Calculus Lesson \#3 Unit 11

Class Worksheet \#3

Solids of Revolution

Shells

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}{ }^{2} \quad \text { b. } \mathrm{V}_{\mathrm{i}}= \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

$$
\text { b. } \quad V_{i}=2 \pi
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

$$
\text { b. } \quad V_{i}=2 \pi x_{i}\left(8 x_{i}-2 x_{i}^{2}\right)
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

$$
\text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} \quad \text { b. } \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \mathrm{V}=
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \quad \mathrm{V}=2 \pi
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}} & \text { b. } \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \mathrm{V}=2 \pi \int
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \quad \mathrm{V}=2 \pi \int\left(\mathrm{x}\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx}
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \quad \mathrm{V}=2 \pi \int_{0}\left(\mathrm{x}\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx}
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \quad \mathrm{V}=2 \pi \int_{0}^{4}\left(\mathrm{x}\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx}
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
r=x_{i} & \text { b. } \quad V_{i}=2 \pi x_{i}\left(8 x_{i}-2 x_{i}^{2}\right) \Delta x \\
h=y_{i}=8 x_{i}-2 x_{i}^{2} & \\
\Delta r=\Delta x & \text { c. } \quad V=2 \pi \int_{0}^{4}\left(x\left(8 x-2 x^{2}\right)\right) d x
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\begin{array}{l}
\mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}
\end{array} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \\
& \mathrm{V}=2 \pi \int_{0}^{4}\left(\mathrm{x}\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx} \\
& \mathrm{~V}=2 \pi \int_{0}^{4}\left(8 \mathrm{x}^{2}-2 \mathrm{x}^{3}\right) \mathrm{dx}
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \mathrm{V}=2 \pi \int_{0}^{4}\left(\mathrm{x}\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx} \\
& \\
& \mathrm{~V}=2 \pi \int_{0}^{4}\left(8 \mathrm{x}^{2}-2 \mathrm{x}^{3}\right) \mathrm{dx} \\
& \text { d. } \mathrm{V} \approx
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1A. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}}+2 & \text { b. } \\
\mathrm{h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \left.\mathrm{x}_{\mathrm{i}}+2\right)\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{l}=
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}}+2 & \text { b. } \\
\mathrm{h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \left.\mathrm{x}_{\mathrm{i}}+2\right)\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\text { c. } & \mathrm{V}=2 \pi
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}}+2 & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(\mathrm{x}_{\mathrm{i}}+2\right)\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } \quad \mathrm{V}=2 \pi \int
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{lll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}}+2 & \text { b. } & \mathrm{V}_{\mathrm{i}}=2 \pi\left(\mathrm{x}_{\mathrm{i}}+2\right)\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. } & \mathrm{V}=2 \pi \int_{0}^{4}\left((\mathrm{x}+2)\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx}
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{lll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}}+2 & \text { b. } & \mathrm{V}_{\mathrm{i}}=2 \pi\left(\mathrm{x}_{\mathrm{i}}+2\right)\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & & \text { c. } \\
\begin{array}{ll}
\Delta \mathrm{r}=\Delta \mathrm{x} & \mathrm{~V}=2 \pi \int_{0}^{4}\left((\mathrm{x}+2)\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx} \\
& \mathrm{~V}=2 \pi \int_{0}^{4}\left(-2 \mathrm{x}^{3}+4 \mathrm{x}^{2}+16 \mathrm{x}\right) \mathrm{dx}
\end{array} \\
& & \\
&
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}}+2 & \text { b. } \\
\mathrm{h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & =2 \pi\left(\mathrm{x}_{\mathrm{i}}+2\right)\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. }
\end{array} & \mathrm{V}=2 \pi \int_{0}^{4}\left((\mathrm{x}+2)\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx} \\
& \\
& \mathrm{~V}=2 \pi \int_{0}^{4}\left(-2 \mathrm{x}^{3}+4 \mathrm{x}^{2}+16 \mathrm{x}\right) \mathrm{dx} \\
& \text { d. } \quad \mathrm{V} \approx
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}}+2 & \text { b. } \\
\mathrm{h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & =2 \pi\left(\mathrm{x}_{\mathrm{i}}+2\right)\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. }
\end{array} & \mathrm{V}=2 \pi \int_{0}^{4}\left((\mathrm{x}+2)\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx} \\
& \mathrm{~V}=2 \pi \int_{0}^{4}\left(-2 \mathrm{x}^{3}+4 \mathrm{x}^{2}+16 \mathrm{x}\right) \mathrm{dx} \\
& \text { d. } \quad \mathrm{V} \approx 536 \text { cu. units }
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1B. The region enclosed by $y=8 x-2 x^{2}$ and the x-axis is rotated about the line $x=-2$.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{array}{lll}
\mathrm{r}=\mathrm{x}_{\mathrm{i}}+2 & \text { b. } & \mathrm{V}_{\mathrm{i}}=2 \pi\left(\mathrm{x}_{\mathrm{i}}+2\right)\left(8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\mathrm{y}_{\mathrm{i}}=8 \mathrm{x}_{\mathrm{i}}-2 \mathrm{x}_{\mathrm{i}}^{2} & & \begin{array}{ll}
\Delta \mathrm{r}=\Delta \mathrm{x} & \text { c. }
\end{array} \\
& \mathrm{V}=2 \pi \int_{0}^{4}\left((\mathrm{x}+2)\left(8 \mathrm{x}-2 \mathrm{x}^{2}\right)\right) \mathrm{dx} \\
& \mathrm{~V}=2 \pi \int_{0}^{4}\left(-2 \mathrm{x}^{3}+4 \mathrm{x}^{2}+16 \mathrm{x}\right) \mathrm{dx} \\
& \text { d. } & \mathrm{V} \approx 536 \text { cu. units }
\end{array}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$
$r=X_{i}$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=\mathrm{x}_{\mathrm{i}}$
$\mathrm{h}=\mathrm{y}_{2}$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}- \\
& \Delta \mathrm{r}=
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1} \\
& \Delta \mathrm{r}=
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1} \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}= \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathbf{x}_{\mathrm{i}}+\mathbf{2}\right) \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)- \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+2\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-2 \mathrm{x}_{\mathrm{i}}+2\right) \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+2\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-2 \mathrm{x}_{\mathrm{i}}+2\right)= \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}{ }^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}{ }^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right)
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $\mathrm{V}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $\mathrm{V}=2 \pi$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}{ }^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3 x _ { i }}-\mathbf{x}_{\mathrm{i}}{ }^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \\
& \\
& \\
& \\
& \text { b. } . \\
& \text { c. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { b. } \\
& \text { c. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
&
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { b. } \\
& \text { c. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { b. } \\
& \text { c. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $V=2 \pi \int_{0}^{3}\left(x\left(3 x-x^{2}\right)\right) d x$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \text { b. } \\
& \text { c. } \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
& \text { c. } \\
& \\
& \\
& \\
& \\
& \mathrm{V}=2 \pi \int_{0}^{3}\left(\mathrm{x}\left(3 \mathrm{x}-\mathrm{x}^{2}\right)\right) \mathrm{dx} \\
& 0 \int_{0}^{3}\left(3 \mathrm{x}^{2}-\mathrm{x}^{3}\right) \mathrm{dx}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $V=2 \pi \int_{0}^{3}\left(x\left(3 x-x^{2}\right)\right) d x$
$V=2 \pi \int_{0}^{3}\left(3 x^{2}-x^{3}\right) d x$
d. $\mathrm{V} \approx$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $V=2 \pi \int_{0}^{3}\left(x\left(3 x-x^{2}\right)\right) d x$
$V=2 \pi \int_{0}^{3}\left(3 x^{2}-x^{3}\right) d x$
d. $V \approx 42.4 \mathrm{cu}$. units

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2A. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the y-axis.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi \mathrm{x}_{\mathrm{i}}\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $V=2 \pi \int_{0}^{3}\left(x\left(3 x-x^{2}\right)\right) d x$

$$
V=2 \pi \int_{0}^{3}\left(3 x^{2}-x^{3}\right) d x
$$

d. $V \approx 42.4 \mathrm{cu}$. units

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$
$\mathrm{r}=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$
$r=$
$\mathrm{h}=$
$\Delta \mathrm{r}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}= \\
& \Delta \mathrm{r}=
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}= \\
& \Delta \mathrm{r}=
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1} \\
& \Delta \mathrm{r}=
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1} \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}= \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}{ }^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right) \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+2\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-2 \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)= \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathbf{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathbf{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathbf{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathbf{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}{ }^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}{ }^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}{ }^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathbf{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right)
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}{ }^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}{ }^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathrm{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $\mathrm{V}=$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $\mathrm{V}=2 \pi$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3 x _ { i }}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \\
& \\
& \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
& \\
& \\
& \text { c. } \quad \mathrm{V}=2 \pi \int
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+2\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+2\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $V=2 \pi \int\left((4-x)\left(3 x-x^{2}\right)\right) d x$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $V=2 \pi \int_{0}\left((4-x)\left(3 x-x^{2}\right)\right) d x$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2 x _ { i }}+\mathbf{2}\right)=\mathbf{3 x _ { i }}-\mathrm{x}_{\mathrm{i}}{ }^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { c. } . \\
& \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}{ }^{2}\right) \Delta \mathrm{x} \\
& \mathrm{~V}=2 \pi \int_{0}^{3}\left((4-\mathrm{x})\left(3 \mathrm{x}-\mathrm{x}^{2}\right)\right) \mathrm{dx}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathbf{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3} \mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x}
\end{aligned}
$$

c. $V=2 \pi \int_{0}^{3}\left((4-x)\left(3 x-x^{2}\right)\right) d x$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3 x _ { \mathrm { i } } - \mathrm { x } _ { \mathrm { i } } { } ^ { 2 }} \begin{array}{l}
\Delta \mathrm{r}=\Delta \mathrm{x} \\
\\
\text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\text { c. } \quad \mathrm{V}=2 \pi \int_{0}^{3}\left((4-\mathrm{x})\left(3 \mathrm{x}-\mathrm{x}^{2}\right)\right) \mathrm{dx} \\
\\
\\
\mathrm{~V}=2 \pi \int_{0}^{3}\left(\mathrm{x}^{3}-7 \mathrm{x}^{2}+12 \mathrm{x}\right) \mathrm{dx}
\end{array}
\end{aligned}
$$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+2\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-2 \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3 x _ { i }}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
& \\
& \text { c. } \quad \mathrm{V}=2 \pi \int_{0}^{3}\left((4-\mathrm{x})\left(3 \mathrm{x}-\mathrm{x}^{2}\right)\right) \mathrm{dx} \\
& \\
& \\
& \mathrm{~V}=2 \pi \int_{0}^{3}\left(\mathrm{x}^{3}-7 \mathrm{x}^{2}+12 \mathrm{x}\right) \mathrm{dx}
\end{aligned}
$$

d. $\mathrm{V} \approx$

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+2\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-2 \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3 x _ { i }}-\mathrm{x}_{\mathrm{i}}^{2} \\
& \Delta \mathrm{r}=\Delta \mathrm{x} \\
& \text { b. } \quad \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
& \\
& \text { c. } \quad \mathrm{V}=2 \pi \int_{0}^{3}\left((4-\mathrm{x})\left(3 \mathrm{x}-\mathrm{x}^{2}\right)\right) \mathrm{dx} \\
& \\
& \\
& \mathrm{~V}=2 \pi \int_{0}^{3}\left(\mathrm{x}^{3}-7 \mathrm{x}^{2}+12 \mathrm{x}\right) \mathrm{dx}
\end{aligned}
$$

d. $V \approx 70.7 \mathrm{cu}$. units

Calculus Class Worksheet \#3 Unit 11 Solutions

Use "shells" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2B. The region enclosed by $y=x^{2}-2 x+2$ and $y=x+2$ is rotated about the line $x=4$.
a.

Shells: $V=2 \pi r h \Delta r$

$$
\begin{aligned}
& \mathrm{r}=4-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\mathrm{y}_{2}-\mathrm{y}_{1}=\left(\mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)-\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathbf{2} \mathrm{x}_{\mathrm{i}}+\mathbf{2}\right)=\mathbf{3 x _ { \mathrm { i } } - \mathrm { x } _ { \mathrm { i } } { } ^ { 2 }} \begin{array}{l}
\Delta \mathrm{r}=\Delta \mathrm{x} \\
\text { b. } \mathrm{V}_{\mathrm{i}}=2 \pi\left(4-\mathrm{x}_{\mathrm{i}}\right)\left(3 \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}^{2}\right) \Delta \mathrm{x} \\
\text { c. } \quad \mathrm{V}=2 \pi \int_{0}^{3}\left((4-\mathrm{x})\left(3 \mathrm{x}-\mathrm{x}^{2}\right)\right) \mathrm{dx} \\
\\
\\
\mathrm{~V}=2 \pi \int_{0}^{3}\left(\mathrm{x}^{3}-7 \mathrm{x}^{2}+12 \mathrm{x}\right) \mathrm{dx}
\end{array}
\end{aligned}
$$

d. $V \approx 70.7 \mathrm{cu}$. units

