5)∆x 

∑
i = 1

n
f(xi–1)∆xSL =



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

∑
i = 1

6
f(xi–1)∆xSL =

SL = f(x0)∆x + f(x1)∆x + f(x2)∆x +
+ f(x3)∆x + f(x4)∆x + f(x5)∆x 

SL = ( 5√ + 12.625√ + 24√ + 39.875√ + 61√ + 88.125√ )(.5)

∑
i = 1

n
f(xi–1)∆xSL =



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 

f(x2) = f(3) =
f(x3) = f(3.5) = 

f(x4) = f(4) =
f(x5) = f(4.5) =

f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

∑
i = 1

6
f(xi–1)∆xSL =

SL = f(x0)∆x + f(x1)∆x + f(x2)∆x +
+ f(x3)∆x + f(x4)∆x + f(x5)∆x 

SL = ( 5√ + 12.625√ + 24√ + 39.875√ + 61√ + 88.125√ )(.5)

SL ≈ 17.10

∑
i = 1

n
f(xi–1)∆xSL =



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4



The next ‘rectangular’ approximation uses the length of 
the right hand side of each strip as the length of the rectangle.  

0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4



The next ‘rectangular’ approximation uses the length of 
the right hand side of each strip as the length of the rectangle.  

0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4



The next ‘rectangular’ approximation uses the length of 
the right hand side of each strip as the length of the rectangle.  

0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4



The next ‘rectangular’ approximation uses the length of 
the right hand side of each strip as the length of the rectangle.  

0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4



The next ‘rectangular’ approximation uses the length of 
the right hand side of each strip as the length of the rectangle.  

0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4



The next ‘rectangular’ approximation uses the length of 
the right hand side of each strip as the length of the rectangle.  
This is called the ‘right rectangular’ approximation.

0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4



The next ‘rectangular’ approximation uses the length of 
the right hand side of each strip as the length of the rectangle.  
This is called the ‘right rectangular’ approximation, SR.

0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

∆x ∆x ∆x ∆x



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈

f(x1)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)

f(x1)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x

f(x1)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x

f(x1)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈

f(x1)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈

f(x1) f(x2)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)

f(x1) f(x2)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x

f(x1) f(x2)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x

f(x1) f(x2)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈

f(x1) f(x2)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈

f(x1) f(x2)
f(x3)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)

f(x1) f(x2)
f(x3)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x

f(x1) f(x2)
f(x3)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x

f(x1) f(x2)
f(x3)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x A4 ≈

f(x1) f(x2)
f(x3)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x A4 ≈

f(x1) f(x2)
f(x3)

f(x4)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x A4 ≈ f(x4)

f(x1) f(x2)
f(x3)

f(x4)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

The width of each rectangle is ∆x.

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x A4 ≈ f(x4)∆x

f(x1) f(x2)
f(x3)

f(x4)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x A4 ≈ f(x4)∆x

f(x1) f(x2)
f(x3)

f(x4)



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x A4 ≈ f(x4)∆x

f(x1) f(x2)
f(x3)

f(x4)

Notice that, in general, 
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x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x A4 ≈ f(x4)∆x

f(x1) f(x2)
f(x3)

f(x4)

Notice that, in general, Ai ≈



0
x

y

a b

y = f(x)

x0

x1 x2 x3 x4

A1 A2 A3 A4

A1 ≈ f(x1)∆x A2 ≈ f(x2)∆x A3 ≈ f(x3)∆x A4 ≈ f(x4)∆x
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Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 
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∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√
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88.125√

24√

61√

122√
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The Mid-Rectangular Approximation



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
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(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Calculate the xi*’s.

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Calculate the xi*’s.

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

Calculate the xi*’s.

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) =



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) =



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

Calculate the f(xi*’s).

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√

∑
i = 1

n
f(xi*)∆xSM =



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√

∑
i = 1

n
f(xi*)∆xSM =



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√

∑
i = 1

n
f(xi*)∆xSM =

∑
i = 1

6
f(xi*)∆xSM =



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√

∑
i = 1

n
f(xi*)∆xSM =

∑
i = 1

6
f(xi*)∆xSM =

SL = f(x1*)∆x + f(x2*)∆x + f(x3*)∆x +
+ f(x4*)∆x + f(x5*)∆x + f(x6*)∆x



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√

∑
i = 1

n
f(xi*)∆xSM =

∑
i = 1

6
f(xi*)∆xSM =

SL = f(x1*)∆x + f(x2*)∆x + f(x3*)∆x +
+ f(x4*)∆x + f(x5*)∆x + f(x6*)∆x

SM = 



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√

∑
i = 1

n
f(xi*)∆xSM =

∑
i = 1

6
f(xi*)∆xSM =

SL = f(x1*)∆x + f(x2*)∆x + f(x3*)∆x +
+ f(x4*)∆x + f(x5*)∆x + f(x6*)∆x

SM = 



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√

∑
i = 1

n
f(xi*)∆xSM =

∑
i = 1

6
f(xi*)∆xSM =

SL = f(x1*)∆x + f(x2*)∆x + f(x3*)∆x +
+ f(x4*)∆x + f(x5*)∆x + f(x6*)∆x

SM = ( +2.253 – 3√ +2.753 – 3√ +3.253 – 3√ +3.753 – 3√ +4.253 – 3√ )(.5)4.753 – 3√



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3 ∆x = b – a

n = 5 – 2
6 = 0.5 f(x) = x3 – 3√

x1* = 2.25
x2* = 2.75
x3* = 3.25
x4* = 3.75
x5* = 4.25
x6* = 4.75

f(x1*) = f(2.25) = 2.253 – 3√
f(x2*) = f(2.75) = 2.753 – 3√
f(x3*) = f(3.25) = 3.253 – 3√
f(x4*) = f(3.75) = 3.753 – 3√
f(x5*) = f(4.25) = 4.253 – 3√
f(x6*) = f(4.75) = 4.753 – 3√

∑
i = 1

n
f(xi*)∆xSM =

∑
i = 1

6
f(xi*)∆xSM =

SL = f(x1*)∆x + f(x2*)∆x + f(x3*)∆x +
+ f(x4*)∆x + f(x5*)∆x + f(x6*)∆x

SM = ( +2.253 – 3√ +2.753 – 3√ +3.253 – 3√ +3.753 – 3√ +4.253 – 3√ )(.5)4.753 – 3√
SM ≈ 19.28
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‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ 

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +
+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

A ≈ ∆x{ ½[f(a) + f(x1)]

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)]

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)]

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] +

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] +

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]

‘Factor out’ the ∆x factor from each of the four terms 
of the expression.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ 

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ 

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a)

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1)

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1)

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2)

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2)

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) +

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3)

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) +

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) +

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3)

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) +

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)

Now do the indicated multiplication.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a)

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1)

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) + f(x2)

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) + f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) + f(x2) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) + f(x2) + f(x3)

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) + f(x2) + f(x3) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) + f(x2) + f(x3) +

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) + f(x2) + f(x3) + ½f(b)

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}

+ ½f(x2) + ½f(x3) + ½f(x3) + ½f(b)}

Now combine like terms.



A1 ≈ ½*∆x[f(a) + f(x1)]
A2 ≈ ½*∆x[f(x1) + f(x2)]

A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A ≈ ½*∆x[f(a) + f(x1)] + ½*∆x[f(x1) + f(x2)] +

A ≈ ∆x{ ½[f(a) + f(x1)] + ½[f(x1) + f(x2)] +

A ≈ ∆x{ ½f(a) + ½f(x1) + ½f(x1) + ½f(x2) +

A ≈ ∆x{ ½f(a) + f(x1) + f(x2) + f(x3) + ½f(b)}

+ ½*∆x[f(x2) + f(x3)] + ½*∆x[f(x3) + f(b)]

+ ½[f(x2) + f(x3)] + ½[f(x3) + f(b)]}
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f(xi)A ≈ ∆x[½f(a) + + ½f(b)]
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A3 ≈ ½*∆x[f(x2) + f(x3)]
A4 ≈ ½*∆x[f(x3) + f(b)]

∑
i = 1

n– 1
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∑
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The Trapezoidal Approximation



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√
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x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

ST = ∆x[½f(a) + f(x1) + f(x2) + f(x3) +
+ f(x4) + f(x5) + ½f(b)]

∑
i = 1

n– 1
f(xi)ST = ∆x[½f(a) + + ½f(b)]

∑
i = 1

5
f(xi)ST = ∆x[½f(a) + + ½f(b)]

ST = (.5)[½ 5√ + 12.625√ + 24√ + 39.875√ + 61√ + 88.125√ + ½ 122√ ]



n = 6

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
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The trapezoidal approximation ‘connects the ‘key points’ on 
the graph of function f with a series of line segments forming 
the trapezoids.  
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the graph of function f with a series of line segments forming 
the trapezoids.  (This is called a polygonal path.)
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The last of or approximation techniques is called Simpson’s 
Rule.   
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The last of or approximation techniques is called Simpson’s 
Rule.   This technique connects the key points using ‘arcs of 
parabolas’.  
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The last of or approximation techniques is called Simpson’s 
Rule.   This technique connects the key points using ‘arcs of 
parabolas’.  Consider the following. 
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Consider point P.  Since y = -8, when x = -2, 

-8 = A(-2)2 + B(-2) + C  
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Given any three non-collinear points on the graph of any 
function, there exists a second degree function ( a parabola), 
y = Ax2 + Bx + C, that contains them.  Consider this example.  

Given:  Points P(-2, -8), Q(1, 13), and R(4, -2)
Find the coefficients A, B, and C of a second degree 
function that would contain these points.

Simpson’s Rule

P(-2, -8) 4A – 2B + C = -8

Q(1, 13) A + B + C = 13

R(4, -2) 16A + 4B + C = -2

Solving this system of equations, we get A = -2, B = 5 and C = 10.
Therefore, the parabola that would contain points P, Q, and R is

y = -2x2 + 5x + 10.
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Given any three non-collinear points on the graph of any 
function, there exists a second degree function ( a parabola), 
y = Ax2 + Bx + C, that contains them.  Consider this example.  

Given:  Points P(-2, -8), Q(1, 13), and R(4, -2)
Find the coefficients A, B, and C of a second degree 
function that would contain these points.

Simpson’s Rule

y = -2x2 + 5x + 10

If, however, the three given points were collinear, then the 
value of A would be zero and the function would be linear.  
The function would still exist that would contain the three 
given points!! 
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3
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3

1
3

In our example, n = 4.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n
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3

1
3
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1
3

In our example, n = 4.



∫
a

b
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i = 1
AiA =
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3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3
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A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3
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3

In our example, n = 4.
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+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3
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3
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Factor     ∆x from each term.1
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1
3
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3
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3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
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A ≈   ∆x[f(a) + 4f(x1) + f(x2) +
1
3

Factor     ∆x from each term.1
3



∫
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AiA =

n
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3
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3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
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1
3
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1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
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1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+

Factor     ∆x from each term.1
3



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6)

Factor     ∆x from each term.1
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∫
a

b
f(x)dx = ∑

i = 1
AiA =
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A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) +

Factor     ∆x from each term.1
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∫
a

b
f(x)dx = ∑

i = 1
AiA =
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1
3
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3
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1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3
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3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b) 
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1
3
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3
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1
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1
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∫
a

b
f(x)dx = ∑
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3
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3
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3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

Rearrange and combine like terms.
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1
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1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3
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Rearrange and combine like terms.
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A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
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A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3
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1
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1
3

In our example, n = 4.
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3
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A ≈   ∆x[f(a) 1
3
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1
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3
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1
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1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3
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3
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1
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1
3
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3
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1
3
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1
3

In our example, n = 4.
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+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a)1
3

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑
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1
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1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule
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3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 
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1
3
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∫
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b
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1
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1
3
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3

Simpson’s Rule
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3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3
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A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7)   
1
3

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7)
1
3

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2)

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2)

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2)

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4)

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4)

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4)

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6)

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6)

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6)

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6) + f(b) 

Rearrange and combine like terms.



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6) + f(b)] 



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6) + f(b)] 

A ≈



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6) + f(b)] 

A ≈   ∆x[f(a)1
3



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6) + f(b)] 

A ≈   ∆x[f(a)1
3



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6) + f(b)] 

A ≈   ∆x[f(a) + 41
3 ∑



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n

A1 ≈   ∆x[f(a) + 4f(x1) + f(x2)] 
1
3

A2 ≈   ∆x[f(x2) + 4f(x3) + f(x4)]
1
3

A3 ≈   ∆x[f(x4) + 4f(x5) + f(x6)]
1
3

A4 ≈   ∆x[f(x6) + 4f(x7) + f(b)]1
3

Simpson’s Rule

A ≈   ∆x[f(a) + 4f(x1) + f(x2)] +    ∆x[f(x2) + 4f(x3) + f(x4)] + 1
3

1
3

+ ∆x[f(x4) + 4f(x5) + f(x6)] +    ∆x[f(x6) + 4f(x7) + f(b)] 1
3

1
3

In our example, n = 4.

A ≈   ∆x[f(a) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + 1
3

+ f(x4) + 4f(x5) + f(x6) + f(x6) + 4f(x7) + f(b)] 

A ≈   ∆x[f(a) + 4f(x1) + 4f(x3) + 4f(x5) + 4f(x7) +  1
3

+ 2f(x2) + 2f(x4) + 2f(x6) + f(b)] 

A ≈   ∆x[f(a) + 41
3 ∑

i = 1

n



∫
a

b
f(x)dx = ∑

i = 1
AiA =

n
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Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√



Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS= ∆x[f(a)+41
3 ∑
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n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]
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f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS= ∆x[f(a)+41
3 ∑

i=1

n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]

SS= ∆x[f(a)+41
3 ∑

i=1

3
f(x2i–1)+2∑

i=1

2
f(x2i)+f(b)]

2n = 6 n = 3



2n = 6 n = 3

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS= ∆x[f(a)+41
3 ∑

i=1

n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]

SS= ∆x[f(a)+41
3 ∑

i=1

3
f(x2i–1)+2∑

i=1

2
f(x2i)+f(b)]

+ 2{f(x2) + f(x4)} + f(b)]
SS= ∆x[f(a)+4{f(x1)+f(x3)+f(x5)}+ 1

3



2n = 6 n = 3

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS= ∆x[f(a)+41
3 ∑

i=1

n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]

SS= ∆x[f(a)+41
3 ∑

i=1

3
f(x2i–1)+2∑

i=1

2
f(x2i)+f(b)]

+ 2{f(x2) + f(x4)} + f(b)]
SS= ∆x[f(a)+4{f(x1)+f(x3)+f(x5)}+ 1

3

SS = (.5)[ 1
3



2n = 6 n = 3

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS= ∆x[f(a)+41
3 ∑

i=1

n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]

SS= ∆x[f(a)+41
3 ∑

i=1

3
f(x2i–1)+2∑

i=1

2
f(x2i)+f(b)]

+ 2{f(x2) + f(x4)} + f(b)]
SS= ∆x[f(a)+4{f(x1)+f(x3)+f(x5)}+ 1

3

SS = 5√(.5)[ 1
3



2n = 6 n = 3

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS= ∆x[f(a)+41
3 ∑

i=1

n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]

SS= ∆x[f(a)+41
3 ∑

i=1

3
f(x2i–1)+2∑

i=1

2
f(x2i)+f(b)]

+ 2{f(x2) + f(x4)} + f(b)]
SS= ∆x[f(a)+4{f(x1)+f(x3)+f(x5)}+ 1

3

SS = 5√ + 4{ 12.625√ + +39.875√ } 88.125√(.5)[ 1
3



2n = 6 n = 3

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS= ∆x[f(a)+41
3 ∑

i=1

n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]

SS= ∆x[f(a)+41
3 ∑

i=1

3
f(x2i–1)+2∑

i=1

2
f(x2i)+f(b)]

+ 2{f(x2) + f(x4)} + f(b)]
SS= ∆x[f(a)+4{f(x1)+f(x3)+f(x5)}+ 1

3

SS = 5√ + 4{ 12.625√ + +39.875√ } + 2{88.125√ }(.5)[ 1
3 24√ + 61√



2n = 6 n = 3

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS= ∆x[f(a)+41
3 ∑

i=1

n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]

SS= ∆x[f(a)+41
3 ∑

i=1

3
f(x2i–1)+2∑

i=1

2
f(x2i)+f(b)]

+ 2{f(x2) + f(x4)} + f(b)]
SS= ∆x[f(a)+4{f(x1)+f(x3)+f(x5)}+ 1

3

SS = 5√ + 4{ 12.625√ + +39.875√ } + 2{88.125√ } + 122√ ](.5)[ 1
3 24√ + 61√



2n = 6 n = 3

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS ≈ 19.29

SS= ∆x[f(a)+41
3 ∑

i=1

n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]

SS= ∆x[f(a)+41
3 ∑

i=1

3
f(x2i–1)+2∑

i=1

2
f(x2i)+f(b)]

+ 2{f(x2) + f(x4)} + f(b)]
SS= ∆x[f(a)+4{f(x1)+f(x3)+f(x5)}+ 1

3

SS = 5√ + 4{ 12.625√ + +39.875√ } + 2{88.125√ } + 122√ ](.5)[ 1
3 24√ + 61√



2n = 6 n = 3

Class Worksheet #5  Unit 11
Approximate the following definite integral using each of the following 
approximation methods.   
(a) SL (Left Rectangular), (b) SR (Right Rectangular), (c) SM (Midpoint Rectangular),
(d) ST (Trapezoidal), and (e) SS (Simpson’s).
Show your complete solutions neatly organized.  In every case, divide 
the interval [a, b] into 6 sub-intervals. 

∫
2

5
dx√ x3– 3

x0 = a = 2
x1 = 2.5
x2 = 3
x3 = 3.5
x4 = 4
x5 = 4.5

x6 = b = 5

f(x0) = f(a) = f(2) = 
f(x1) = f(2.5) = 
f(x2) = f(3) =
f(x3) = f(3.5) = 
f(x4) = f(4) =
f(x5) = f(4.5) =
f(x6) = f(b) = f(5) = 

∆x = b – a
n = 5 – 2

6 = 0.5 f(x) = x3 – 3√
5√

12.625√

39.875√

88.125√

24√

61√

122√

SS ≈ 19.29

SS= ∆x[f(a)+41
3 ∑

i=1

n
f(x2i–1)+2∑

i=1

n– 1
f(x2i)+f(b)]

SS= ∆x[f(a)+41
3 ∑

i=1

3
f(x2i–1)+2∑

i=1

2
f(x2i)+f(b)]

+ 2{f(x2) + f(x4)} + f(b)]
SS= ∆x[f(a)+4{f(x1)+f(x3)+f(x5)}+ 1

3

SS = 5√ + 4{ 12.625√ + +39.875√ } + 2{88.125√ } + 122√ ](.5)[ 1
3 24√ + 61√

Good luck on your homework !!




