Calculus Lesson #4 Unit 11 Class Worksheet #4 Volume of Solids With Known Cross Section

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

$$V = A_c$$
 (thickness)

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2. The base of a solid is the circle $x^2 + y^2 = 9$. Each cross section by a plane perpendicular to the x-axis is a square with one diagonal in the base of the solid.

 $V = A_c$ (thickness)

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

a) sketch the base of the solid, showing a typical cross sectional slice,

 $V = A_c$ (thickness)

- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

a) sketch the base of the solid, showing a typical cross sectional slice,

 $2y_i$

y_i

 $2y_i$

 $V = A_c$ (thickness)

- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^2 + y^2 = 9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid. $A_1 = \sqrt{3} y_2^2 = \sqrt{3} ($

$$A_c = \sqrt{3} y_i^2 = \sqrt{3} ($$

thickness = Δx

 $V = A_c$ (thickness)

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx $V = A_{c}$ (thickness)

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^2 + y^2 = 9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid. $A = \sqrt{3} y^2 = \sqrt{3} (9 - x^2)$

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx
$$V = A_{c} \text{ (thickness)}$$

b. $V_{i} =$

 $2y_i$

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^2 + y^2 = 9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid. $A = \sqrt{3} y^2 = \sqrt{3} (9 - x^2)$

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx
$$V = A_{c} \text{ (thickness)}$$

b. $V_{i} = \sqrt{3} (9 - x_{i}^{2})$

 $2y_i$

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 3. The base of a solid is the circle $x^2 + y^2 = 9$. Each cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid. $A = \sqrt{3} y^2 = \sqrt{3} (9 - x^2)$

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx
$$V = A_{c} \text{ (thickness)}$$

b. $V_{i} = \sqrt{3} (9 - x_{i}^{2}) \Delta x$

 $2y_i$

Known Cross Section

a.

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

a.

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx

$$V = A_{c} \text{ (thickness)}$$

$$V_{i} = \sqrt{3} (9 - x_{i}^{2}) \Delta x$$

$$\int \frac{1}{3} y_{i}^{1} y_{i}^{2} y_{i}$$

$$V = \sqrt{3} \int (9 - x^{2}) dx$$

$$V = \sqrt{3} \int (9 - x^{2}) dx$$

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx

$$V = A_{c} \text{ (thickness)}$$

$$V_{i} = \sqrt{3} (9 - x_{i}^{2}) \Delta x$$

$$V_{i} = \sqrt{3} (9 - x_{i}^{2}) \Delta x$$

$$V = \sqrt{3} \int_{-3} (9 - x^{2}) dx$$

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx
$$V = A_{c} \text{ (thickness)}$$

b. $V_{i} = \sqrt{3} (9 - x_{i}^{2}) \Delta x$
$$V = \sqrt{3} \int_{-3}^{3} (9 - x^{2}) dx$$

$$V = \sqrt{3} \int_{-3}^{3} (9 - x^{2}) dx$$

Known Cross Section

In each problem a solid is described. You must

a) sketch the base of the solid, showing a typical cross sectional slice,

 $2y_i$

- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx
$$V = A_{c} \text{ (thickness)}$$

b. $V_{i} = \sqrt{3} (9 - x_{i}^{2}) \Delta x$
$$V = \sqrt{3} \int_{-3}^{3} (9 - x^{2}) dx$$

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx
$$V = A_{c} \text{ (thickness)}$$

b. $V_{i} = \sqrt{3} (9 - x_{i}^{2}) \Delta x$
$$V = \sqrt{3} \int_{-3}^{3} (9 - x^{2}) dx$$

$$V = \sqrt{3} \int_{-3}^{3} (9 - x^{2}) dx$$

$$V = 36 \sqrt{3} \text{ cu. units}$$

Known Cross Section

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

$$A_{c} = \sqrt{3} y_{i}^{2} = \sqrt{3} (9 - x_{i}^{2})$$

thickness = Δx
$$V = A_{c} \text{ (thickness)}$$

$$V_{i} = \sqrt{3} (9 - x_{i}^{2}) \Delta x$$

$$V_{i} = \sqrt{3} \int_{-3}^{3} (9 - x^{2}) dx$$

$$V = \sqrt{3} \int_{-3}^{3} (9 - x^{2}) dx$$

$$V = 36 \sqrt{3} \text{ cu. units}$$

Known Cross Section

a.

In each problem a solid is described. You must

- a) sketch the base of the solid, showing a typical cross sectional slice,
- b) write an expression for the volume of this cross sectional slice,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

