Calculus Lesson \#4 Unit 11

Class Worksheet \#4
Volume of Solids With
Known Cross Section

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.

$\mathbf{A}_{\mathbf{c}}=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

thickness $=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.

$$
\mathrm{A}_{\mathrm{c}}=4 \mathrm{y}_{\mathrm{i}}{ }^{2}
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

thickness $=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.

$$
A_{c}=4 y_{i}^{2}=
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

$$
\text { thickness }=\Delta \mathbf{x}
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4(
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

$$
\text { thickness }=\Delta \mathbf{x}
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

$$
\text { thickness }=\Delta x
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
2 y_{i}
$$

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right)$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
2 \mathbf{y}_{\mathrm{i}}
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
2 y_{i}
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $\mathbf{V}=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4 \int$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4 \int\left(9-x^{2}\right)$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4 \int\left(9-x^{2}\right) d x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4 \int_{-3}\left(9-x^{2}\right) d x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4 \int_{-3}^{3}\left(9-x^{2}\right) d x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4 \int_{-3}^{3}\left(9-x^{2}\right) d x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4 \int_{-3}^{3}\left(9-x^{2}\right) d x$
d. $V=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4 \int_{-3}^{3}\left(9-x^{2}\right) d x$
d. $V=144$ cu. units

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one side in the base of the solid.
a.

$$
A_{c}=4 y_{i}^{2}=4\left(9-x_{i}^{2}\right)
$$

$$
\text { thickness }=\Delta x
$$

$$
2 y_{i}
$$

$2 y_{i}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=4\left(9-x_{i}^{2}\right) \Delta x$
c. $V=4 \int_{-3}^{3}\left(9-x^{2}\right) d x$
d. $V=144$ cu. units

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.

a.

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
\mathbf{A}_{\mathbf{c}}=
$$

thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
\mathbf{A}_{\mathbf{c}}=
$$

thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
\mathbf{A}_{\mathbf{c}}=
$$

thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
\mathbf{A}_{\mathbf{c}}=
$$

thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
\mathbf{A}_{\mathbf{c}}=
$$

thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
\mathrm{A}_{\mathrm{c}}=2 \mathrm{y}_{\mathrm{i}}^{2}
$$

thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
\mathrm{A}_{\mathrm{c}}=2 \mathrm{y}_{\mathrm{i}}^{2}
$$

thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$\mathrm{A}_{\mathrm{c}}=\mathbf{2} \mathrm{y}_{\mathrm{i}}{ }^{2}=$
thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.

$$
A_{c}=2 y_{i}^{2}=2(
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

a.

thickness $=\Delta \mathbf{x}$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right)$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $\mathbf{V}=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $\mathrm{V}=2$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $\mathbf{V}=2 \int$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $V=2 \int\left(9-x^{2}\right) d x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $V=2 \int_{-3}\left(9-x^{2}\right) d x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $V=2 \int_{-3}^{3}\left(9-x^{2}\right) d x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $V=2 \int_{-3}^{3}\left(9-x^{2}\right) d x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $V=2 \int_{-3}^{3}\left(9-x^{2}\right) d x$
d. $V=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $V=2 \int_{-3}^{3}\left(9-x^{2}\right) d x$
d. $V=72$ cu. units

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.
a.

$$
A_{c}=2 y_{i}^{2}=2\left(9-x_{i}^{2}\right)
$$

thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

b. $V_{i}=2\left(9-x_{i}^{2}\right) \Delta x$
c. $V=2 \int_{-3}^{3}\left(9-x^{2}\right) d x$
d. $V=72$ cu. units

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{V}=\mathbf{A}_{\mathbf{c}}$ (thickness)

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=$
thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=$
thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=$
thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=$
thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=$
thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{\mathbf{3}} \mathrm{y}_{\mathrm{i}}{ }^{2}$
thickness $=$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{\mathbf{3}} \mathrm{y}_{\mathrm{i}}{ }^{2}$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{\mathbf{3}} \mathbf{y}_{\mathrm{i}}{ }^{\mathbf{2}}=$
thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$$
\mathbf{A}_{c}=\sqrt{3} \mathbf{y}_{\mathrm{i}}^{2}=\sqrt{\mathbf{3}}(
$$

$$
\text { thickness }=\Delta x
$$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

b. $V_{i}=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{\mathbf{3}} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{\mathbf{3}}\left(\mathbf{9}-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

b. $V_{i}=\sqrt{3}$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{\mathbf{3}} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{\mathbf{3}}\left(\mathbf{9}-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

b. $\quad V_{i}=\sqrt{3}\left(9-x_{i}^{2}\right)$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{\mathbf{3}} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{\mathbf{3}}\left(\mathbf{9}-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

b. $V_{i}=\sqrt{3}\left(9-x_{i}{ }^{2}\right) \Delta x$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
V=A_{c}(\text { thickness })
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
V=A_{c}(\text { thickness })
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

$\begin{array}{ll}1 & \text { b. } V_{i}=\sqrt{3}\left(9-x_{i}{ }^{2}\right) \Delta x \\ 1 & 2 y_{i} \\ y_{i} & \text { c. } V=\sqrt{3} \int_{-3}\left(9-x^{2}\right) d x\end{array}$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}} \text { (thickness) }
$$

$\begin{array}{ll}1 & \text { b. } V_{i}=\sqrt{3}\left(9-x_{i}{ }^{2}\right) \Delta x \\ 1 & 2 y_{i} \\ y_{i} & \text { c. } V=\sqrt{3} \int_{-3}^{3}\left(9-x^{2}\right) d x\end{array}$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

$$
\begin{aligned}
& \text { b. } V_{i}=\sqrt{3}\left(9-x_{i}^{2}\right) \Delta x \\
& \text { c. } V=\sqrt{3} \int_{-3}^{3}\left(9-x^{2}\right) d x
\end{aligned}
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

> b. $V_{i}=\sqrt{3}\left(9-x_{i}^{2}\right) \Delta x$
> c. $V=\sqrt{3} \int_{-3}^{3}\left(9-x^{2}\right) d x$
d. $V=$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta \mathbf{x}$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{3} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{3}\left(9-\mathrm{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

Calculus Class Worksheet \#4 Unit 11 Solutions

Known Cross Section

In each problem a solid is described. You must
a) sketch the base of the solid, showing a typical cross sectional slice,
b) write an expression for the volume of this cross sectional slice,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^{2}+y^{2}=9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid.
a.

$\mathbf{A}_{\mathrm{c}}=\sqrt{\mathbf{3}} \mathrm{y}_{\mathrm{i}}{ }^{2}=\sqrt{\mathbf{3}}\left(9-\mathbf{x}_{\mathrm{i}}{ }^{2}\right)$
thickness $=\Delta x$

$$
\mathbf{V}=\mathbf{A}_{\mathbf{c}}(\text { thickness })
$$

