Calculus Lesson #2 Unit 11 Class Worksheet #2 Solids of Revolution Washers

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1a. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1a. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1a. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1a. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1a. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1b. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the line y = -2.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1b. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the line y = -2.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1b. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the line y = -2.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1b. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the line y = -2.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 1b. The region bounded by $y = 10 - x^2$ and y = 1 is rotated about the line y = -2.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2a. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the x-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Sample 2b. The region enclosed by $x = 2y^2$ and x = 2y is rotated about the y-axis.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers: $V = \pi (R^2 \circ r^2)h$

$$= 3 \text{ ó } x_1$$
$$= 3 \text{ ó } x_2$$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers: $V = \pi (R^2 \circ r^2)h$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers: $V = \pi (R^2 \circ r^2)h$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

 $R = 3 \circ x_1 = 3 \circ 2y_i^2$
 $r = 3 \circ x_2$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ A^2)^2$$

 $R = 3 \circ x_1 = 3 \circ 2y_1^2$
 $r = 3 \circ x_2 = 0$

r²)h

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

 $R = 3 \circ x_1 = 3 \circ 2y_i^2$
 $r = 3 \circ x_2 = 3 \circ 2y_i$
 $h = \Delta y$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

 $R = 3 \circ x_1 = 3 \circ 2y_i^2$
 $r = 3 \circ x_2 = 3 \circ 2y_i$
 $h = \Delta y$
b. $V_i =$

Use õwashersö to find the volume generated by rotating the given region about the given line. For each problem, you must

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ A)^2$$

 $R = 3 \circ X_1 = 3 \circ 2y_i^2$
 $r = 3 \circ X_2 = 3 \circ 2y_i$
 $h = \Delta y$

b.
$$V_i = \pi$$

r²)h

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

 $R = 3 \circ x_1 = 3 \circ 2y_i^2$
 $r = 3 \circ x_2 = 3 \circ 2y_i$
 $h = \Delta y$
b. $V_i = \pi ((3 \circ 2y_i^2))$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

 $R = 3 \circ x_1 = 3 \circ 2y_i^2$
 $r = 3 \circ x_2 = 3 \circ 2y_i$
 $h = \Delta y$
b. $V_i = \pi ((3 \circ 2y_i^2)^2)^2$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

 $R = 3 \circ x_1 = 3 \circ 2y_i^2$
 $r = 3 \circ x_2 = 3 \circ 2y_i$
 $h = \Delta y$
b. $V_i = \pi ((3 \circ 2y_i^2)^2 \circ y_i^2)^2$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

 $R = 3 \circ x_1 = 3 \circ 2y_i^2$
 $r = 3 \circ x_2 = 3 \circ 2y_i$
 $h = \Delta y$
b. $V_i = \pi ((3 \circ 2y_i^2)^2 \circ (3 \circ 2y_i))$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

 $R = 3 \circ x_1 = 3 \circ 2y_i^2$
 $r = 3 \circ x_2 = 3 \circ 2y_i$
 $h = \Delta y$
b. $V_i = \pi ((3 \circ 2y_i^2)^2 \circ (3 \circ 2y_i)^2)$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

Washers:
$$V = \pi (R^2 \circ r^2)h$$

 $R = 3 \circ x_1 = 3 \circ 2y_i^2$
 $r = 3 \circ x_2 = 3 \circ 2y_i$
 $h = \Delta y$
b. $V_i = \pi ((3 \circ 2y_i^2)^2 \circ (3 \circ 2y_i)^2) \Delta y$

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

- a) sketch the generating region, showing a typical generating rectangle,
- b) write an expression for the volume generated by this rectangle,
- c) express the exact volume of the solid as a definite integral, and
- d) evaluate the integral.

