Calculus Lesson \#5 Unit 11 Class Worksheet \#5

Numerical Methods for Approximating Definite Integrals

Consider the shaded region between the x-axis, the graph of the function $y=f(x)$, and the vertical lines $x=a$ and $x=b$.

Consider the shaded region between the x-axis, the graph of the function $y=f(x)$, and the vertical lines $x=a$ and $x=b$. The area of this region can be represented by the definite integral

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(x) \mathrm{dx} .
$$

The purpose of this lesson is to introduce several numerical methods that can be used to approximate the value of a definite integral.

Divide the interval [a, b] into n sub-intervals

Divide the interval [a, b] into n sub-intervals

Divide the interval [a, b] into n sub-intervals

Divide the interval [a,b] into n sub-intervals

Divide the interval [a,b] into \mathbf{n} sub-intervals each of width $\Delta \mathbf{x}$

Divide the interval [a,b] into \mathbf{n} sub-intervals each of width $\Delta \mathbf{x}$

Divide the interval $[a, b]$ into n sub-intervals each of width Δx by the numbers $x_{0}=a$,

Divide the interval [a, b] into n sub-intervals each of width Δx by the numbers $x_{0}=a, x_{1}$,

Divide the interval [a, b] into n sub-intervals each of width Δx by the numbers $x_{0}=a, x_{1}, x_{2}$,

Divide the interval $[a, b]$ into n sub-intervals each of width Δx by the numbers $x_{0}=a, x_{1}, x_{2}, \ldots$,

Divide the interval [\mathbf{a}, b] into \mathbf{n} sub-intervals each of width $\Delta \mathbf{x}$ by the numbers $x_{0}=a, x_{1}, x_{2}, \ldots, x_{n}=b$.

Divide the interval [$a, b]$ into n sub-intervals each of width Δx by the numbers $x_{0}=a, x_{1}, x_{2}, \ldots, x_{n}=b$. Clearly, $\Delta x=(b-a) / n$.

Notice that the region is divided into \mathbf{n} 'strips',

Notice that the region is divided into n 'strips', with $\operatorname{areas} A_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{\mathbf{n}}$.

Notice that the region is divided into n 'strips', with areas $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{\mathbf{n}}$. Rectangles can be used to approximate the area of these strips.

The first of the 'rectangular' approximations uses the length of the left hand side of each strip as the length of the rectangle.

The first of the 'rectangular' approximations uses the length of the left hand side of each strip as the length of the rectangle.

The first of the 'rectangular' approximations uses the length of the left hand side of each strip as the length of the rectangle.

The first of the 'rectangular' approximations uses the length of the left hand side of each strip as the length of the rectangle.

The first of the 'rectangular' approximations uses the length of the left hand side of each strip as the length of the rectangle.

The first of the 'rectangular' approximations uses the length of the left hand side of each strip as the length of the rectangle. This is called the 'left rectangular' approximation.

The first of the 'rectangular' approximations uses the length of the left hand side of each strip as the length of the rectangle. This is called the 'left rectangular' approximation, S_{L}.

The width of each rectangle is Δx.

The width of each rectangle is Δx.

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx$

The width of each rectangle is Δx.
$\mathrm{A}_{1} \approx \mathrm{f}\left(\mathbf{x}_{0}\right)$

The width of each rectangle is Δx.
$A_{1} \approx f\left(\mathbf{x}_{0}\right) \Delta x$

The width of each rectangle is Δx.
$A_{1} \approx f\left(\mathbf{x}_{0}\right) \Delta x$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx f\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx f\left(\mathbf{x}_{1}\right)
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}
$$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{\mathbf{3}} \approx$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{2}\right)
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx f\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{4} \approx
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx f\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{4} \approx
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx f\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{4} \approx \mathbf{f}\left(\mathbf{x}_{3}\right)
$$

The width of each rectangle is Δx.
$A_{1} \approx f\left(\mathbf{x}_{0}\right) \Delta \mathbf{x} \quad A_{2} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad A_{3} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad A_{4} \approx \mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}$

Notice that, in general, $A_{i} \approx f\left(\mathbf{x}_{i-1}\right)$

$$
\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}-1}\right) \Delta \mathbf{x}
$$

$A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(x) d x$

$$
\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}-1}\right) \Delta \mathbf{x}
$$

$A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{A}_{1}+\mathbf{A}_{\mathbf{2}}+\mathbf{A}_{\mathbf{3}}+\mathbf{A}_{\mathbf{4}}$

$\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}-1}\right) \Delta \mathbf{x}$
$A=\int_{a}^{b} f(x) d x=A_{1}+A_{2}+A_{3}+A_{4}=\sum_{i=1}^{n} \mathbf{A}_{i}$

$$
\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}-1}\right) \Delta \mathbf{x}
$$

$A=\int_{a}^{b} f(x) d x=A_{1}+A_{2}+A_{3}+A_{4}=\sum_{i=1}^{n} A_{i} \quad$ (In this case, $\left.n=4.\right)$

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}-1}\right) \Delta \mathbf{x} \\
& \mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}}
\end{aligned}
$$

$$
\begin{array}{r}
\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}-1}\right) \Delta \mathbf{x} \\
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}} \approx
\end{array}
$$

$$
\begin{array}{r}
\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}-1}\right) \Delta \mathbf{x} \\
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{A}_{\mathbf{i}} \approx \sum_{\mathrm{i}=1}^{\mathrm{n}}
\end{array}
$$

$$
\begin{gathered}
\mathbf{A}_{i} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}-1}\right) \Delta \mathbf{x} \\
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{A}_{\mathbf{i}} \approx \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{f}\left(\mathbf{x}_{\mathrm{i}-1}\right) \Delta \mathbf{x}
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{A}_{i} \approx f\left(\mathbf{x}_{i-1}\right) \Delta x \\
A=\int_{a}^{b} \mathbf{f}(x) d x=\sum_{i=1}^{n} A_{i} \approx \sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x=S_{L}
\end{gathered}
$$

The Left Rectangular Approximation

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\int_{2}^{5} \sqrt{x^{3}-3} d x
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\int_{2}^{5} \sqrt{x^{3}-3} d x
$$

Step 1: Find Δx.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}
$$

Step 1: Find Δx.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}
$$

Step 1: Find Δx.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5
$$

Step 1: Find Δx.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& \quad x_{1}=
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \quad \text { Add } \Delta x .
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& x_{1}=2.5
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& \quad x_{1}=2.5
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=\mathbf{a}=2 \\
& \quad x_{1}=2.5 \\
& x_{2}=
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& \quad x_{1}=2.5 \longrightarrow \text { Add } \Delta x . \\
& x_{2}=\quad \longleftrightarrow
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& x_{1}=2.5 \\
& x_{2}=3
\end{aligned} \quad \text { Add } \Delta x . \quad .
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& x_{1}=2.5 \\
& x_{2}=3
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& x_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& x_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=3.5
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& x_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=3.5 \\
& x_{4}=4
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
\int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
x_{0}=a=2 \\
x_{1}=2.5 \\
x_{2}=3 \\
x_{3}=3.5 \\
x_{4}=4 \\
x_{5}=4.5
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& x_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=3.5 \\
& x_{4}=4 \\
& x_{5}=4.5 \\
& x_{6}=b
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a \\
&=2 \\
& x_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=3.5 \\
& x_{4}=4 \\
& x_{5}=4.5 \\
& x_{6}=b=5
\end{aligned}
$$

Step 2: Calculate the \mathbf{x}_{i} 's.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a=2 \\
& x_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=3.5 \\
& x_{4}=4 \\
& x_{5}=4.5 \\
& x_{6}=b=5
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
& x_{0}=a \\
&=2 \\
& x_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=3.5 \\
& x_{4}=4 \\
& x_{5}=4.5 \\
& x_{6}=b=5
\end{aligned}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{\prime}} \mathbf{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)= \\
& \mathbf{x}_{0}=a=2 \\
& x_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=3.5 \\
& x_{4}=4 \\
& x_{5}=4.5 \\
& x_{6}=b=5
\end{aligned}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{\prime}} \mathbf{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
\int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 \\
x_{1}=2.5 \\
x_{2}=3 \\
x_{3}=3.5 \\
x_{4}=4 \\
x_{5}=4.5 \\
x_{6}=b=5
\end{aligned}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathrm{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
\int_{2}^{5} \sqrt[5]{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)= \\
x_{1}=2.5 \\
x_{2}=3 \\
x_{3}=3.5 \\
x_{4}=4 \\
x_{5}=4.5 \\
x_{6}=b=5
\end{aligned}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathrm{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(a)= \\
x_{1}=2.5 & \\
x_{2}=3 \\
x_{3}=3.5 \\
x_{4}=4 \\
x_{5}=4.5 \\
x_{6}=b=5
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{\prime}} \mathbf{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(a)=f(2)= \\
x_{1}=2.5 & \\
x_{2}=3 \\
x_{3}=3.5 \\
x_{4}=4 \\
x_{5}=4.5 \\
x_{6}=b=5
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{\prime}} \mathbf{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
x_{1}=2.5 & \\
x_{2}=3 \\
x_{3}=3.5 \\
x_{4}=4 \\
x_{5}=4.5 \\
x_{6}=b=5
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{\prime}} \mathbf{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{x})=\sqrt{x^{3}-3} \\
x_{1}=2.5 & f(2)=\sqrt{5} \\
x_{2}=3 & \\
x_{3}=3.5 & \\
x_{4}=4 \\
x_{5}=4.5 & \\
x_{6}=b=5 &
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathrm{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlr}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)= \\
x_{2}=3 & \\
x_{3}=3.5 & \\
x_{4}=4 & \\
x_{5}=4.5 & \\
x_{6}=b=5 &
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathrm{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlr}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
x_{2}=3 & \\
x_{3}=3.5 & \\
x_{4}=4 & \\
x_{5}=4.5 & \\
x_{6}=b=5 &
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathrm{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
x_{2}=3 & f\left(x_{2}\right)= \\
x_{3}=3.5 & \\
x_{4}=4 & \\
x_{5}=4.5 & \\
x_{6}=b=5 &
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathbf{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
x_{2}=3 & f\left(x_{2}\right)=f(3)= \\
x_{3}=3.5 & \\
x_{4}=4 & \\
x_{5}=4.5 & \\
x_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathbf{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
x_{2}=3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
x_{3}=3.5 & \\
x_{4}=4 & \\
x_{5}=4.5 & \\
x_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathbf{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
x_{2}=3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
x_{3}=3.5 & f\left(x_{3}\right)= \\
x_{4}=4 & \\
x_{5}=4.5 & \\
x_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathrm{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
x_{2}=3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
x_{3}=3.5 & f\left(x_{3}\right)=f(3.5)= \\
x_{4}=4 & \\
x_{5}=4.5 & & \\
x_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $f\left(x_{i}{ }^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
\mathbf{x}_{2}=3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
\mathbf{x}_{3}=3.5 & f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
x_{4}=4 & & \\
x_{5}=4.5 & & \\
x_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $f\left(x_{i}{ }^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{crl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
x_{2}=3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
x_{3}=3.5 & f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
x_{4}=4 & f\left(x_{4}\right)= \\
x_{5}=4.5 & & \\
x_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathrm{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
x_{2}=3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
x_{3}=3.5 & f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
x_{4}=4 & f\left(x_{4}\right)=f(4)= \\
x_{5}=4.5 & & \\
x_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathbf{\prime} \mathrm{s}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1} & =2.5 & f\left(x_{1}\right)=f(2.5) & =\sqrt{12.625} \\
x_{2} & =3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
x_{3} & =3.5 & f\left(x_{3}\right)=f(3.5) & =\sqrt{39.875} \\
x_{4} & =4 & f\left(x_{4}\right)=f(4)=\sqrt{61} \\
x_{5} & =4.5 & & \\
x_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $f\left(x_{i}{ }^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1}=2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
x_{2}=3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
x_{3}=3.5 & f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
x_{4}=4 & f\left(x_{4}\right)=f(4)=\sqrt{61} \\
x_{5}=4.5 & f\left(x_{5}\right)= \\
x_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $f\left(x_{i}^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1} & =2.5 & f\left(x_{1}\right)=f(2.5) & =\sqrt{12.625} \\
x_{2} & =3 & f\left(x_{2}\right)=f(3) & =\sqrt{24} \\
x_{3} & =3.5 & f\left(x_{3}\right)=f(3.5) & =\sqrt{39.875} \\
x_{4} & =4 & f\left(x_{4}\right)=f(4) & =\sqrt{61} \\
x_{5} & =4.5 & f\left(x_{5}\right)=f(4.5) & = \\
x_{6}=b & =5 & &
\end{array}
$$

Step 3: Calculate the $f\left(x_{i}{ }^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1} & =2.5 & f\left(x_{1}\right)=f(2.5) & =\sqrt{12.625} \\
x_{2} & =3 & f\left(x_{2}\right)=f(3) & =\sqrt{24} \\
x_{3} & =3.5 & f\left(x_{3}\right)=f(3.5) & =\sqrt{39.875} \\
x_{4} & =4 & f\left(x_{4}\right)=f(4) & =\sqrt{61} \\
x_{5} & =4.5 & f\left(x_{5}\right)=f(4.5) & =\sqrt{\mathbf{8 8 . 1 2 5}} \\
\mathbf{x}_{6}=b=5 & &
\end{array}
$$

Step 3: Calculate the $f\left(x_{i}{ }^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(a)=f(2) & =\sqrt{5} \\
x_{1} & =2.5 & f\left(x_{1}\right)=f(2.5) & =\sqrt{12.625} \\
x_{2} & =3 & f\left(x_{2}\right)=f(3) & =\sqrt{24} \\
x_{3} & =3.5 & f\left(x_{3}\right)=f(3.5) & =\sqrt{39.875} \\
x_{4} & =4 & f\left(x_{4}\right)=f(4) & =\sqrt{61} \\
x_{5} & =4.5 & f\left(x_{5}\right)=f(4.5) & =\sqrt{\mathbf{8 8 . 1 2 5}} \\
\mathbf{x}_{6}=b & =5 & f\left(x_{6}\right)=
\end{array}
$$

Step 3: Calculate the $f\left(x_{i}{ }^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1} & =2.5 & f\left(x_{1}\right)=f(2.5) & =\sqrt{12.625} \\
\mathbf{x}_{2} & =3 & f\left(x_{2}\right)=f(3) & =\sqrt{24} \\
\mathbf{x}_{3} & =3.5 & f\left(x_{3}\right)=f(3.5) & =\sqrt{39.875} \\
x_{4} & =4 & f\left(x_{4}\right)=f(4) & =\sqrt{61} \\
x_{5} & =4.5 & f\left(x_{5}\right)=f(4.5) & =\sqrt{\mathbf{8 8 . 1 2 5}} \\
\mathbf{x}_{6}=b=5 & f\left(x_{6}\right)=f(b)=
\end{array}
$$

Step 3: Calculate the $f\left(x_{i}{ }^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1} & =2.5 & f\left(x_{1}\right)=f(2.5) & =\sqrt{12.625} \\
x_{2} & =3 & f\left(x_{2}\right)=f(3) & =\sqrt{24} \\
x_{3} & =3.5 & f\left(x_{3}\right)=f(3.5) & =\sqrt{39.875} \\
x_{4} & =4 & f\left(x_{4}\right)=f(4) & =\sqrt{61} \\
x_{5} & =4.5 & f\left(x_{5}\right)=f(4.5) & =\sqrt{\mathbf{8 8 . 1 2 5}} \\
x_{6}=b=5 & f\left(x_{6}\right)=f(b)=f(5)=
\end{array}
$$

Step 3: Calculate the $f\left(x_{i}{ }^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathbf{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=\mathbf{f} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{24} \\
& \mathbf{x}_{3}=\mathbf{3 . 5} \quad \mathbf{f}\left(\mathbf{x}_{3}\right)=\mathbf{f}(\mathbf{3 . 5})=\sqrt{\mathbf{3 9 . 8 7 5}} \\
& \mathrm{x}_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Step 3: Calculate the $f\left(x_{i}{ }^{\prime} s\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathbf{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=\mathbf{f} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{24} \\
& \mathbf{x}_{3}=\mathbf{3 . 5} \quad f\left(\mathbf{x}_{3}\right)=\mathbf{f}(\mathbf{3 . 5})=\sqrt{\mathbf{3 9 . 8 7 5}} \\
& \mathrm{x}_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad \mathrm{f}\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=\mathbf{f} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& \mathbf{x}_{3}=\mathbf{3 . 5} \quad \mathbf{f}\left(\mathbf{x}_{3}\right)=\mathbf{f}(\mathbf{3 . 5})=\sqrt{\mathbf{3 9 . 8 7 5}} \\
& \mathrm{x}_{4}=4 \quad \mathrm{f}\left(\mathrm{x}_{4}\right)=\mathrm{f}(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad \mathrm{f}\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=3 \quad f\left(\mathbf{x}_{2}\right)=\mathbf{f}(3)=\sqrt{24} \\
& \mathbf{x}_{3}=\mathbf{3 . 5} \quad f\left(\mathbf{x}_{3}\right)=\mathbf{f}(\mathbf{3 . 5})=\sqrt{\mathbf{3 9 . 8 7 5}} \\
& \mathrm{x}_{4}=4 \quad \mathrm{f}\left(\mathrm{x}_{4}\right)=\mathrm{f}(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad \mathrm{f}\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathbf{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=\mathbf{f} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathbf{f}(\mathbf{3 . 5})=\sqrt{\mathbf{3 9 . 8 7 5}} \\
& \mathrm{x}_{4}=4 \quad \mathbf{f}\left(\mathrm{x}_{4}\right)=\mathbf{f}(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad \mathrm{f}\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathbf{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathbf{f}(\mathbf{3 . 5})=\sqrt{\mathbf{3 9 . 8 7 5}} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad \mathrm{f}\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{L}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x \\
& S_{L}=\sum_{i=1}^{6} f\left(x_{i-1}\right) \Delta x \\
& S_{L}=\mathbf{f}\left(\mathbf{x}_{0}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+ \\
& +f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x+f\left(x_{5}\right) \Delta x
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{0}=\mathbf{a}=\mathbf{2} \quad \mathbf{f}\left(\mathrm{x}_{0}\right)=\mathbf{f}(\mathrm{a})=\mathrm{f}(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& \mathrm{x}_{3}=\mathbf{3 . 5} \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \\
& f\left(x_{5}\right)=f(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& f\left(x_{5}\right)=f(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{\mathrm{L}}=(\sqrt{5}+\sqrt{\mathbf{1 2 . 6 2 5}}+\sqrt{\mathbf{2 4}}+\sqrt{\mathbf{3 9 . 8 7 5}}+\sqrt{\mathbf{6 1}}+\sqrt{\mathbf{8 8 . 1 2 5}})(.5)
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& f\left(x_{5}\right)=f(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& \mathrm{~S}_{\mathrm{L}}=(\sqrt{5}+\sqrt{\mathbf{1 2 . 6 2 5}}+\sqrt{\mathbf{2 4}}+\sqrt{\mathbf{3 9 . 8 7 5}}+\sqrt{\mathbf{6 1}}+\sqrt{\mathbf{8 8 . 1 2 5}})(.5) \\
& S_{L} \approx \mathbf{1 7 . 1 0}
\end{aligned}
$$

The next 'rectangular' approximation uses the length of the right hand side of each strip as the length of the rectangle.

The next 'rectangular' approximation uses the length of the right hand side of each strip as the length of the rectangle.

The next 'rectangular' approximation uses the length of the right hand side of each strip as the length of the rectangle.

The next 'rectangular' approximation uses the length of the right hand side of each strip as the length of the rectangle.

The next 'rectangular' approximation uses the length of the right hand side of each strip as the length of the rectangle.

The next 'rectangular' approximation uses the length of the right hand side of each strip as the length of the rectangle. This is called the 'right rectangular' approximation.

The next 'rectangular' approximation uses the length of the right hand side of each strip as the length of the rectangle. This is called the 'right rectangular' approximation, \mathbf{S}_{R}.

The width of each rectangle is Δx.

The width of each rectangle is Δx.

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right)$

The width of each rectangle is Δx.
$\mathrm{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}$

The width of each rectangle is Δx.
$\mathrm{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx
$$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right)
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}
$$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx$

The width of each rectangle is Δx.
$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{\mathbf{3}} \approx$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}\right)
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}
$$

The width of each rectangle is $\Delta \mathbf{x}$.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \quad \mathbf{A}_{4} \approx
$$

The width of each rectangle is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \quad \mathbf{A}_{4} \approx
$$

The width of each rectangle is $\Delta \mathrm{x}$.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \quad \mathbf{A}_{4} \approx \mathbf{f}\left(\mathbf{x}_{4}\right)
$$

The width of each rectangle is $\Delta \mathrm{x}$.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x} \quad \mathbf{A}_{4} \approx \mathbf{f}\left(\mathbf{x}_{4}\right) \Delta \mathbf{x}
$$

Notice that, in general, $\mathbf{A}_{\mathbf{i}} \approx$

Notice that, in general, $\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right) \Delta \mathbf{x}$.

$A=\int_{\mathbf{a}}^{\mathbf{b}} f(x) d x$

$A=\int_{a}^{b} f(x) d x=A_{1}+A_{2}+A_{3}+A_{4}$

$A=\int_{a}^{b} f(x) d x=A_{1}+A_{2}+A_{3}+A_{4}=\sum_{i=1}^{n} \mathbf{A}_{i}$

$A=\int_{a}^{b} f(x) d x=A_{1}+A_{2}+A_{3}+A_{4}=\sum_{i=1}^{n} A_{i} \quad$ (In this case, $\left.n=4.\right)$

$$
A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}}
$$

$$
A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}} \approx
$$

$$
A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \approx \sum_{i=1}^{n}
$$

$$
\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right) \Delta \mathbf{x}
$$

$$
A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}} \approx \sum_{\mathrm{i}=1}^{\mathbf{n}} \mathbf{f}\left(\mathbf{x}_{\mathrm{i}}\right) \Delta \mathbf{x}
$$

$$
\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right) \Delta \mathbf{x}
$$

$$
A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}} \approx \sum_{\mathrm{i}=1}^{\mathbf{n}} \mathbf{f}\left(\mathbf{x}_{\mathrm{i}}\right) \Delta x=\mathbf{S}_{\mathrm{R}}
$$

The Right Rectangular Approximation

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n} & =\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & f\left(x_{0}\right)=f(\mathbf{a})=f(2)=\sqrt{5} \\
x_{1} & =2.5 & f\left(x_{1}\right)=f(2.5) & =\sqrt{12.625} \\
\mathbf{x}_{2} & =3 & f\left(x_{2}\right)=f(3) & =\sqrt{24} \\
\mathbf{x}_{3} & =3.5 & f\left(x_{3}\right)=f(3.5) & =\sqrt{39.875} \\
\mathbf{x}_{4} & =4 & f\left(x_{4}\right)=f(4) & =\sqrt{61} \\
x_{5} & =4.5 & f\left(x_{5}\right)=f(4.5) & =\sqrt{\mathbf{8 8 . 1 2 5}} \\
\mathbf{x}_{6}=b=5 & f\left(x_{6}\right)=f(b)=f(5) & =\sqrt{122}
\end{array}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{0}=\mathbf{a}=2 \quad \mathbf{f}\left(\mathbf{x}_{0}\right)=\mathbf{f}(\mathbf{a})=\mathbf{f}(2)=\sqrt{5} \\
& \mathbf{x}_{1}=2.5 \quad f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
& \mathbf{x}_{2}=3 \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(3)=\sqrt{24} \\
& x_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& \mathbf{x}_{4}=4 \quad \mathbf{f}\left(\mathbf{x}_{4}\right)=\mathbf{f}(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& \mathbf{x}_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{0}=\mathbf{a}=2 \quad \mathbf{f}\left(\mathbf{x}_{0}\right)=\mathbf{f}(\mathbf{a})=\mathbf{f}(2)=\sqrt{5} \\
& \mathbf{x}_{1}=2.5 \quad f\left(\mathbf{x}_{1}\right)=\mathbf{f}(2.5)=\sqrt{12.625} \\
& \mathbf{x}_{2}=3 \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(3)=\sqrt{24} \\
& \mathbf{x}_{3}=3.5 \quad \mathbf{f}\left(\mathbf{x}_{3}\right)=\mathbf{f}(3.5)=\sqrt{\mathbf{3 9 . 8 7 5}} \\
& \mathbf{x}_{4}=4 \quad \mathbf{f}\left(\mathbf{x}_{4}\right)=\mathbf{f}(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& \mathbf{x}_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{0}=\mathbf{a}=2 \quad \mathbf{f}\left(\mathbf{x}_{0}\right)=\mathbf{f}(\mathbf{a})=\mathbf{f}(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathbf{f}(\mathbf{3 . 5})=\sqrt{\mathbf{3 9 . 8 7 5}} \\
& \mathrm{x}_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad \mathrm{f}\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad f\left(\mathbf{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=\mathbf{f} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathbf{f}(\mathbf{3 . 5})=\sqrt{\mathbf{3 9 . 8 7 5}} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{R}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta \mathbf{x} \\
& S_{R}=\sum_{i=1}^{6} f\left(x_{i}\right) \Delta x \\
& S_{L}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}+ \\
& +f\left(x_{4}\right) \Delta x+f\left(x_{5}\right) \Delta x+f\left(x_{6}\right) \Delta x
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{0}=\mathbf{a}=2 \quad \mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}(\mathrm{a})=\mathrm{f}(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& \mathrm{x}_{3}=\mathbf{3 . 5} \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \\
& f\left(x_{5}\right)=f(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{R}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta \mathbf{x} \\
& S_{R}=\sum_{i=1}^{6} f\left(x_{i}\right) \Delta x \\
& S_{L}=\mathbf{f}\left(\mathbf{x}_{1}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}\right) \Delta \mathbf{x}+ \\
& +f\left(x_{4}\right) \Delta x+f\left(x_{5}\right) \Delta x+f\left(x_{6}\right) \Delta x
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{0}=\mathbf{a}=\mathbf{2} \quad \mathbf{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}(\mathrm{a})=\mathrm{f}(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathbf{f}(2.5)=\sqrt{12.625} \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& \mathbf{x}_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad f\left(\mathrm{x}_{5}\right)=\mathbf{f}(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& \mathbf{S}_{\mathbf{R}}=(\sqrt{\mathbf{1 2 . 6 2 5}}+\sqrt{\mathbf{2 4}}+\sqrt{\mathbf{3 9 . 8 7 5}}+\sqrt{\mathbf{6 1}}+\sqrt{\mathbf{8 8 . 1 2 5}}+\sqrt{\mathbf{1 2 2}})(.5)
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{0}=\mathbf{a}=\mathbf{2} \quad \mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}(\mathrm{a})=\mathrm{f}(2)=\sqrt{5} \\
& \mathbf{x}_{1}=\mathbf{2 . 5} \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathbf{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& \mathbf{x}_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad \mathrm{f}\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{R}=(\sqrt{\mathbf{1 2 . 6 2 5}}+\sqrt{\mathbf{2 4}}+\sqrt{\mathbf{3 9 . 8 7 5}}+\sqrt{\mathbf{6 1}}+\sqrt{\mathbf{8 8 . 1 2 5}}+\sqrt{\mathbf{1 2 2}})(.5) \\
& \mathrm{S}_{\mathrm{R}} \approx 21.50
\end{aligned}
$$

The last Rectangular Approximation is called the Mid-Rectangular Approximation.

The last Rectangular Approximation is called the Mid-Rectangular Approximation, $\mathbf{S}_{\mathbf{M}}$.

The last Rectangular Approximation is called the Mid-Rectangular Approximation, $\mathbf{S}_{\mathbf{M}}$.
Let $x_{i}{ }^{*}$ represent the midpoint of the $i^{\text {th }}$ subinterval.

The last Rectangular Approximation is called the Mid-Rectangular Approximation, $\mathbf{S}_{\mathbf{M}}$.
Let $x_{i}{ }^{*}$ represent the midpoint of the $i^{\text {th }}$ subinterval. $\mathrm{x}_{1}{ }^{*}$ is the midpoint of the $1^{\text {st }}$ subinterval.

The last Rectangular Approximation is called the Mid-Rectangular Approximation, $\mathbf{S}_{\mathbf{M}}$.
Let $x_{i}{ }^{*}$ represent the midpoint of the $i^{\text {th }}$ subinterval. $\mathrm{x}_{2}{ }^{*}$ is the midpoint of the $\mathbf{2}^{\text {nd }}$ subinterval.

The last Rectangular Approximation is called the Mid-Rectangular Approximation, $\mathbf{S}_{\mathbf{M}}$. Let $x_{i}{ }^{*}$ represent the midpoint of the $i^{\text {th }}$ subinterval. $x_{3} *$ is the midpoint of the $3^{\text {rd }}$ subinterval.

The last Rectangular Approximation is called the Mid-Rectangular Approximation, $\mathbf{S}_{\mathbf{M}}$.
Let $x_{i}{ }^{*}$ represent the midpoint of the $i^{\text {th }}$ subinterval. $x_{4}{ }^{*}$ is the midpoint of the $4^{\text {th }}$ subinterval.

The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(\mathbf{x}_{\mathrm{i}}{ }^{*}\right)$.

The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(\mathrm{x}_{\mathrm{i}}{ }^{*}\right)$. The length of the $1^{\text {st }}$ Mid-Rectangle is $f\left(x_{1}{ }^{*}\right)$.

The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(\mathrm{x}_{\mathrm{i}}{ }^{*}\right)$. The length of the $1^{\text {st }}$ Mid-Rectangle is $f\left(x_{1}{ }^{*}\right)$.

The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(\mathrm{x}_{\mathrm{i}}{ }^{*}\right)$. The length of the $1^{\text {st }}$ Mid-Rectangle is $f\left(x_{1}{ }^{*}\right)$. Its width is Δx.

$\mathbf{A}_{1} \approx$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $1^{\text {st }}$ Mid-Rectangle is $f\left(x_{1}{ }^{*}\right)$. Its width is Δx.

$\mathrm{A}_{1} \approx \mathrm{f}\left(\mathrm{x}_{1}{ }^{*}\right)$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(\mathrm{x}_{\mathrm{i}}{ }^{*}\right)$.
The length of the $1^{\text {st }}$ Mid-Rectangle is $f\left(x_{1}{ }^{*}\right)$. Its width is Δx.

$A_{1} \approx f\left(x_{1}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(\mathrm{x}_{\mathrm{i}}{ }^{*}\right)$.
The length of the $1^{\text {st }}$ Mid-Rectangle is $f\left(x_{1}{ }^{*}\right)$. Its width is Δx.

$$
\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x}
$$

The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.

$A_{1} \approx f\left(x_{1}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $2^{\text {nd }}$ Mid-Rectangle is $f\left(x_{2}{ }^{*}\right)$.

$A_{1} \approx f\left(x_{1}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $2^{\text {nd }}$ Mid-Rectangle is $f\left(x_{2}{ }^{*}\right)$.

$A_{1} \approx f\left(x_{1}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $2^{2 d}$ Mid-Rectangle is $f\left(x_{2}{ }^{*}\right)$. Its width is Δx.

$\mathrm{A}_{1} \approx \mathrm{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathrm{x} \quad \mathrm{A}_{2} \approx$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $2^{2 n d}$ Mid-Rectangle is $f\left(x_{2}{ }^{*}\right)$. Its width is Δx.

$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right)$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $2^{\text {nd }}$ Mid-Rectangle is $f\left(x_{2}{ }^{*}\right)$. Its width is Δx.

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(\mathrm{x}_{\mathrm{i}}{ }^{*}\right)$.
The length of the $2^{\text {nd }}$ Mid-Rectangle is $f\left(x_{2}{ }^{*}\right)$. Its width is Δx.

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.

$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $3^{\text {rd }}$ Mid-Rectangle is $f\left(x_{3}{ }^{*}\right)$.

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $3^{\text {rd }}$ Mid-Rectangle is $f\left(x_{3}{ }^{*}\right)$.

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $3^{\text {rd }}$ Mid-Rectangle is $f\left(x_{3}{ }^{*}\right)$. Its width is Δx.

$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $3^{\text {rd }}$ Mid-Rectangle is $f\left(x_{3}{ }^{*}\right)$. Its width is Δx.

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad A_{3} \approx f\left(\mathbf{x}_{3}{ }^{*}\right)$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $3^{\text {rd }}$ Mid-Rectangle is $f\left(x_{3}{ }^{*}\right)$. Its width is Δx.

$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $3^{\text {rd }}$ Mid-Rectangle is $f\left(x_{3}{ }^{*}\right)$. Its width is Δx.

$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.

$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(\mathrm{x}_{\mathrm{i}}{ }^{*}\right)$.
The length of the $4^{\text {th }}$ Mid-Rectangle is $f\left(x_{4}{ }^{*}\right)$.

$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $4^{\text {th }}$ Mid-Rectangle is $f\left(x_{4}{ }^{*}\right)$.

$\mathbf{A}_{1} \approx \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{2} \approx \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{3} \approx \mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $4^{\text {th }}$ Mid-Rectangle is $f\left(x_{4}{ }^{*}\right)$. Its width is Δx.

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad A_{3} \approx f\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x} \quad \mathbf{A}_{4} \approx$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $4^{\text {th }}$ Mid-Rectangle is $f\left(x_{4}{ }^{*}\right)$. Its width is Δx.

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad A_{3} \approx f\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x} \quad A_{4} \approx f\left(\mathbf{x}_{4}{ }^{*}\right)$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(\mathrm{x}_{\mathrm{i}}{ }^{*}\right)$.
The length of the $4^{\text {th }}$ Mid-Rectangle is $f\left(x_{4}{ }^{*}\right)$. Its width is Δx.

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad A_{3} \approx f\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x} \quad A_{4} \approx f\left(\mathbf{x}_{4}{ }^{*}\right) \Delta \mathbf{x}$
The length of the $i^{\text {th }}$ Mid-Rectangle is $f\left(x_{i}{ }^{*}\right)$.
The length of the $4^{\text {th }}$ Mid-Rectangle is $f\left(x_{4}{ }^{*}\right)$. Its width is Δx.

$\mathrm{A}_{1} \approx \mathrm{f}\left(\mathrm{x}_{1}{ }^{*}\right) \Delta \mathrm{x} \quad \mathrm{A}_{2} \approx \mathrm{f}\left(\mathrm{x}_{2}{ }^{*}\right) \Delta \mathrm{x} \quad \mathrm{A}_{3} \approx \mathrm{f}\left(\mathrm{x}_{3}{ }^{*}\right) \Delta \mathrm{x} \quad \mathrm{A}_{4} \approx \mathrm{f}\left(\mathrm{x}_{4}{ }^{*}\right) \Delta \mathrm{x}$

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad A_{3} \approx f\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x} \quad A_{4} \approx f\left(\mathbf{x}_{4}{ }^{*}\right) \Delta \mathbf{x}$
Notice that, in general,

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad A_{3} \approx f\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x} \quad A_{4} \approx f\left(\mathbf{x}_{4}{ }^{*}\right) \Delta \mathbf{x}$
Notice that, in general, $\mathbf{A}_{\mathbf{i}} \approx$

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad A_{3} \approx f\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x} \quad A_{4} \approx f\left(\mathbf{x}_{4}{ }^{*}\right) \Delta \mathbf{x}$
Notice that, in general, $\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}{ }^{*}\right)$

$A_{1} \approx f\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x} \quad A_{2} \approx f\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x} \quad A_{3} \approx f\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x} \quad A_{4} \approx f\left(\mathbf{x}_{4}{ }^{*}\right) \Delta \mathbf{x}$
Notice that, in general, $\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}{ }^{*}\right) \Delta \mathbf{x}$.

$\mathbf{A}_{\mathbf{i}} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}{ }^{*}\right) \Delta \mathbf{x}$
$A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(x) \mathbf{d x}$

$A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{A}_{1}+\mathbf{A}_{2}+\mathbf{A}_{3}+\mathbf{A}_{4}$

$$
\begin{aligned}
& \mathbf{A}=\int_{a}^{b} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\mathbf{A}_{1}+\mathbf{A}_{\mathbf{2}}+\mathbf{A}_{\mathbf{3}}+\mathbf{A}_{4}=\sum_{i=1}^{n} \mathbf{A}_{\mathbf{i}}
\end{aligned}
$$

$$
A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{A}_{\mathbf{i}} \approx \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{f}\left(\mathrm{x}_{\mathbf{i}}^{*}\right) \Delta x=\mathrm{S}_{\mathbf{M}}
$$

The Mid-Rectangular Approximation

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
\int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 \\
x_{1}=2.5 \\
x_{2}=3 \\
x_{3}=3.5 \\
x_{4}=4 \\
x_{5}=4.5 \\
x_{6}=b=5
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
\int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 \\
x_{1}=2.5 \\
x_{2}=3 \\
x_{3}=3.5 \\
x_{4}=4 \\
x_{5}=4.5 \\
x_{6}=b=5
\end{aligned}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlr}
\int_{2}^{5} \sqrt[5]{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & \\
x_{1} & =2.5 & \\
x_{1} *= \\
x_{2} & =3 & \\
x_{3} & =3.5 & \\
x_{4} & =4 \\
x_{5} & =4.5 & \\
x_{6}=b=5 &
\end{array}
$$

Calculate the $\mathbf{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{0}==2 \\
& \mathbf{x}_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=3.5 \\
& x_{4}=4 \\
& x_{5}= \\
& x_{1} * \text { is the midpoint of the } 1^{\text {st }} \text { sub-interval. } \\
& x_{6}=b=5
\end{aligned}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \\
& x_{1}=2.5 x_{1} *= \\
& x_{2}=3 \\
& x_{3}=3.5 \\
& x_{4}=4 \\
& x_{5}=4.5 \\
& x_{6}=b=5
\end{aligned}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}==2 \\
& x_{1}=2.5 \\
& x_{2}=3 \\
& x_{3}=3.5 \\
& x_{1}=4 \\
& x_{4}=2.25 \\
& x_{5}=4.5 \\
& x_{6}=b \\
& x_{6}=5
\end{aligned}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & x_{1} *=2.25 \\
x_{1} & =2.5 & \\
x_{2} & =3 \\
x_{3} & =3.5 & \\
x_{4} & =4 \\
x_{5} & =4.5 & \\
x_{6}=b & =5 &
\end{array}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & & x_{1}^{*}=2.25 \\
\mathbf{x}_{1}=2.5 & \mathbf{x}_{2} *= \\
\mathbf{x}_{2}=3 & & \\
\mathbf{x}_{3}=3.5 & & \\
\mathbf{x}_{4}=4 & & \\
x_{5}=4.5 & & \\
\mathbf{x}_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{0}=\mathbf{a}=2 \\
& \mathrm{x}_{1}=2.5 \\
& \mathrm{x}_{1}{ }^{*}=\mathbf{2 . 2 5} \\
& \mathrm{x}_{2}=3-\mathrm{x}_{2} \\
& \mathrm{x}_{2}=3 \\
& \mathrm{x}_{3}=3.5 \\
& \mathrm{x}_{4}=4 \\
& \mathrm{x}_{5}=4.5 \\
& x_{6}=b=5 \\
& x_{2}{ }^{*} \text { is the midpoint of the } 2^{\text {nd }} \text { sub-interval. }
\end{aligned}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{0}=\mathbf{a}=2 \\
& \mathrm{x}_{1}=2.5 \\
& \mathrm{x}_{2}=3 \\
& \mathrm{x}_{3}=3.5 \\
& \mathrm{x}_{4}=4 \\
& \mathrm{x}_{5}=4.5 \\
& x_{6}=b=5 \\
& \mathrm{x}_{2}{ }^{*} \text { is the midpoint of the } 2^{\text {nd }} \text { sub-interval. }
\end{aligned}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{0}=\mathbf{a}=2 \\
& \mathrm{x}_{1}=2.5 \\
& \mathrm{x}_{2}=3 \\
& \mathrm{x}_{3}=3.5 \\
& \mathrm{x}_{4}=4 \\
& \mathrm{x}_{5}=4.5 \\
& x_{6}=b=5 \\
& \mathrm{x}_{2}{ }^{*} \text { is the midpoint of the } 2^{\text {nd }} \text { sub-interval. }
\end{aligned}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlr}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & x_{1}^{*}=2.25 \\
x_{1}=2.5 & x_{2}^{*}=2.75 & \text { Add } \Delta x . \\
x_{2}=3 & & x_{2}{ }^{*} \text { is the midpoint of the } 2^{\text {nd }} \\
x_{3}=3.5 & & \\
x_{4}=4 & & \\
x_{5}=4.5 & & \\
x_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & & x_{1} *=2.25 \\
\mathbf{x}_{1} & =2.5 & x_{2} *=2.75 \\
\mathbf{x}_{2} & =3 & \\
x_{3} & =3.5 & \\
x_{4}=4 & & \\
x_{5}=4.5 & & \\
\mathbf{x}_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & & x_{1} *=2.25 \\
x_{1}=2.5 & \mathbf{x}_{2} *=2.75 \\
\mathbf{x}_{2}=3 & \mathbf{x}_{3} *= \\
\mathbf{x}_{3}=3.5 & \\
\mathbf{x}_{4}=4 & & \\
x_{5}=4.5 & & \\
\mathbf{x}_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathbf{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
x_{0}=\mathbf{a}=2 & & x_{1}^{*}=2.25 \\
x_{1}=2.5 & x_{2}^{*}=2.75 \\
x_{2}=3 & x_{3}^{*} *= \\
x_{3}=3.5 & \\
x_{4}=4 & & \\
x_{5}=4.5 & & \\
x_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & & x_{1} *=2.25 \\
x_{1}=2.5 & x_{2} *=2.75 \\
x_{2}=3 & x_{3} *=3.25 \\
x_{3}=3.5 & \\
x_{4}=4 & & \\
x_{5}=4.5 & & \\
x_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & & x_{1} *=2.25 \\
\mathbf{x}_{1}=2.5 & \mathbf{x}_{2} *=2.75 \\
\mathbf{x}_{2}=3 & \mathbf{x}_{3} *=3.25 \\
\mathbf{x}_{3}=3.5 & \\
\mathbf{x}_{4}=4 & \\
\mathbf{x}_{5}=4.5 & & \\
\mathbf{x}_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathbf{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{clll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & & x_{1} *=2.25 \\
\mathbf{x}_{1}=2.5 & \mathbf{x}_{2} *=2.75 \\
\mathbf{x}_{2}=3 & \mathbf{x}_{3} *=3.25 \\
\mathbf{x}_{3}=3.5 & \mathbf{x}_{4} *= \\
\mathbf{x}_{4}=4 & \\
\mathbf{x}_{5}=4.5 & \\
\mathbf{x}_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{cll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5
\end{array} \quad f(x)=\sqrt{x^{3}-3}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rll}
\int_{2}^{5} \sqrt[5]{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & x_{1} *=2.25 \\
x_{1}=2.5 & x_{2} *=2.75 \\
x_{2}=3 & x_{3} *=3.25 \\
x_{3}=3.5 & \mathbf{x}_{4} *=3.75 \\
x_{4}=4 & \\
x_{5}=4.5 & \\
x_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathbf{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{cll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & \mathbf{x}_{1} *=2.25 \\
\mathbf{x}_{1}=2.5 & \mathbf{x}_{2}^{*}=2.75 \\
\mathbf{x}_{2}=3 & \mathbf{x}_{3} *=3.25 \\
\mathbf{x}_{3}=3.5 & \mathbf{x}_{4}^{*}=3.75 \\
\mathbf{x}_{4}=4 & \\
\mathbf{x}_{5}=4.5 & & \\
\mathbf{x}_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{cll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & \mathbf{x}_{1} *=2.25 \\
\mathbf{x}_{1}=2.5 & \mathbf{x}_{2} *=2.75 \\
\mathbf{x}_{2}=3 & \mathbf{x}_{3} *=3.25 \\
\mathbf{x}_{3}=3.5 & \mathbf{x}_{4} *=3.75 \\
\mathbf{x}_{4}=4 & \mathbf{x}_{5}^{*}=4.25 \\
\mathbf{x}_{5}=4.5 & \\
\mathbf{x}_{6}=b=5 & &
\end{array}
$$

Calculate the $\mathbf{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{lll}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 & f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & \mathbf{x}_{1} *=2.25 \\
\mathbf{x}_{1}=2.5 & \mathbf{x}_{2} *=2.75 \\
\mathbf{x}_{2}=3 & \mathbf{x}_{3} *=3.25 \\
\mathbf{x}_{3}=3.5 & \mathbf{x}_{4} *=3.75 \\
\mathbf{x}_{4}=4 & \mathbf{x}_{5} *=4.25 \\
\mathbf{x}_{5}=4.5 & \mathbf{x}_{6} *=4.75 \\
\mathbf{x}_{6}=b=5 &
\end{array}
$$

Calculate the $\mathrm{x}_{\mathrm{i}}{ }^{*}$'s.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1} *=2.25 \\
& \mathbf{x}_{2} *=2.75 \\
& \mathbf{x}_{3} *=3.25 \\
& \mathbf{x}_{4} *=3.75 \\
& \mathbf{x}_{5}^{*} *=4.25 \\
& \mathbf{x}_{6} *=4.75
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1} *=2.25 \\
& \mathbf{x}_{2} *=2.75 \\
& \mathbf{x}_{3} *=3.25 \\
& \mathbf{x}_{4}^{*}=3.75 \\
& \mathbf{x}_{5}^{*} *=4.25 \\
& \mathbf{x}_{6} *=4.75
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{*}\right.$'s).

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1} *=2.25 \quad f\left(x_{1} *\right)= \\
& \mathbf{x}_{2}^{*}=2.75 \\
& \mathbf{x}_{3}^{*}=3.25 \\
& \mathbf{x}_{4}^{*}=3.75 \\
& \mathbf{x}_{5}^{*}=4.25 \\
& \mathbf{x}_{6} *=4.75
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{*}\right.$'s).

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1} *=2.25 \quad f\left(x_{1} *\right)=f(2.25)= \\
& \mathbf{x}_{2}{ }^{*}=2.75 \\
& \mathbf{x}_{3} *=3.25 \\
& \mathbf{x}_{4}^{*}=3.75 \\
& \mathbf{x}_{5}^{*}=4.25 \\
& \mathbf{x}_{6} *=4.75
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{*}\right.$'s).

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1} *=2.25 \quad f\left(x_{1} *\right)=f(2.25)= \\
& x_{2} *=2.75 \\
& x_{3}^{*}=3.25 \\
& \mathbf{x}_{4}^{*}=3.75 \\
& x_{5}^{*}=4.25 \\
& \mathbf{x}_{6}^{*} *=4.75
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{*}\right.$'s).

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1}^{*}=2.25 \quad f\left(x_{1}^{*}\right)=\mathbf{f}(2.25)=\sqrt{2.25^{3}-3} \\
& \mathbf{x}_{2}^{*}=2.75 \\
& \mathbf{x}_{3}^{*}=3.25 \\
& \mathbf{x}_{4}^{*}=3.75 \\
& \mathbf{x}_{5}^{*}=4.25 \\
& \mathbf{x}_{6}^{*}=4.75
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{\prime \prime}{ }^{\prime}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1}^{*}=2.25 \\
& \mathbf{x}_{2}^{*}=2.75 \quad f\left(x_{1}^{*}\right)=\mathbf{f}(2.25)=\sqrt{2.25^{3}-3} \\
& \mathbf{x}_{3}^{*}=3.25 \\
& \mathbf{x}_{4}^{*}=3.75 \\
& \mathbf{x}_{5}^{*}=4.25 \\
& \mathbf{x}_{6}^{*}=4.75
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{*}\right.$'s).

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1}^{*}=2.25 \\
& \mathbf{x}_{2}^{*}=2.75 \\
& \left.\mathbf{x}_{3}^{*}=3 . x_{1}^{*}\right)=\mathbf{f}(2.25)=\sqrt{2.25^{3}-3} \\
& \left.\mathbf{x}_{4}^{*} *\right)=\mathbf{f}(2.75)= \\
& \mathbf{x}_{5}^{*}=4.75 \\
& \mathbf{x}_{6}^{*}=4.25
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{*}\right.$'s).

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1}^{*}=2.25 \\
& \mathbf{x}_{2}^{*}=2.75 \\
& \mathbf{x}_{3}^{*}=3.25 \\
& \mathbf{x}_{4}^{*}=3.7\left(x_{2}^{*}\right)=\mathbf{f}(2.25)=\sqrt{2.25^{3}-3} \\
& \mathbf{x}_{5}^{*}=4.25 \\
& \mathbf{x}_{6}^{*}=4.75
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{*}\right.$'s).

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1}^{*}=2.25 \\
& \mathbf{x}_{2}^{*}=2.75 \\
& \mathbf{x}_{3}^{*}=3.25 \\
& \mathbf{f}_{1}^{*}\left(\mathbf{x}_{2}^{*}\right)=\mathbf{f}(2.25)=\sqrt{2.25^{3}-3} \\
& \mathbf{x}_{4}^{*}=3.75 \\
& \left.\mathbf{x}_{5}^{*}=4.75\right)=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{6}^{*}=4.25 \\
& \hline
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{\prime \prime}{ }^{\prime}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1}^{*}=2.25 \\
& \mathbf{x}_{2}^{*}=2.75 \\
& \left.\mathbf{x}_{3}^{*}=3 . \mathbf{x}_{1}^{*}\right)=\mathbf{f}\left(\mathbf{x}_{2}^{*} *\right)=\mathbf{f}(2.25)=\sqrt{2.25^{3}-3} \\
& \left.\mathbf{x}_{4}^{*}=3.75\right)=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{5}^{*}\left(\mathbf{x}_{3}^{*}\right)=\mathbf{f}(3.25)=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{6}^{*}\left(\mathbf{x}_{4}^{*}\right)=\mathbf{f}(3.75)=\sqrt{3.75^{3}-3} \\
&
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{*}\right.$'s).

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1}{ }^{*}=2.25 \quad \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right)=\mathbf{f}(2.25)=\sqrt{2.25^{3}-3} \\
& x_{2} *=2.75 \quad f\left(x_{2}{ }^{*}\right)=f(2.75)=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3} *=3.25 \quad \mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right)=\mathbf{f}(3.25)=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4} *=3.75 \quad \mathbf{f}\left(\mathbf{x}_{4}{ }^{*}\right)=\mathbf{f}(3.75)=\sqrt{3.75^{3}-3} \\
& \mathrm{x}_{5}{ }^{*}=4.25 \quad \mathrm{f}\left(\mathrm{x}_{5}{ }^{*}\right)=\mathrm{f}(4.25)=\sqrt{4.25^{3}-3} \\
& \mathrm{x}_{6}{ }^{*}=4.75
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{\prime \prime}{ }^{\prime}\right)$.

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1} *=2.25 \quad f\left(x_{1} *\right)=f(2.25)=\sqrt{2.25^{3}-3} \\
& x_{2} *=2.75 \quad f\left(x_{2}{ }^{*}\right)=f(2.75)=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3} *=3.25 \quad \mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right)=\mathbf{f}(3.25)=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4}{ }^{*}=3.75 \quad \mathbf{f}\left(\mathbf{x}_{4}{ }^{*}\right)=\mathbf{f}(3.75)=\sqrt{3.75^{3}-3} \\
& \mathbf{x}_{5}{ }^{*}=4.25 \quad \mathbf{f}\left(\mathbf{x}_{5}{ }^{*}\right)=\mathbf{f}(4.25)=\sqrt{4.25^{3}-3} \\
& x_{6} *=4.75 \quad f\left(x_{6}{ }^{*}\right)=f(4.75)=\sqrt{4.75^{3}-3}
\end{aligned}
$$

Calculate the $f\left(x_{i}{ }^{*}\right.$'s).

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{1}{ }^{*}=2.25 \quad f\left(x_{1}{ }^{*}\right)=f(2.25)=\sqrt{2.25^{3}-3} \\
& \mathbf{x}_{2}{ }^{*}=\mathbf{2 . 7 5} \quad \mathbf{f}\left(\mathrm{x}_{2}{ }^{*}\right)=\mathbf{f}(\mathbf{2 . 7 5})=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3} *=3.25 \quad \mathbf{f}\left(\mathrm{x}_{3}{ }^{*}\right)=\mathbf{f}(\mathbf{3 . 2 5})=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4}{ }^{*}=3.75 \quad f\left(x_{4}{ }^{*}\right)=\mathbf{f}(3.75)=\sqrt{3.75^{3}-3} \\
& x_{5} *=4.25 \quad f\left(x_{5}{ }^{*}\right)=f(4.25)=\sqrt{4.25^{3}-3} \\
& x_{6} *=4.75 \quad f\left(x_{6}{ }^{*}\right)=f(4.75)=\sqrt{4.75^{3}-3}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{1}{ }^{*}=2.25 \quad \mathrm{f}\left(\mathrm{x}_{1}{ }^{*}\right)=\mathrm{f}(2.25)=\sqrt{2.25^{3}-3} \\
& x_{2}{ }^{*}=2.75 \quad f\left(x_{2}{ }^{*}\right)=f(2.75)=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3} *=3.25 \quad \mathbf{f}\left(\mathrm{x}_{3}{ }^{*}\right)=\mathbf{f}(\mathbf{3 . 2 5})=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4}{ }^{*}=3.75 \quad f\left(x_{4}{ }^{*}\right)=\mathbf{f}(3.75)=\sqrt{3.75^{3}-3} \\
& x_{5} *=4.25 \quad f\left(x_{5}{ }^{*}\right)=f(4.25)=\sqrt{4.25^{3}-3} \\
& x_{6} *=4.75 \quad f\left(x_{6}{ }^{*}\right)=f(4.75)=\sqrt{4.75^{3}-3}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{1}{ }^{*}=2.25 \quad \mathrm{f}\left(\mathrm{x}_{1}{ }^{*}\right)=\mathrm{f}(\mathbf{2 . 2 5})=\sqrt{2.25^{3}-3} \\
& \mathbf{x}_{2} *=2.75 \quad \mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right)=\mathbf{f}(\mathbf{2 . 7 5})=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3} *=3.25 \quad \mathbf{f}\left(\mathrm{x}_{3}{ }^{*}\right)=\mathbf{f}(\mathbf{3 . 2 5})=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4}{ }^{*}=3.75 \quad f\left(x_{4}{ }^{*}\right)=\mathbf{f}(3.75)=\sqrt{3.75^{3}-3} \\
& x_{5} *=4.25 \quad f\left(x_{5}{ }^{*}\right)=f(4.25)=\sqrt{4.25^{3}-3} \\
& x_{6} *=4.75 \quad f\left(x_{6}{ }^{*}\right)=f(4.75)=\sqrt{4.75^{3}-3}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{1}{ }^{*}=2.25 \quad \mathrm{f}\left(\mathrm{x}_{1}{ }^{*}\right)=\mathrm{f}(\mathbf{2 . 2 5})=\sqrt{2.25^{3}-3} \\
& x_{2}{ }^{*}=2.75 \quad f\left(x_{2}{ }^{*}\right)=f(2.75)=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3} *=3.25 \quad f\left(\mathbf{x}_{3} *\right)=\mathbf{f}(\mathbf{3 . 2 5})=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4}{ }^{*}=3.75 \quad f\left(\mathbf{x}_{4}{ }^{*}\right)=\mathbf{f}(3.75)=\sqrt{3.75^{3}-3} \\
& x_{5} *=4.25 \quad f\left(x_{5} *\right)=f(4.25)=\sqrt{4.25^{3}-3} \\
& x_{6} *=4.75 \quad f\left(x_{6}{ }^{*}\right)=f(4.75)=\sqrt{4.75^{3}-3}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{1}{ }^{*}=2.25 \quad \mathrm{f}\left(\mathrm{x}_{1}{ }^{*}\right)=\mathrm{f}(\mathbf{2 . 2 5})=\sqrt{2.25^{3}-3} \\
& x_{2}{ }^{*}=2.75 \quad f\left(x_{2}{ }^{*}\right)=f(2.75)=\sqrt{2.75^{3}-3} \\
& \mathrm{x}_{3}{ }^{*}=3.25 \quad \mathbf{f}\left(\mathrm{x}_{3}{ }^{*}\right)=\mathbf{f}(3.25)=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4}{ }^{*}=3.75 \quad f\left(\mathbf{x}_{4}{ }^{*}\right)=\mathbf{f}(3.75)=\sqrt{3.75^{3}-3} \\
& \mathbf{x}_{5} *=4.25 \quad f\left(x_{5}{ }^{*}\right)=\mathbf{f}(4.25)=\sqrt{4.25^{3}-3} \\
& x_{6}{ }^{*}=4.75 \quad f\left(x_{6}{ }^{*}\right)=f(4.75)=\sqrt{4.75^{3}-3}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{1}{ }^{*}=2.25 \quad \mathrm{f}\left(\mathrm{x}_{1}{ }^{*}\right)=\mathrm{f}(\mathbf{2 . 2 5})=\sqrt{2.25^{3}-3} \\
& x_{2}{ }^{*}=2.75 \quad f\left(x_{2}{ }^{*}\right)=f(2.75)=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3}{ }^{*}=3.25 \quad \mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right)=\mathbf{f}(\mathbf{3 . 2 5})=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4}{ }^{*}=3.75 \quad f\left(\mathbf{x}_{4}{ }^{*}\right)=\mathbf{f}(3.75)=\sqrt{3.75^{3}-3} \\
& x_{5} *=4.25 \quad f\left(x_{5}{ }^{*}\right)=f(4.25)=\sqrt{4.25^{3}-3} \\
& x_{6}{ }^{*}=4.75 \quad f\left(x_{6}{ }^{*}\right)=f(4.75)=\sqrt{4.75^{3}-3} \\
& S_{M}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
& S_{M}=\sum_{i=1}^{6} f\left(x_{i}^{*}\right) \Delta x \\
& S_{L}=\mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x}+ \\
& +\mathbf{f}\left(\mathbf{x}_{4}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{5}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{6}{ }^{*}\right) \Delta \mathbf{x} \\
& S_{M}=
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{1} *=2.25 \quad \mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right)=\mathbf{f}(2.25)=\sqrt{2.25^{3}-3} \\
& x_{2}{ }^{*}=2.75 \quad f\left(x_{2}{ }^{*}\right)=f(2.75)=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3} *=3.25 \quad \mathbf{f}\left(\mathrm{x}_{3}{ }^{*}\right)=\mathbf{f}(\mathbf{3 . 2 5})=\sqrt{3.25^{3}-3} \\
& x_{4}{ }^{*}=3.75 \quad f\left(x_{4}{ }^{*}\right)=f(3.75)=\sqrt{3.75^{3}-3} \\
& x_{5} *=4.25 \quad f\left(x_{5}{ }^{*}\right)=f(4.25)=\sqrt{4.25^{3}-3} \\
& \mathrm{x}_{6}{ }^{*}=4.75 \quad \mathrm{f}\left(\mathrm{x}_{6}{ }^{*}\right)=\mathrm{f}(4.75)=\sqrt{4.75^{3}-3} \\
& S_{M}=\sum_{i=1}^{n} f\left(\mathbf{x}_{\mathbf{i}}{ }^{*}\right) \Delta \mathbf{x} \\
& S_{M}=\sum_{i=1}^{6} f\left(x_{i}{ }^{*}\right) \Delta x \\
& S_{L}=\mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x}+ \\
& +\mathbf{f}\left(\mathbf{x}_{4}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{5}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{6}{ }^{*}\right) \Delta \mathbf{x}
\end{aligned}
$$

$S_{M}=$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{1}{ }^{*}=2.25 \quad \mathrm{f}\left(\mathrm{x}_{1}{ }^{*}\right)=\mathrm{f}(2.25)=\sqrt{2.25^{3}-3} \\
& \mathbf{x}_{2}{ }^{*}=\mathbf{2 . 7 5} \quad \mathbf{f}\left(\mathrm{x}_{2}{ }^{*}\right)=\mathbf{f}(\mathbf{2 . 7 5})=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3} *=3.25 \quad \mathbf{f}\left(\mathrm{x}_{3}{ }^{*}\right)=\mathbf{f}(\mathbf{3 . 2 5})=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4}{ }^{*}=3.75 \quad f\left(x_{4}{ }^{*}\right)=f(3.75)=\sqrt{3.75^{3}-3} \\
& x_{5} *=4.25 \quad f\left(x_{5}{ }^{*}\right)=f(4.25)=\sqrt{4.25^{3}-3} \\
& \mathrm{x}_{6}{ }^{*}=4.75 \quad \mathrm{f}\left(\mathrm{x}_{6}{ }^{*}\right)=\mathrm{f}(4.75)=\sqrt{4.75^{3}-3} \\
& \begin{array}{c}
S_{M}=\sum_{i=1}^{n} f\left(\mathbf{x}_{\mathbf{i}}{ }^{*}\right) \Delta \mathbf{x} \\
S_{M}=\sum_{i=1}^{6} \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}{ }^{*}\right) \Delta \mathbf{x} \\
\mathbf{S}_{\mathbf{L}}=\mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x}+ \\
+\mathbf{f}\left(\mathbf{x}_{4}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{5}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{6}{ }^{*}{ }^{*}\right) \Delta \mathbf{x}
\end{array} \\
& S_{M}=\left(\sqrt{2.25^{3}-3}+\sqrt{2.75^{3}-3}+\sqrt{3.25^{3}-3}+\sqrt{3.75^{3}-3}+\sqrt{4.5^{3}-3}+\sqrt{4.75^{3}-3}\right)(.5)
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathrm{x}_{1}{ }^{*}=2.25 \quad \mathrm{f}\left(\mathrm{x}_{1}{ }^{*}\right)=\mathrm{f}(2.25)=\sqrt{2.25^{3}-3} \\
& \mathbf{x}_{2}{ }^{*}=\mathbf{2 . 7 5} \quad \mathbf{f}\left(\mathrm{x}_{2}{ }^{*}\right)=\mathbf{f}(\mathbf{2 . 7 5})=\sqrt{2.75^{3}-3} \\
& \mathbf{x}_{3} *=3.25 \quad f\left(\mathbf{x}_{3} *\right)=\mathbf{f}(\mathbf{3 . 2 5})=\sqrt{3.25^{3}-3} \\
& \mathbf{x}_{4}{ }^{*}=3.75 \quad f\left(x_{4}{ }^{*}\right)=f(3.75)=\sqrt{3.75^{3}-3} \\
& x_{5} *=4.25 \quad f\left(x_{5}{ }^{*}\right)=f(4.25)=\sqrt{4.25^{3}-3} \\
& \mathrm{x}_{6}{ }^{*}=4.75 \quad \mathrm{f}\left(\mathrm{x}_{6}{ }^{*}\right)=\mathrm{f}(4.75)=\sqrt{4.75^{3}-3} \\
& \begin{array}{c}
S_{M}=\sum_{i=1}^{n} f\left(\mathbf{x}_{\mathbf{i}}{ }^{*}\right) \Delta \mathbf{x} \\
\mathbf{S}_{\mathbf{M}}=\sum_{i=1}^{6} \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}{ }^{*}\right) \Delta \mathbf{x} \\
\mathbf{S}_{\mathbf{L}}=\mathbf{f}\left(\mathbf{x}_{1}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{2}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{3}{ }^{*}\right) \Delta \mathbf{x}+ \\
+\mathbf{f}\left(\mathbf{x}_{4}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{5}{ }^{*}\right) \Delta \mathbf{x}+\mathbf{f}\left(\mathbf{x}_{6}{ }^{*}\right) \Delta \mathbf{x}
\end{array} \\
& S_{M}=\left(\sqrt{2.25^{3}-3}+\sqrt{2.75^{3}-3}+\sqrt{3.25^{3}-3}+\sqrt{3.75^{3}-3}+\sqrt{4.25^{3}-3}+\sqrt{4.75^{3}-3}\right)(.5) \\
& S_{M} \approx 19.28
\end{aligned}
$$

Trapezoids can also be used to approximate the area.

Trapezoids can also be used to approximate the area.

Trapezoids can also be used to approximate the area.

Trapezoids can also be used to approximate the area.

Trapezoids can also be used to approximate the area.

trapezoid

trapezoid

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$\mathbf{A}_{1} \approx$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx \\
& \mathbf{h}=\Delta \mathbf{x}
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx \\
& h=\Delta x \quad b_{1}=f(\mathbf{a})
\end{aligned}
$$

Area $=1 / 2 * \mathbf{h}\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx \\
& h=\Delta x \quad b_{1}=f(a) \quad b_{2}=f\left(\mathbf{x}_{1}\right)
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x \\
& h=\Delta x \quad b_{1}=f(a) \quad b_{2}=f\left(\mathbf{x}_{1}\right)
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x[f(a) \\
& h=\Delta x \quad b_{1}=f(a) \quad b_{2}=f\left(x_{1}\right)
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(a)+f\left(x_{1}\right)\right] \\
& h=\Delta x \quad b_{1}=f(a) \quad b_{2}=f\left(x_{1}\right)
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \\
& \mathbf{A}_{2} \approx
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$A_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]$
$\mathbf{A}_{2} \approx$
Area $=1 / 2^{*} h\left(b_{1}+b_{2}\right) \quad h=\Delta x$

trapezoid

$A_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]$
$\mathbf{A}_{2} \approx$
Area $=1 / 2 * h\left(b_{1}+b_{2}\right) \quad h=\Delta x \quad b_{1}=f\left(x_{1}\right)$

trapezoid

$A_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]$
$\mathbf{A}_{2} \approx$
Area $=1 / 2 * h\left(b_{1}+b_{2}\right) \quad h=\Delta x \quad b_{1}=f\left(x_{1}\right) \quad b_{2}=f\left(x_{2}\right)$

trapezoid

$A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+f\left(\mathbf{x}_{1}\right)\right]$
$\mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}$
Area $=1 / 2 * h\left(b_{1}+b_{2}\right) \quad h=\Delta x \quad b_{1}=f\left(x_{1}\right) \quad b_{2}=f\left(x_{2}\right)$

trapezoid

$A_{1} \approx 1 / 2^{*} \Delta x\left[f(a)+f\left(x_{1}\right)\right]$
$\mathbf{A}_{\mathbf{2}} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)\right.$
Area $=1 / 2 * h\left(b_{1}+b_{2}\right) \quad h=\Delta x \quad b_{1}=f\left(x_{1}\right) \quad b_{2}=f\left(x_{2}\right)$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]
\end{aligned}
$$

$$
\text { Area }=1 / 2 * h\left(b_{1}+b_{2}\right) \quad h=\Delta x \quad b_{1}=f\left(x_{1}\right) \quad b_{2}=f\left(x_{2}\right)
$$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx \\
& \mathbf{A}_{2} \approx 1 / 2^{*} * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{array}{lc}
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & h=\Delta \mathbf{x}
\end{array}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{array}{ll}
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & h=\Delta x \quad b_{1}=f\left(\mathbf{x}_{2}\right)
\end{array}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{array}{ll}
A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & h=\Delta x \quad b_{1}=f\left(\mathbf{x}_{2}\right) \quad b_{2}=f\left(\mathbf{x}_{3}\right)
\end{array}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{array}{ll}
A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx 1 / 2 * \Delta x \\
A_{2} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & h=\Delta x \quad b_{1}=f\left(\mathbf{x}_{2}\right) \quad b_{2}=f\left(\mathbf{x}_{3}\right)
\end{array}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{array}{ll}
\mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)\right. \\
\mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad h=\Delta \mathbf{x} \quad \mathbf{b}_{1}=\mathbf{f}\left(\mathbf{x}_{2}\right) \quad \mathbf{b}_{2}=\mathbf{f}\left(\mathbf{x}_{3}\right)
\end{array}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{array}{lc}
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & h=\Delta \mathbf{x} \quad b_{1}=f\left(\mathbf{x}_{2}\right) \quad b_{2}=f\left(\mathbf{x}_{3}\right)
\end{array}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]
\end{aligned}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{array}{ll}
\mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{\mathbf{3}} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{4} \approx
\end{array}
$$

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

trapezoid

$$
\begin{array}{ll}
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{4} \approx \\
& h=\Delta x
\end{array}
$$

Area $=1 / 2 * \mathbf{h}\left(b_{1}+b_{2}\right)$

trapezoid

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

$$
\begin{array}{ll}
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{4} \approx \\
& h=\Delta x b_{1}=f\left(\mathbf{x}_{3}\right)
\end{array}
$$

trapezoid

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

$$
\begin{array}{ll}
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{4} \approx \\
& h=\Delta \mathbf{x} b_{1}=f\left(\mathbf{x}_{3}\right) \quad b_{2}=f(b)
\end{array}
$$

trapezoid

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

$$
\begin{array}{ll}
A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+f\left(\mathbf{x}_{1}\right)\right] & A_{3} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{2}\right)+f\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & A_{4} \approx 1 / 2 * \Delta x \\
& h=\Delta \mathbf{x} b_{1}=f\left(\mathbf{x}_{3}\right) \quad b_{2}=f(b)
\end{array}
$$

trapezoid

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

$$
\begin{array}{ll}
A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & A_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & A_{4} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)\right. \\
& h=\Delta \mathbf{x} b_{1}=f\left(\mathbf{x}_{3}\right) b_{2}=f(b)
\end{array}
$$

trapezoid

Area $=1 / 2 * h\left(b_{1}+b_{2}\right)$

$$
\begin{array}{ll}
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{4} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& h=\Delta \mathbf{x} b_{1}=f\left(\mathbf{x}_{3}\right) b_{2}=f(b)
\end{array}
$$

$A_{1} \approx 1 / 2 * \Delta x\left[f(a)+f\left(x_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta x\left[f\left(x_{2}\right)+f\left(x_{3}\right)\right]$
$A_{2} \approx \frac{1}{2} * \Delta x\left[f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad A_{4} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(b)\right]$

$$
\begin{aligned}
& \stackrel{\text { U }}{\sim} \\
& A_{1} \approx 1 / 2 * \Delta x\left[f(a)+f\left(x_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{2}\right)+f\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A=\int_{\mathbf{a}}^{\mathbf{b}} f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { (T) } \\
& A_{1} \approx 1 / 2 * \Delta x\left[f(a)+f\left(x_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta x\left[f\left(x_{2}\right)+f\left(x_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A=\int_{a}^{b} f(x) d x=A_{1}+A_{2}+A_{3}+A_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \\
& A_{1} \approx 1 / 2 * \Delta x\left[f(a)+f\left(x_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{2}\right)+f\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A=\int_{a}^{b} f(x) d x=A_{1}+A_{2}+A_{3}+A_{4}=\sum_{i=1}^{n} A_{i}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{4} \approx 1 / 2^{*} * \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{array}
$$

$$
\left.A=\int_{a}^{b} f(x) d x=A_{1}+A_{2}+A_{3}+A_{4}=\sum_{i=1}^{n} A_{i} \quad \text { (In this case, } n=4 .\right)
$$

$A_{1} \approx 1 / 2^{*} \Delta x\left[f(a)+f\left(x_{1}\right)\right] \quad A_{3} \approx 1 / 2^{*} \Delta x\left[f\left(x_{2}\right)+f\left(x_{3}\right)\right]$
$\mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]$

$$
A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \mathbf{A}_{\mathbf{3}} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \mathbf{A}_{4} \approx 1 / 2^{*} * \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \mathbf{A}_{\mathbf{3}} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \mathbf{A}_{4} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{\mathbf{3}} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{4} \approx 1 / 2^{*} * \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x} & =\sum_{i=1}^{n} \mathbf{A}_{\mathbf{i}}
\end{aligned}
$$

$$
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]
$$

$$
\begin{array}{cl}
\mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{\mathbf{2}}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathbf{i}=1}^{n} \mathbf{A}_{\mathbf{i}} \\
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]
\end{array}
$$

$$
\begin{array}{cl}
\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}} \\
\begin{array}{c}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
\\
+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]
\end{array}
\end{array}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+f\left(\mathbf{x}_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1}{2} * \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \mathbf{A}_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+f\left(\mathbf{x}_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \mathbf{A}_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1 / 2 *}{}{ }^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{A}_{\mathrm{i}} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned}
$$

'Factor out' the Δx factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1 / 2 *}{}{ }^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{A}_{\mathrm{i}} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1 / 2 *}{}{ }^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{A}_{\mathrm{i}} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1 / 2 *}{}{ }^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \mathbf{A}_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\{
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1 / 2 *}{}{ }^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{A}_{\mathrm{i}} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\{
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]\right.
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+\right.
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+\right.
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]\right.
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right.
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right.
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{d x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{A}_{\mathrm{i}} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& +1 / 2\left[f\left(\mathbf{x}_{2}\right)+f\left(x_{3}\right)\right]
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& +1 / 2\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \mathbf{A}_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& +1 / 2\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& +1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned}
$$

'Factor out' the $\Delta \mathbf{x}$ factor from each of the four terms of the expression.

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1 / 2 *}{}{ }^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \mathbf{A}_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned}
$$

$\mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right.$

$$
\left.+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \mathbf{A}_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\}
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\{
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\{
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\{1 / 2 \mathbf{f}(\mathbf{a})
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\{1 / 2 \mathbf{f}(\mathbf{a})+
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)\right.
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+\right.
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+\right.
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+1 / 2 f\left(\mathbf{x}_{1}\right)+1 / 2 f\left(\mathbf{x}_{1}\right)\right.
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+\right.
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)\right.
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +1 / 2 f\left(\mathbf{x}_{2}\right)
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
A \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +1 / 2 f\left(\mathbf{x}_{2}\right)+
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +1 / 2 f\left(x_{2}\right)+1 / 2 f\left(x_{3}\right)
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1 / 2 *}{}{ }^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \mathbf{A}_{i} \\
& \begin{aligned}
A \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{3}\right)+
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{3}\right)+
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \mathbf{A}_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +1 / 2 f\left(x_{2}\right)+1 / 2 f\left(x_{3}\right)+1 / 2 f\left(x_{3}\right)
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& +1 / \mathbf{f}\left(\mathbf{x}_{2}\right)+1 / \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}(\mathbf{b})
\end{aligned}
$$

Now do the indicated multiplication.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
A \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\}
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(x_{2}\right)+1 / 2 f\left(x_{3}\right)+1 / 2 f\left(x_{3}\right)+1 / 2 f(b)\right\} \\
& A \approx \Delta \mathbf{x}\{1 / 2 \mathbf{f}(\mathbf{a})
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\{1 / 2 \mathbf{f}(\mathbf{a})+
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\{1 / 2 \mathbf{f}(\mathbf{a})+
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathrm{~b})\right\} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1 / 2 *}{}{ }^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right.
\end{aligned}
$$

Now combine like terms.

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(a)+f\left(x_{1}\right)\right] \quad A_{3} \approx 1 / 2 * \Delta x\left[f\left(x_{2}\right)+f\left(x_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(x) \mathbf{d x}=\sum_{i=1}^{\mathbf{n}} \mathbf{A}_{\mathbf{i}} \\
& \begin{aligned}
A \approx 1 / 2 * \Delta \mathbf{x}\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(b)\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2 * \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}[1 / 2 \mathbf{f}(\mathbf{a})
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(x_{2}\right)+1 / 2 f\left(x_{3}\right)+1 / 2 f\left(x_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{\mathbf{3}}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}[1 / 2 \mathbf{f}(\mathbf{a})+
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}[1 / 2 \mathbf{f}(\mathbf{a})+
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left[1 / 2 \mathbf{f}(\mathbf{a})+\sum\right.
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{3}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& A \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left[1 / 2 \mathbf{f}(\mathbf{a})+\sum \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 f(\text { b })\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& A \approx \Delta x\left[1 / 2 f(a)+\sum_{i=1} f\left(x_{i}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 f(\text { b })\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}(\mathbf{b})\right\} \\
& A \approx \Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(x_{i}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \approx 1 / 2 * \Delta x\left[f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x}\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta x\left[f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx \frac{1 / 2 *}{}{ }^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathrm{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& A \approx \Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(x_{i}\right) \quad \text { In this example, } n=4 .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 f(\text { b })\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}(\mathbf{b})\right\} \\
& A \approx \Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 f(\text { b })\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& A \approx \Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / 2 f(b)\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 \mathbf{f}(\mathbf{b})\right\} \\
& A \approx \Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+1 / 2 f(b)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \\
& \begin{aligned}
\mathbf{A} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] & +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+ \\
& +1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]
\end{aligned} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right]+\right. \\
& \left.+1 / 2\left[f\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right]+1 / 2\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right]\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 f(\mathbf{a})+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{1}\right)+1 / 2 \mathbf{f}\left(\mathbf{x}_{2}\right)+\right. \\
& \left.+1 / 2 f\left(\mathbf{x}_{2}\right)+1 / 2 f\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}\left(\mathbf{x}_{3}\right)+1 / 2 f(\text { b })\right\} \\
& \mathbf{A} \approx \Delta \mathbf{x}\left\{1 / 2 \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+1 / \mathbf{f}(\mathbf{b})\right\} \\
& A \approx \Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+1 / 2 f(b)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
& \mathbf{A}_{2} \approx 1 / 2^{*} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \Delta x\left[1 / 2 f(\mathbf{a})+\sum_{i=1}^{n-1} f\left(x_{i}\right)+1 / 2(\mathbf{b})\right]
\end{aligned}
$$

$$
\begin{gathered}
\left.\mathbf{A}_{1} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)\right] \quad \mathbf{A}_{3} \approx 1 / 2 * \Delta \mathbf{x} \mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)\right] \\
\mathbf{A}_{2} \approx 1 / 2 * \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \\
\mathbf{A} \mathbf{A}_{4} \approx 1 / 2^{*} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}(\mathbf{b})\right] \\
\mathbf{A} \approx \Delta \mathbf{x}\left[1 / 2 \mathbf{f}(\mathbf{a})+\sum_{\mathbf{i}=1}^{\mathrm{n}-1} \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)+1 / 2(\mathbf{b})\right]=\mathbf{S}_{\mathbf{T}}
\end{gathered}
$$

The Trapezoidal Approximation

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

\[

\]

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

\[

\]

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\quad S_{T}=\Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+1 / 2 f(b)\right]
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

\[

\]

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=2.5 \quad f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
& S_{T}=\Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(\mathbf{x}_{i}\right)+1 / 2 f(b)\right] \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(3)=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{T}=\Delta \mathbf{x}\left[1 / 2 f(\mathbf{a})+f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+\right. \\
& \left.+f\left(x_{4}\right)+f\left(x_{5}\right)+1 / 2 f(b)\right]
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=2.5 \quad f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
& S_{T}=\Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(\mathbf{x}_{i}\right)+1 / 2 f(b)\right] \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{T}=\Delta \mathbf{x}\left[1 / 2 f(\mathbf{a})+\sum_{i=1}^{5} f\left(\mathbf{x}_{i}\right)+1 / 2 f(b)\right] \\
& S_{T}=\Delta \mathbf{x}\left[\frac{1}{2} \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+\right. \\
& \left.+f\left(x_{4}\right)+f\left(x_{5}\right)+1 / 2 f(b)\right] \\
& \mathbf{S}_{\mathbf{T}}=
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=2.5 \quad f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
& S_{T}=\Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(\mathbf{x}_{i}\right)+1 / 2 f(b)\right] \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{T}=\Delta \mathbf{x}\left[1 / 2 f(\mathbf{a})+\sum_{i=1}^{5} f\left(\mathbf{x}_{i}\right)+1 / 2 f(b)\right] \\
& S_{T}=\Delta \mathbf{x}\left[\frac{1}{2} \mathbf{f}(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+\right. \\
& \left.+f\left(x_{4}\right)+f\left(x_{5}\right)+1 / 2 f(b)\right] \\
& S_{T}=(.5)[
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=2.5 \quad f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{24} \\
& \mathbf{x}_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{T}=\Delta \mathbf{x}\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+1 / 2 f(b)\right] \\
& S_{T}=\Delta x\left[1 / 2 f(a)+\sum_{i=1}^{5} f\left(x_{i}\right)+1 / 2 f(b)\right] \\
& S_{T}=\Delta \mathbf{x}\left[1 / 2 f(\mathbf{a})+\mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+\right. \\
& \left.+f\left(x_{4}\right)+f\left(x_{5}\right)+1 / 2 f(b)\right] \\
& S_{T}=(.5)[
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=2.5 \quad f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad f\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{T}=(.5)[1 / 2 \sqrt{5}+\sqrt{12.625}+\sqrt{24}+\sqrt{39.875}+\sqrt{61}+\sqrt{88.125}+1 / 2 \sqrt{122}]
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathrm{x}_{1}=2.5 \quad f\left(\mathrm{x}_{1}\right)=\mathrm{f}(2.5)=\sqrt{12.625} \\
& \mathbf{x}_{2}=\mathbf{3} \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad \mathrm{f}\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{T}=\Delta x\left[1 / 2 f(a)+\sum_{i=1}^{n-1} f\left(\mathbf{x}_{i}\right)+1 / 2 f(b)\right] \\
& S_{T}=\Delta \mathbf{x}\left[1 / 2 f(a)+\sum_{i=1}^{5} f\left(x_{i}\right)+1 / 2 f(b)\right] \\
& S_{T}=\Delta \mathbf{x}\left[1 / 2 f(\mathbf{a})+f\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{3}\right)+\right. \\
& \left.+f\left(x_{4}\right)+f\left(x_{5}\right)+1 / 2 f(b)\right] \\
& S_{T}=(.5)[1 / 2 \sqrt{5}+\sqrt{\mathbf{1 2 . 6 2 5}}+\sqrt{24}+\sqrt{\mathbf{3 9 . 8 7 5}}+\sqrt{\mathbf{6 1}}+\sqrt{\mathbf{8 8 . 1 2 5}}+1 / 2 \sqrt{\mathbf{1 2 2}}] \\
& S_{\mathrm{T}} \approx 19.30
\end{aligned}
$$

The trapezoidal approximation 'connects the 'key points' on the graph of function f

The trapezoidal approximation 'connects the 'key points' on the graph of function f

The trapezoidal approximation 'connects the 'key points' on the graph of function f with a series of line segments forming the trapezoids.

The trapezoidal approximation 'connects the 'key points' on the graph of function f with a series of line segments forming the trapezoids. (This is called a polygonal path.)

The last of or approximation techniques is called Simpson's Rule.

The last of or approximation techniques is called Simpson's Rule. This technique connects the key points using 'arcs of parabolas'.

The last of or approximation techniques is called Simpson's Rule. This technique connects the key points using 'arcs of parabolas'. Consider the following.

Simpson's Rule

Simpson's Rule

Given any three non-collinear points on the graph of any function,

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola),

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x} \mathbf{x}^{2} \mathbf{B x}+\mathbf{C}$,

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them.

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

Consider point \mathbf{P}.

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

Consider point P. Since $y=-8$, when $x=\mathbf{- 2}$,

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

Consider point P. Since $y=-8$, when $x=\mathbf{- 2}$,

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

Consider point P. Since $y=-8$, when $x=\mathbf{- 2}$,

$$
-8=
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

Consider point P. Since $y=-8$, when $x=\mathbf{- 2}$,

$$
-8=A(-2)^{2}
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

Consider point P. Since $y=-8$, when $x=\mathbf{- 2}$,

$$
-8=A(-2)^{2}+B(-2)
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

Consider point P. Since $y=-8$, when $x=\mathbf{- 2}$,

$$
-8=A(-2)^{2}+B(-2)+C
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

Consider point P. Since $y=-8$, when $x=\mathbf{- 2}$,

$$
-8=A(-2)^{2}+B(-2)+C
$$

This leads to the equation $4 \mathrm{~A}-2 \mathrm{~B}+\mathrm{C}=-8$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
P(-2,-8) \quad 4 \mathrm{~A}-2 \mathrm{~B}+\mathrm{C}=-8
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
P(-2,-8) \quad 4 \mathrm{~A}-2 \mathrm{~B}+\mathrm{C}=-8
$$

Similarly, for points \mathbf{Q} and R, we get the equations below.

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
P(-2,-8) \quad 4 \mathrm{~A}-2 \mathrm{~B}+\mathrm{C}=-8
$$

Similarly, for points \mathbf{Q} and R, we get the equations below.

$$
Q(1,13) \quad A+B+C=13
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
P(-2,-8) \quad 4 \mathrm{~A}-2 \mathrm{~B}+\mathrm{C}=-8
$$

Similarly, for points Q and R, we get the equations below.

$$
\begin{aligned}
& Q(1,13) \longrightarrow A+B+C=13 \\
& R(4,-2) \longrightarrow 16 A+4 B+C=-2
\end{aligned}
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
\begin{aligned}
& P(-2,-8) \longrightarrow 4 A-2 B+C=-8 \\
& Q(1,13) \longrightarrow A+B+C=13 \\
& R(4,-2) \longrightarrow 16 A+4 B+C=-2
\end{aligned}
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
\begin{aligned}
& P(-2,-8) \longrightarrow 4 A-2 B+C=-8 \\
& Q(1,13) \longrightarrow A+B+C=13 \\
& R(4,-2) \quad 16 A+4 B+C=-2
\end{aligned}
$$

Solving this system of equations,

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
\begin{aligned}
& P(-2,-8) \quad 4 A-2 B+C=-8 \\
& Q(1,13) \quad A+B+C=13 \\
& R(4,-2) \quad 16 A+4 B+C=-2
\end{aligned}
$$

Solving this system of equations, we get $A=-2, B=5$ and $C=10$.

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
\begin{aligned}
& P(-2,-8) \quad 4 A-2 B+C=-8 \\
& Q(1,13) \quad A+B+C=13 \\
& R(4,-2) \quad 16 A+4 B+C=-2
\end{aligned}
$$

Solving this system of equations, we get $A=-2, B=5$ and $C=10$.
Therefore, the parabola that would contain points P, Q, and R is

$$
y=-2 x^{2}+5 x+10
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
y=-2 x^{2}+5 x+10
$$

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
y=-2 x^{2}+5 x+10
$$

If, however, the three given points were collinear,

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
y=-2 x^{2}+5 x+10
$$

If, however, the three given points were collinear, then the value of A would be zero

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
y=-2 x^{2}+5 x+10
$$

If, however, the three given points were collinear, then the value of A would be zero and the function would be linear.

Simpson's Rule

Given any three non-collinear points on the graph of any function, there exists a second degree function (a parabola), $\mathbf{y}=\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$, that contains them. Consider this example.

Given: Points $P(-2,-8), Q(1,13)$, and $R(4,-2)$
Find the coefficients A, B, and C of a second degree function that would contain these points.

$$
y=-2 x^{2}+5 x+10
$$

If, however, the three given points were collinear, then the value of A would be zero and the function would be linear. The function would still exist that would contain the three given points!!

Simpson's Rule

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$. We will show that each of the following statements are true.

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C$
2. $\int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$
2. $\int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right)$
3. $\int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$. We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\mathrm{g}(-\mathrm{h})=
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 \mathrm{Ah}^{2}+6 \mathrm{C}$

$$
g(-h)=
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$. We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
g(-h)=A(-h)^{2}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A^{2}+6 C
$$

$$
\mathbf{g}(-\mathrm{h})=\mathbf{A}(-\mathrm{h})^{2}+\mathbf{B}(-\mathrm{h})
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& g(-h)=A(-h)^{2}+B(-h)+C
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& g(-h)=A(-h)^{2}+B(-h)+C=
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& g(-h)=A(-h)^{2}+B(-h)+C=A h^{2}
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& g(-h)=A(-h)^{2}+B(-h)+C=A h^{2}-B h
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& g(-h)=A(-h)^{2}+B(-h)+C=A h^{2}-B h+C
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$

$$
\mathbf{g}(-h)=A h^{2}-\mathbf{B h}+\mathbf{C}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$

$$
\mathbf{g}(-h)=A h^{2}-\mathbf{B h}+\mathbf{C}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$. We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$

$$
\mathbf{g}(-h)=\mathbf{A h}^{2}-\mathbf{B h}+\mathbf{C}
$$

$$
4 g(0)=
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 \mathrm{Ah}^{2}+6 \mathrm{C}$

$$
\begin{aligned}
& \quad \mathbf{g}(-h)=A h^{2}-B h+C \\
& 4 g(0)=4[
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 \mathrm{Ah}^{2}+6 \mathrm{C}$

$$
\begin{aligned}
& \mathbf{g}(-h)=\mathrm{Ah}^{2}-\mathrm{Bh}+\mathrm{C} \\
& \mathbf{4 g (0)}=\mathbf{4}\left[\mathrm{A}(0)^{2}\right.
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C$

$$
\begin{aligned}
& \mathbf{g}(-h)=A h^{2}-B h+C \\
& \mathbf{4 g}(0)=\mathbf{4}\left[A(0)^{2}+B(0)\right.
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 \mathrm{Ah}^{2}+6 \mathrm{C}$

$$
\begin{array}{r}
g(-h)=A h^{2}-B h+C \\
\mathbf{4 g}(0)=\mathbf{4}\left[\mathbf{A}(0)^{2}+\mathbf{B}(0)+C\right]
\end{array}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 \mathrm{Ah}^{2}+6 \mathrm{C}$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
\mathbf{4 g}(0)=4\left[A(0)^{2}+B(0)+C\right]=4 C
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
\mathbf{4 g}(\mathbf{0})=\mathbf{4 C}
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
\mathbf{4 g}(0)=4 C
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 \mathrm{Ah}^{2}+6 \mathrm{C}$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
\mathbf{4 g}(\mathbf{0})=\mathbf{4 C}
\end{gathered}
$$

$\mathbf{g}(\mathrm{h})=$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 \mathrm{Ah}^{2}+6 \mathrm{C}$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C
\end{gathered}
$$

$\mathbf{g}(\mathbf{h})=\mathbf{A}(\mathbf{h})^{2}$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 \mathrm{Ah}^{2}+6 \mathrm{C}$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
\mathbf{4 g}(0)=\mathbf{4 C}
\end{gathered}
$$

$$
\mathbf{g}(\mathbf{h})=\mathbf{A}(\mathbf{h})^{2}+\mathbf{B}(\mathbf{h})
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A(h)^{2}+B(h)+C
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A(h)^{2}+B(h)+C=
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A(h)^{2}+B(h)+C=A h^{2}
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A(h)^{2}+B(h)+C=A h^{2}+B h
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A(h)^{2}+B(h)+C=A h^{2}+B h+C
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$\mathbf{g}(-\mathbf{h})+\mathbf{4 g}(0)+\mathbf{g}(\mathbf{h})=$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$\mathbf{g}(-\mathrm{h})+\mathbf{4 g}(0)+\mathbf{g}(\mathrm{h})=$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$\mathbf{g}(-\mathrm{h})+\mathbf{4 g}(0)+\mathbf{g}(\mathrm{h})=$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$$
g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$\mathbf{g}(-h)+\mathbf{~ g}(0)+\mathbf{g}(h)=\left(A^{2}-B h+C\right)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$\mathbf{g}(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$\mathbf{g}(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)+\left(A h^{2}+B h+C\right)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)+\left(A h^{2}+B h+C\right)$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)+\left(A h^{2}+B h+C\right)$

$$
\mathbf{g}(-\mathbf{h})+\mathbf{~ g}(0)+\mathbf{g}(\mathbf{h})=
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$$
\begin{aligned}
& g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)+\left(A h^{2}+B h+C\right) \\
& \uparrow \\
& \mathbf{g}(-\mathrm{h})+\mathbf{4 g}(0)+\mathbf{g}(\mathrm{h})=
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$$
\begin{gathered}
\left.\left.g(-h)+4 g(0)+g(h)=\underset{\uparrow}{\left(\mathrm{Ah}^{2}\right.}-\mathrm{Bh}+\mathrm{C}\right)+(4 \mathrm{C})+\underset{\uparrow}{\left(\mathrm{Ah}^{2}\right.}+\mathrm{Bh}+\mathrm{C}\right) \\
\mathrm{g}(-\mathrm{h})+\mathbf{~} \mathrm{g}(\mathbf{0})+\mathrm{g}(\mathrm{~h})=\mathbf{2 A h ^ { 2 }}
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)+\left(A h^{2}+B h+C\right)$

$$
g(-h)+4 g(0)+g(h)=\mathbf{2 A h}{ }^{2}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)+\left(A h^{2}+B h+C\right)$

$$
g(-h)+4 g(0)+g(h)=\mathbf{2 A h}{ }^{2}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$$
g(-h)+4 g(0)+g(h)=\mathbf{2 A h}{ }^{2}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

$$
\begin{gathered}
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C
\end{gathered}
$$

$$
g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
g(-h)=A h^{2}-B h+C \\
4 g(0)=4 C \\
g(h)=A h^{2}+B h+C \\
g(-h)+4 g(0)+g(h)=\left(A h^{2}-B h+C\right)+(4 C)+\left(A h^{2}+B h+C\right) \\
g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.
\star 1. $g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right)
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right)
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left[\frac{1}{3} A x^{3}\right.
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}\right.
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \neq 1 \cdot g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \quad \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}=
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \quad \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \quad \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \quad \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}\right.
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \quad \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}\right.
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \quad \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right.
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { t. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-[
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
\text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}\right.
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
\text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}\right.
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
\text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right.
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\star 1 . g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
\text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& =
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \quad \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& \quad=\frac{1}{3} A h^{3}
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& \quad=\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& \quad=\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& \quad=\frac{1}{3} A h^{3}+\frac{1}{2} B^{2}+C h+\frac{1}{3} A^{3}
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
\text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
\quad=\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} B h^{2}
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
\text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
\quad=\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} B h^{2}+C h
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
\text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h} \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
=\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} B h^{2}+C h= \\
=
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& =\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} B h^{2}+C h= \\
& =\frac{2}{3} A^{3}
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& =\frac{1}{3} A h^{3}+\frac{1}{2} h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} \operatorname{Hi}^{2}+C h= \\
& =\frac{2}{3} A h^{3}
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
\text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
=\frac{1}{3} A h^{3}+\frac{1}{2} h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} \operatorname{li}^{2}+C h= \\
=\frac{2}{3} A h^{3}+2 C h
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& =\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} B h^{2}+C h= \\
& =\frac{2}{3} A h^{3}+2 C h=
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& =\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} B h^{2}+C h= \\
& =\frac{2}{3} A h^{3}+2 C h=\frac{1}{3} h(
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
& =\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
& =\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} B h^{2}+C h= \\
& =\frac{2}{3} A h^{3}+2 C h=\frac{1}{3} h\left(2 A h^{2}\right.
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
\text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
=\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} B h^{2}+C h= \\
=\frac{2}{3} A h^{3}+2 C h=\frac{1}{3} h\left(2 A h^{2}+6 C\right)
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{gathered}
\star \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
t 2 \cdot \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\left.\left[\frac{1}{3} A x^{3}+\frac{1}{2} B x^{2}+C x\right]\right|_{-h} ^{h}= \\
=\left[\frac{1}{3} A(h)^{3}+\frac{1}{2} B(h)^{2}+C(h)\right]-\left[\frac{1}{3} A(-h)^{3}+\frac{1}{2} B(-h)^{2}+C(-h)\right]= \\
=\frac{1}{3} A h^{3}+\frac{1}{2} B h^{2}+C h+\frac{1}{3} A h^{3}-\frac{1}{2} B h^{2}+C h= \\
=\frac{2}{3} A h^{3}+2 C h=\frac{1}{3} h\left(2 A h^{2}+6 C\right)
\end{gathered}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \star 2 \cdot \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right)
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \text { 3. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)]
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \star \text { 1. } \\
& g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& * \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \text { 3. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)] \\
& \int_{-h}^{h} g(x) d x=
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \star \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \text { 3. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)] \\
& \int_{-h}^{h} g(x) d x=
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \text { 3. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)] \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right)
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \text { 3. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)] \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right)
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \text { 3. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)] \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h} g(x) d x=
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \text { 3. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)] \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \text { 3. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)] \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \text { 3. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)] \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)]
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

$$
\begin{aligned}
& \text { 1. } g(-h)+4 g(0)+g(h)=2 A h^{2}+6 C \\
& \text { 2. } \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)] \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right) \\
& \int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)]
\end{aligned}
$$

Simpson's Rule

Now consider the second degree function $g(x)=A x^{2}+B x+C$.
We will show that each of the following statements are true.

1. $g(-h)+4 g(0)+g(h)=2 A^{2}+6 C$
2. $\int_{-h}^{h} g(x) d x=\frac{1}{3} h\left(2 A h^{2}+6 C\right)$
3. $\int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$

Simpson's Rule

Simpson's Rule

Given any function g defined by the equation $\mathbf{g}(\mathbf{x})=A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$ for any constants A, B, and C,

Simpson's Rule

Given any function g defined by the equation $\mathbf{g}(\mathbf{x})=A x^{2}+\mathbf{B x}+\mathbf{C}$ for any constants A, B, and C, we have proven that $\int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$.

Simpson's Rule

Given any function g defined by the equation $g(x)=A x^{2}+B x+C$ for any constants A, B, and C, we have proven that $\int_{-h}^{h} g(x) d x=\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$. Consider $\int_{-h}^{h} g(x) d x$.

Simpson's Rule

Given any function g defined by the equation $g(x)=A x^{2}+B x+C$ for any constants A, B, and C, we have proven that $\int_{\mathrm{h}}^{\mathrm{h}}(\mathrm{x}) \mathrm{dx}=\frac{1}{3} \mathrm{~h}[\mathrm{~g}(-\mathrm{h})+\mathbf{4 g}(0)+\mathrm{g}(\mathrm{h})]$.

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here.

Simpson's Rule

Given any function g defined by the equation $g(x)=A x^{2}+B x+C$ for any constants A, B, and C, we have proven that $\int_{\mathrm{g}}^{\mathrm{h}}(\mathrm{x}) \mathrm{dx}=\frac{1}{3} \mathrm{~h}[\mathrm{~g}(-\mathrm{h})+4 \mathrm{~g}(0)+\mathrm{g}(\mathrm{h})]$.

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here. Notice that this area is divided into two 'strips', each of width h.

Simpson's Rule

Given any function g defined by the equation $g(x)=A x^{2}+B x+C$ for any constants A, B, and C, we have proven that $\int_{\mathrm{g}}^{\mathrm{h}}(\mathrm{x}) \mathrm{dx}=\frac{1}{3} \mathrm{~h}[\mathrm{~g}(-\mathrm{h})+4 \mathrm{~g}(0)+\mathrm{g}(\mathrm{h})]$.

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here. Notice that this area is divided into two 'strips', each of width h.

Simpson's Rule

Given any function g defined by the equation $g(x)=A x^{2}+B x+C$ for any constants A, B, and C, we have proven that $\int_{\mathrm{g}}^{\mathrm{h}}(\mathrm{x}) \mathrm{dx}=\frac{1}{3} \mathrm{~h}[\mathrm{~g}(-\mathrm{h})+\mathbf{4 g}(0)+\mathrm{g}(\mathrm{h})]$.

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here. Notice that this area is divided into two 'strips', each of width h.

Now consider $\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$.

Simpson's Rule

Given any function g defined by the equation $\mathbf{g}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2} \mathbf{B x}+\mathbf{C}$ for any constants A, B, and C, we have proven that $\int_{\mathrm{h}}^{\mathrm{h}}(\mathrm{x}) \mathrm{dx}=\frac{1}{3} \mathrm{~h}[\mathrm{~g}(-\mathrm{h})+\mathbf{4 g}(0)+\mathrm{g}(\mathrm{h})]$.

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here. Notice that this area is divided into two 'strips', each of width h.

Now consider $\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$.
h is the width of each 'strip'.

Simpson's Rule

Given any function g defined by the equation $\mathbf{g}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2} \mathbf{B x}+\mathbf{C}$ for any constants A, B, and C, we have proven that $\int_{\mathrm{h}}^{\mathrm{h}}(\mathrm{x}) \mathrm{dx}=\frac{1}{3} \mathrm{~h}[\mathrm{~g}(-\mathrm{h})+\mathbf{4 g}(0)+\mathrm{g}(\mathrm{h})]$.

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here. Notice that this area is divided into two 'strips', each of width h.

Now consider $\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$.
h is the width of each 'strip'. $g(-h)$ is the height of the left boundary.

Simpson's Rule

Given any function g defined by the equation $\mathbf{g}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2} \mathbf{B x}+\mathbf{C}$ for any constants A, B, and C,

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here. Notice that this area is divided into two 'strips', each of width h.

Now consider $\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$.
h is the width of each 'strip'. $g(-h)$ is the height of the left boundary.
$g(0)$ is the height in the 'center'.

Simpson's Rule

Given any function g defined by the equation $\mathbf{g}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2} \mathbf{B x}+\mathbf{C}$ for any constants A, B, and C,

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here. Notice that this area is divided into two 'strips', each of width h.

Now consider $\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$.
h is the width of each 'strip'. $g(-h)$ is the height of the left boundary. $g(0)$ is the height in the 'center'. $g(h)$ is the height of the right boundary.

Simpson's Rule

Given any function g defined by the equation $\mathbf{g}(\mathbf{x})=A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$ for any constants A, B, and C,

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here. Notice that this area is divided into two 'strips', each of width h.

Now consider $\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$.
h is the width of each 'strip'. $g(-h)$ is the height of the left boundary.
$g(0)$ is the height in the 'center'. $g(h)$ is the height of the right boundary.

Simpson's Rule

Given any function g defined by the equation $\mathbf{g}(\mathbf{x})=A x^{2}+\mathbf{B x}+\mathbf{C}$ for any constants A, B, and C,

$$
\text { Consider } \int_{-h}^{h} g(x) d x .
$$

This represents the shaded area shown here. Notice that this area is divided into two 'strips', each of width h.

Now consider $\frac{1}{3} h[g(-h)+4 g(0)+g(h)]$.
h is the width of each 'strip'. $g(-h)$ is the height of the left boundary.
$g(0)$ is the height in the 'center'. $g(h)$ is the height of the right boundary.

Simpson's Rule

Simpson's Rule

Divide the interval $[\mathbf{a}, \mathrm{b}]$ into $\underline{2 n}$ subintervals.

Simpson's Rule

Divide the interval $[\mathbf{a}, \mathbf{b}]$ into $\underline{2 n}$ subintervals, each of width $\Delta \mathbf{x}$.

Simpson's Rule

Divide the interval $[\mathbf{a}, \mathrm{b}]$ into $\underline{2 n}$ subintervals, each of width $\Delta \mathbf{x}$.

Simpson's Rule

Divide the interval $[\mathbf{a}, \mathbf{b}]$ into $\underline{2 n}$ subintervals, each of width $\Delta \mathbf{x}$.

Simpson's Rule

Divide the interval $[\mathbf{a}, \mathbf{b}]$ into 2 n subintervals, each of width $\Delta \mathbf{x}$. In this example, $2 \mathrm{n}=8$.

Simpson's Rule

Divide the interval $[\mathbf{a}, \mathrm{b}]$ into 2 n subintervals, each of width $\Delta \mathbf{x}$. In this example, $2 \mathrm{n}=8$. Taking these strips, 2 at a time,

Simpson's Rule

Divide the interval $[\mathbf{a}, \mathrm{b}]$ into 2 n subintervals, each of width $\Delta \mathrm{x}$. In this example, $2 n=8$. Taking these strips, 2 at a time, we have \mathbf{n} 'double strips' shown here.

Simpson's Rule

Divide the interval $[\mathbf{a}, \mathrm{b}]$ into 2 n subintervals, each of width $\Delta \mathbf{x}$. In this example, $2 n=8$. Taking these strips, 2 at a time, we have n 'double strips' shown here. (In this case, $2 n=8$, so $n=4$.)

Simpson's Rule

Divide the interval $[\mathbf{a}, \mathbf{b}]$ into $\underline{2 n}$ subintervals, each of width Δx. In this example, $2 n=8$. Taking these strips, 2 at a time, we have n 'double strips' shown here. (In this case, $2 n=8$, so $n=4$.) $\mathbf{A}_{1}, A_{2}, \ldots, A_{n}$ represent the areas of these 'double strips'.

Simpson's Rule

Simpson's Rule

Simpson's Rule can be used to approximate the area of each of these 'double strips'.

Simpson's Rule

Simpson's Rule can be used to approximate the area of each of these 'double strips'. Consider area \mathbf{A}_{1}.

Simpson's Rule

Simpson's Rule

Given points P, Q, and R on the graph of function f,

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown),

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them.

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
\mathbf{A}_{1} \approx
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x \longleftarrow \text { the width of each strip }
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x[f(a)
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x[f(a) \longleftrightarrow \text { the height of the left boundary }
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x[f(a)
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)\right.
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right) \longleftarrow\right. \text { the height in the center }
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)\right.
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right.
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right) \longleftarrow\right. \text { boundary }
$$

Simpson's Rule

Given points P, Q, and R on the graph of function f, there exists a second degree function, the arc of a parabola (not shown), that contains them. According to Simpson's Rule

$$
A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] .
$$

Simpson's Rule

Simpson's Rule

In the same way, the areas of the other 'double strips' can be approximated.

Simpson's Rule

Simpson's Rule

$A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]$
$A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]$

Simpson's Rule

$A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]$
$A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]$

Simpson's Rule

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]
\end{aligned}
$$

Simpson's Rule

Simpson's Rule

Simpson's Rule

$$
\begin{array}{ll}
\mathbf{A}_{1} \approx \frac{1}{3} \Delta x\left[f(\mathbf{f})+4 \mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{3} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{4}\right)+4 f\left(\mathbf{x}_{5}\right)+f\left(\mathbf{x}_{6}\right)\right] \\
A_{2} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 \mathbf{f}\left(\mathbf{x}_{3}\right)+\mathbf{f}\left(\mathbf{x}_{4}\right)\right] & \mathbf{A}_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(\mathbf{x}_{7}\right)+f(\mathbf{f})\right]
\end{array}
$$

Simpson's Rule

$$
\begin{array}{cl}
A_{1} \approx \frac{1}{3} \Delta x\left[f(\mathbf{a})+4 f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] & \mathbf{A}_{3} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{4}\right)+4 f\left(\mathbf{x}_{5}\right)+f\left(\mathbf{x}_{6}\right)\right] \\
\mathbf{A}_{2} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 f\left(\mathbf{x}_{3}\right)+\mathbf{f}\left(\mathbf{x}_{4}\right)\right] & \mathbf{A}_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(\mathbf{x}_{7}\right)+f(\mathbf{b})\right] \\
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b} f(\mathbf{x}) \mathbf{d x}}=\sum_{i=1}^{n} \mathbf{A}_{i}
\end{array}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 .
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
A_{1} \approx \frac{1}{3} \Delta x\left[f(\mathbf{a})+4 f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] & A_{3} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{4}\right)+4 f\left(\mathbf{x}_{5}\right)+f\left(\mathbf{x}_{6}\right)\right] \\
A_{2} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 f\left(x_{3}\right)+f\left(\mathbf{x}_{4}\right)\right] & \mathbf{A}_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(\mathbf{x}_{7}\right)+f(b)\right] \\
A=\int_{a}^{b} \mathbf{f (x) d x}=\sum_{i=1}^{n} A_{i} & \text { In our example, } n=4 .
\end{aligned}
$$

$\mathbf{A} \approx$

Simpson's Rule

$$
\begin{aligned}
A_{1} \approx \frac{1}{3} \Delta x\left[f(\mathbf{a})+4 f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right] & A_{3} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{4}\right)+4 f\left(\mathbf{x}_{5}\right)+f\left(\mathbf{x}_{6}\right)\right] \\
A_{2} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 f\left(\mathbf{x}_{3}\right)+f\left(\mathbf{x}_{4}\right)\right] & A_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(\mathbf{x}_{7}\right)+f(b)\right] \\
A=\int_{a}^{b} f(\mathbf{x}) \mathbf{d x}=\sum_{i=1}^{n} A_{i} & \text { In our example, } n=4 .
\end{aligned}
$$

$\mathbf{A} \approx$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& \mathbf{A}_{1} \approx \frac{1}{3} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+4 \mathbf{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{3} \approx \frac{1}{3} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{4}\right)+4 f\left(\mathbf{x}_{5}\right)+f\left(\mathbf{x}_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(\mathbf{a})+4 f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right]+
\end{aligned}
$$

Simpson's Rule

$$
\begin{gathered}
A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]
\end{gathered}
$$

Simpson's Rule

$$
\begin{aligned}
& \mathrm{A}_{1} \approx \frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}(\mathbf{a})+4 \mathrm{f}\left(\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{2}\right)\right] \quad \mathrm{A}_{3} \approx \frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}\left(\mathrm{x}_{4}\right)+4 \mathrm{f}\left(\mathrm{x}_{5}\right)+\mathrm{f}\left(\mathrm{x}_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 f\left(\mathbf{x}_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(\mathbf{a})+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+
\end{aligned}
$$

Simpson's Rule

$$
\begin{gathered}
A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
\quad+\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]
\end{gathered}
$$

Simpson's Rule

$$
\begin{aligned}
& \mathbf{A}_{1} \approx \frac{1}{3} \Delta \mathbf{x}\left[\mathbf{f}(\mathbf{a})+4 \mathrm{f}\left(\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{x}_{2}\right)\right] \quad \mathbf{A}_{3} \approx \frac{1}{3} \Delta \mathbf{x}\left[\mathbf{f}\left(\mathbf{x}_{4}\right)+4 \mathbf{f}\left(\mathbf{x}_{5}\right)+\mathbf{f}\left(\mathbf{x}_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+
\end{aligned}
$$

Simpson's Rule

$$
\begin{gathered}
A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
\quad+\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right]
\end{gathered}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right]
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right]
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right]
\end{aligned}
$$

Factor $\frac{1}{3} \Delta x$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right]
\end{aligned}
$$

$\mathbf{A} \approx$

Factor $\frac{1}{3} \Delta x$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x[
\end{aligned}
$$

Factor $\frac{1}{3} \Delta x$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right.
\end{aligned}
$$

Factor $\frac{1}{3} \Delta x$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+\right.
\end{aligned}
$$

Factor $\frac{1}{3} \Delta x$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right.
\end{aligned}
$$

Factor $\frac{1}{3} \Delta x$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& +
\end{aligned}
$$

Factor $\frac{1}{3} \Delta x$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& +f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)
\end{aligned}
$$

Factor $\frac{1}{3} \Delta x$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& +f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+
\end{aligned}
$$

Factor $\frac{1}{3} \Delta \mathrm{x}$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& +f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)
\end{aligned}
$$

Factor $\frac{1}{3} \Delta \mathrm{x}$ from each term.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta \mathrm{x}\left[f\left(\mathrm{x}_{4}\right)+4 \mathrm{f}\left(\mathrm{x}_{5}\right)+\mathrm{f}\left(\mathrm{x}_{6}\right)\right]+\frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}\left(\mathrm{x}_{6}\right)+4 \mathrm{f}\left(\mathrm{x}_{7}\right)+\mathrm{f}(\mathrm{~b})\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right]
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right]
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& \mathrm{A}_{1} \approx \frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}(\mathbf{a})+4 \mathrm{f}\left(\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{2}\right)\right] \quad \mathrm{A}_{3} \approx \frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}\left(\mathbf{x}_{4}\right)+4 \mathrm{f}\left(\mathrm{x}_{5}\right)+\mathrm{f}\left(\mathrm{x}_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} \mathbf{f}(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{4}\right)+4 f\left(\mathbf{x}_{5}\right)+f\left(\mathbf{x}_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(\mathbf{x}_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(\mathbf{x}_{4}\right)+\mathbf{4 f}\left(\mathbf{x}_{5}\right)+f\left(\mathbf{x}_{6}\right)+f\left(\mathbf{x}_{6}\right)+\mathbf{4 f}\left(\mathbf{x}_{7}\right)+f(\mathbf{b})\right]
\end{aligned}
$$

$\mathbf{A} \approx$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x[f(a)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x[f(a)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x[f(a)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)\right.
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)\right.
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)\right.
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +2 f\left(x_{2}\right)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +2 f\left(x_{2}\right)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +2 f\left(\mathrm{x}_{2}\right)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +2 f\left(x_{2}\right)+2 f\left(x_{4}\right)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +2 f\left(x_{2}\right)+2 f\left(x_{4}\right)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +2 f\left(x_{2}\right)+2 f\left(x_{4}\right)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}(\mathrm{a})+4 \mathrm{f}\left(\mathrm{x}_{1}\right)+4 \mathrm{f}\left(\mathrm{x}_{3}\right)+4 \mathrm{f}\left(\mathrm{x}_{5}\right)+4 \mathrm{f}\left(\mathrm{x}_{7}\right)+\right. \\
& +2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +\mathbf{2 f}\left(\mathrm{x}_{2}\right)+\mathbf{2 f}\left(\mathrm{x}_{4}\right)+\mathbf{2 f}\left(\mathrm{x}_{6}\right)+\mathbf{f}(\mathrm{b})
\end{aligned}
$$

Rearrange and combine like terms.

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}\left(\mathrm{x}_{4}\right)+4 \mathrm{f}\left(\mathrm{x}_{5}\right)+\mathrm{f}\left(\mathbf{x}_{6}\right)\right]+\frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}\left(\mathrm{x}_{6}\right)+4 \mathrm{f}\left(\mathrm{x}_{7}\right)+\mathrm{f}(\mathrm{~b})\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right]
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right]
\end{aligned}
$$

$\mathbf{A} \approx$

Simpson's Rule

$$
A \approx \frac{1}{3} \Delta x[f(a)
$$

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta \mathrm{x}\left[f\left(\mathrm{x}_{4}\right)+4 \mathrm{f}\left(\mathrm{x}_{5}\right)+\mathrm{f}\left(\mathrm{x}_{6}\right)\right]+\frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}\left(\mathrm{x}_{6}\right)+4 \mathrm{f}\left(\mathrm{x}_{7}\right)+\mathrm{f}(\mathrm{~b})\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right]
\end{aligned}
$$

Simpson's Rule

$$
A \approx \frac{1}{3} \Delta x[f(a)
$$

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta \mathrm{x}\left[f\left(\mathrm{x}_{4}\right)+4 \mathrm{f}\left(\mathrm{x}_{5}\right)+\mathrm{f}\left(\mathrm{x}_{6}\right)\right]+\frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}\left(\mathrm{x}_{6}\right)+4 \mathrm{f}\left(\mathrm{x}_{7}\right)+\mathrm{f}(\mathrm{~b})\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right]
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right]
\end{aligned}
$$

$$
A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum\right.
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +\mathbf{2 f}\left(\mathrm{x}_{2}\right)+\mathbf{2 f (\mathrm { x } _ { 4 }) + \mathbf { 2 f } (\mathrm { x } _ { 6 }) + \mathbf { f } (\mathrm { b })]} \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n}\right.
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +\mathbf{2 f}\left(\mathrm{x}_{2}\right)+\mathbf{2 f (\mathrm { x } _ { 4 }) + \mathbf { 2 f } (\mathrm { x } _ { 6 }) + \mathbf { f } (\mathrm { b })]} \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)\right.
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)\right.
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)\right.
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& \mathrm{A}_{1} \approx \frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}(\mathbf{a})+4 \mathrm{f}\left(\mathbf{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{2}\right)\right] \quad \mathrm{A}_{3} \approx \frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}\left(\mathbf{x}_{4}\right)+4 \mathrm{f}\left(\mathbf{x}_{5}\right)+\mathrm{f}\left(\mathrm{x}_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{4}\right)+4 f\left(\mathbf{x}_{5}\right)+f\left(\mathbf{x}_{6}\right)\right]+\frac{1}{3} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{6}\right)+4 f\left(\mathbf{x}_{7}\right)+f(\mathbf{b})\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(\mathbf{x}_{4}\right)+\mathbf{4 f}\left(\mathbf{x}_{5}\right)+\mathbf{f}\left(\mathbf{x}_{6}\right)+\mathbf{f}\left(\mathbf{x}_{6}\right)+\mathbf{4 f}\left(\mathbf{x}_{7}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum\right.
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& \mathrm{A}_{1} \approx \frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}(\mathbf{a})+4 \mathrm{f}\left(\mathbf{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{2}\right)\right] \quad \mathrm{A}_{3} \approx \frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}\left(\mathbf{x}_{4}\right)+4 \mathrm{f}\left(\mathbf{x}_{5}\right)+\mathrm{f}\left(\mathrm{x}_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(\mathbf{x}_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{4}\right)+4 f\left(\mathbf{x}_{5}\right)+f\left(\mathbf{x}_{6}\right)\right]+\frac{1}{3} \Delta \mathbf{x}\left[f\left(\mathbf{x}_{6}\right)+4 f\left(\mathbf{x}_{7}\right)+f(\mathbf{b})\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(\mathbf{x}_{4}\right)+\mathbf{4 f}\left(\mathbf{x}_{5}\right)+\mathbf{f}\left(\mathbf{x}_{6}\right)+\mathbf{f}\left(\mathbf{x}_{6}\right)+\mathbf{4 f}\left(\mathbf{x}_{7}\right)+\mathbf{f}(\mathbf{b})\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1}\right.
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)\right.
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)\right.
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +\mathbf{2 f}\left(\mathrm{x}_{2}\right)+\mathbf{2 f (x _ { 4 }) + \mathbf { 2 f } (\mathrm { x } _ { 6 }) + \mathbf { f } (\mathrm { b })]} \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)\right.
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& +\mathbf{2 f}\left(\mathrm{x}_{2}\right)+\mathbf{2 f (x _ { 4 }) + \mathbf { 2 f } (\mathrm { x } _ { 6 }) + \mathbf { f } (\mathrm { b })]} \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right]
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right]
\end{aligned}
$$

Simpson's Rule

$$
\begin{aligned}
& A_{1} \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad A_{3} \approx \frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& A_{2} \approx \frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \quad A_{4} \approx \frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} A_{i} \quad \text { In our example, } n=4 . \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
& +\frac{1}{3} \Delta x\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\frac{1}{3} \Delta x\left[f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)+\right. \\
& \left.+f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)+f\left(x_{6}\right)+4 f\left(x_{7}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 f\left(x_{1}\right)+4 f\left(x_{3}\right)+4 f\left(x_{5}\right)+4 f\left(x_{7}\right)+\right. \\
& \left.+2 f\left(x_{2}\right)+2 f\left(x_{4}\right)+2 f\left(x_{6}\right)+f(b)\right] \\
& A \approx \frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right]=S_{S}
\end{aligned}
$$

$$
S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right]
$$

Simpson's Rule Approximation

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular), (d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{0}=\mathbf{a}=2 \quad \mathbf{f}\left(\mathbf{x}_{0}\right)=\mathbf{f}(\mathbf{a})=\mathbf{f}(2)=\sqrt{5} \\
& \mathrm{x}_{1}=2.5 \quad \mathbf{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \begin{array}{rl}
\mathbf{x}_{0}=\mathbf{a}=\mathbf{2} & f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
\mathbf{x}_{1}=\mathbf{2 . 5} & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625}
\end{array} \quad S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right] \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals.

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & & f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
x_{1} & =2.5 & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} & S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right] \\
\mathbf{x}_{2}=3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
\mathbf{x}_{3}=3.5 & f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
\mathbf{x}_{4}=4 & f\left(x_{4}\right)=f(4)=\sqrt{61} \\
\mathbf{x}_{5}=4.5 & f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
\mathbf{x}_{6}=b=5 & f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{array}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \begin{array}{rl}
\mathbf{x}_{0}=\mathbf{a}=\mathbf{2} & f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
\mathbf{x}_{1}=\mathbf{2 . 5} & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \quad S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+\sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right]
\end{array} \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\left.\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & & f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
x_{1} & =2.5 & & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625}
\end{array} \quad S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+\sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right]\right)
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\begin{array}{rlrl}
\int_{2}^{5} \sqrt{x^{3}-3} d x & \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
\mathbf{x}_{0}=\mathbf{a}=2 & & f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} & \\
x_{1}=2.5 & & f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} & S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right] \\
\mathbf{x}_{2}=3 & f\left(x_{2}\right)=f(3)=\sqrt{24} \\
\mathbf{x}_{3}=3.5 & f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} & S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{3} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{2} f\left(x_{2 i}\right)+f(b)\right] \\
\mathbf{x}_{4}=4 & f\left(x_{4}\right)=f(4)=\sqrt{61} \\
\mathbf{x}_{5}=4.5 & f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
\mathbf{x}_{6}=b=5 & & \\
f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} &
\end{array}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathrm{x}_{1}=2.5 \quad \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(\mathbf{2 . 5})=\sqrt{\mathbf{1 2 . 6 2 5}} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right] \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathbf{x}_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{3} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{2} f\left(x_{2 i}\right)+f(b)\right] \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4\left\{f\left(x_{1}\right)+f\left(x_{3}\right)+f\left(x_{5}\right)\right\}+\right. \\
& \left.+\mathbf{2}\left\{\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{4}\right)\right\}+\mathbf{f}(\mathbf{b})\right] \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathbf{x}_{1}=2.5 \quad f\left(x_{1}\right)=f(2.5)=\sqrt{12.625} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right] \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathbf{x}_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{3} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{2} f\left(x_{2 i}\right)+f(b)\right] \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4\left\{f\left(x_{1}\right)+f\left(x_{3}\right)+f\left(x_{5}\right)\right\}+\right. \\
& \left.+\mathbf{2}\left\{\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{4}\right)\right\}+\mathbf{f}(\mathbf{b})\right] \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{S}=\frac{1}{3}(.5)[
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathrm{x}_{1}=2.5 \quad \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(2.5)=\sqrt{12.625} \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathbf{x}_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{\mathbf{8 8 . 1 2 5}} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right] \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{3} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{2} f\left(x_{2 i}\right)+f(b)\right] \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4\left\{f\left(x_{1}\right)+f\left(x_{3}\right)+f\left(x_{5}\right)\right\}+\right. \\
& \left.+\mathbf{2}\left\{\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{4}\right)\right\}+\mathbf{f}(\mathbf{b})\right] \\
& S_{S}=\frac{1}{3}(.5)[\sqrt{5}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathrm{x}_{1}=2.5 \quad \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(2.5)=\sqrt{12.625} \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathbf{x}_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& \mathbf{x}_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right] \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{3} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{2} f\left(x_{2 i}\right)+f(b)\right] \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4\left\{f\left(x_{1}\right)+f\left(x_{3}\right)+f\left(x_{5}\right)\right\}+\right. \\
& \left.+\mathbf{2}\left\{\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{4}\right)\right\}+\mathbf{f}(\mathbf{b})\right] \\
& S_{S}=\frac{1}{3}(.5)[\sqrt{5}+4\{\sqrt{12.625}+\sqrt{39.875}+\sqrt{\mathbf{8 8 . 1 2 5}}\}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathrm{x}_{1}=2.5 \quad \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(2.5)=\sqrt{12.625} \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathbf{x}_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& \mathbf{x}_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right] \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{3} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{2} f\left(x_{2 i}\right)+f(b)\right] \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4\left\{f\left(x_{1}\right)+f\left(x_{3}\right)+f\left(x_{5}\right)\right\}+\right. \\
& \left.+\mathbf{2}\left\{\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{4}\right)\right\}+\mathbf{f}(\mathbf{b})\right] \\
& S_{S}=\frac{1}{3}(.5)[\sqrt{5}+4\{\sqrt{12.625}+\sqrt{39.875}+\sqrt{\mathbf{8 8 . 1 2 5}}\}+2\{\sqrt{24}+\sqrt{61}\}
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathrm{x}_{1}=2.5 \quad \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(2.5)=\sqrt{12.625} \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathbf{x}_{3}=3.5 \quad f\left(x_{3}\right)=f(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& \mathbf{S}_{\mathrm{S}}=\frac{1}{3}(.5)[\sqrt{5}+4\{\sqrt{\mathbf{1 2 . 6 2 5}}+\sqrt{\mathbf{3 9 . 8 7 5}}+\sqrt{\mathbf{8 8 . 1 2 5}}\}+2\{\sqrt{\mathbf{2 4}}+\sqrt{\mathbf{6 1}}\}+\sqrt{\mathbf{1 2 2}}]
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& x_{0}=\mathbf{a}=2 \quad f\left(x_{0}\right)=f(a)=f(2)=\sqrt{5} \\
& \mathrm{x}_{1}=2.5 \quad \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(2.5)=\sqrt{12.625} \\
& x_{2}=3 \quad f\left(x_{2}\right)=f(3)=\sqrt{24} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& x_{5}=4.5 \quad f\left(x_{5}\right)=f(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{n} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n-1} f\left(x_{2 i}\right)+f(b)\right] \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{3} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{2} f\left(x_{2 i}\right)+f(b)\right] \\
& \mathrm{S}_{\mathrm{S}}=\frac{1}{3} \Delta \mathrm{x}\left[\mathrm{f}(\mathrm{a})+\mathbf{4}\left\{\mathrm{f}\left(\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{3}\right)+\mathrm{f}\left(\mathrm{x}_{5}\right)\right\}+\right. \\
& \left.+\mathbf{2}\left\{\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{4}\right)\right\}+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{S}_{\mathrm{S}}=\frac{1}{3}(.5)[\sqrt{5}+\mathbf{4}\{\sqrt{\mathbf{1 2 . 6 2 5}}+\sqrt{\mathbf{3 9 . 8 7 5}}+\sqrt{\mathbf{8 8 . 1 2 5}}\}+2\{\sqrt{\mathbf{2 4}}+\sqrt{\mathbf{6 1}}\}+\sqrt{\mathbf{1 2 2}}]
\end{aligned}
$$

Class Worksheet \#5 Unit 11

Approximate the following definite integral using each of the following approximation methods.
(a) S_{L} (Left Rectangular), (b) S_{R} (Right Rectangular), (c) S_{M} (Midpoint Rectangular),
(d) S_{T} (Trapezoidal), and (e) S_{S} (Simpson's).

Show your complete solutions neatly organized. In every case, divide the interval $[a, b]$ into 6 sub-intervals. $2 n=6 \longrightarrow n=3$

$$
\begin{aligned}
& \int_{2}^{5} \sqrt{x^{3}-3} d x \quad \Delta x=\frac{b-a}{n}=\frac{5-2}{6}=0.5 \quad f(x)=\sqrt{x^{3}-3} \\
& \mathbf{x}_{0}=\mathrm{a} \text { GOOd IUCK On YOUR } \\
& \mathbf{x}_{2}=3 \quad \mathbf{f}\left(\mathbf{x}_{2}\right)=\mathbf{f}(\mathbf{3})=\sqrt{\mathbf{2 4}} \\
& \mathrm{x}_{3}=3.5 \quad \mathrm{f}\left(\mathrm{x}_{3}\right)=\mathrm{f}(3.5)=\sqrt{39.875} \\
& x_{4}=4 \quad f\left(x_{4}\right)=f(4)=\sqrt{61} \\
& \mathrm{x}_{5}=4.5 \quad f\left(\mathrm{x}_{5}\right)=\mathrm{f}(4.5)=\sqrt{88.125} \\
& x_{6}=b=5 \quad f\left(x_{6}\right)=f(b)=f(5)=\sqrt{122} \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4 \sum_{i=1}^{3} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{2} f\left(x_{2 i}\right)+f(b)\right] \\
& S_{S}=\frac{1}{3} \Delta x\left[f(a)+4\left\{f\left(x_{1}\right)+f\left(x_{3}\right)+f\left(x_{5}\right)\right\}+\right. \\
& \left.+\mathbf{2}\left\{\mathbf{f}\left(\mathbf{x}_{2}\right)+\mathbf{f}\left(\mathbf{x}_{4}\right)\right\}+\mathbf{f}(\mathbf{b})\right] \\
& \mathbf{S}_{\mathrm{S}}=\frac{1}{3}(.5)[\sqrt{5}+\mathbf{4}\{\sqrt{\mathbf{1 2 . 6 2 5}}+\sqrt{\mathbf{3 9 . 8 7 5}}+\sqrt{\mathbf{8 8 . 1 2 5}}\}+2\{\sqrt{\mathbf{2 4}}+\sqrt{\mathbf{6 1}}\}+\sqrt{\mathbf{1 2 2}}] \\
& \mathrm{S}_{\mathrm{S}} \approx 19.29
\end{aligned}
$$

