Calculus Lesson \#2 Unit 11

Class Worksheet \#2

Solids of Revolution

Washers

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=$
$\mathrm{r}=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \text { b. } \mathrm{V}_{\mathrm{i}}= \\
& \mathrm{r}=1 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi \\
& \mathrm{r}=1 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}} 1\right. \\
& \mathrm{r}=1 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(10 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{i} 1^{2}\right. \\
& \mathrm{r}=1 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(10 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}} 1^{2}\right) \Delta \mathrm{x} \\
\mathrm{r}=1 & \text { c. } \mathrm{V}= \\
\mathrm{h}=\Delta \mathrm{x} &
\end{array}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(10 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}} 1^{2}\right) \Delta \mathrm{x} \\
\mathrm{r}=1 & \text { c. } \quad \mathrm{V}=\pi \\
\mathrm{h}=\Delta \mathrm{x} &
\end{array}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} & \text { b. } \\
\mathrm{r}=1 & \mathrm{~V}_{\mathrm{i}}=\pi\left(\left(10 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}} 1^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\Delta \mathrm{x} & \text { c. } \mathrm{V}=\pi \int
\end{array}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} & \text { b. } \mathrm{V}_{\mathrm{i}}=\pi\left(\left(10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}} 1^{2}\right) \Delta \mathrm{x} \\
\mathrm{r}=1 \\
\mathrm{~h}=\Delta \mathrm{x} & \text { c. } \quad \mathrm{V}=\pi \int_{-3}\left(\left(10 \ddot{\mathrm{I}} \mathrm{x}^{2}\right)^{2} \ddot{\mathrm{i}} 1\right) \mathrm{dx}
\end{array}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}} 1^{2}\right) \Delta \mathrm{x} \\
\mathrm{r}=1 & \\
\mathrm{~h}=\Delta \mathrm{x} & \text { c. } \quad \mathrm{V}=\pi \int_{-3}^{3}\left(\left(10 \ddot{\mathrm{i}} \mathrm{x}^{2}\right)^{2} \ddot{\mathrm{I}} 1\right) \mathrm{dx}
\end{array}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} & \text { b. } \\
\mathrm{r}=1 & \mathrm{~V}_{\mathrm{i}}=\pi\left(\left(10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}} 1^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\Delta \mathrm{x} & \text { c. } \\
& \mathrm{V}=\pi \int_{-3}^{3}\left(\left(10 \ddot{\mathrm{i}} \mathrm{x}^{2}\right)^{2} \ddot{\mathrm{I}} 1\right) \mathrm{dx}
\end{array}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} & \text { b. } \\
\mathrm{r}=1 & \mathrm{~V}_{\mathrm{i}}=\pi\left(\left(10 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}} 1^{2}\right) \Delta \mathrm{x} \\
\mathrm{~h}=\Delta \mathrm{x} & \text { c. } \\
& \mathrm{V}=\pi \int_{-3}^{3}\left(\left(10 \ddot{i} \mathrm{x}^{2}\right)^{2} \ddot{\mathrm{i}} 1\right) \mathrm{dx}
\end{array}
$$

$$
V=\pi \int_{-3}^{3}\left(x^{4} \ddot{I} 20 x^{2}+99\right) d x
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{I} r^{2}\right) h$

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} & \text { b. } \\
\mathrm{r}=1 \\
\mathrm{~V}=\Delta \mathrm{x} & =\pi\left(\left(10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}} 1^{2}\right) \Delta \mathrm{x} \\
& \text { c. } \\
& \mathrm{V}=\pi \int_{-3}^{3}\left(\left(10 \ddot{\mathrm{I}} \mathrm{x}^{2}\right)^{2} \ddot{\mathrm{I}} 1\right) \mathrm{dx} \\
& \mathrm{~V}=\pi \int_{-3}^{3}\left(\mathrm{x}^{4} \ddot{\mathrm{I}} 20 \mathrm{x}^{2}+99\right) \mathrm{dx}
\end{array}
\end{array}
$$

d. $\mathrm{V} \approx$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{I} r^{2}\right) h$

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} & \text { b. } \\
\mathrm{r}=1 \\
\mathrm{~V}=\Delta \mathrm{x} & =\pi\left(\left(10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}} 1^{2}\right) \Delta \mathrm{x} \\
& \text { c. } \\
& \mathrm{V}=\pi \int_{-3}^{3}\left(\left(10 \ddot{\mathrm{I}} \mathrm{x}^{2}\right)^{2} \ddot{\mathrm{I}} 1\right) \mathrm{dx} \\
& \mathrm{~V}=\pi \int_{-3}^{3}\left(\mathrm{x}^{4} \ddot{\mathrm{I}} 20 \mathrm{x}^{2}+99\right) \mathrm{dx}
\end{array}
\end{array}
$$

d. $V \approx 1040 \mathrm{cu}$. units

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region bounded by $y=10-x^{2}$ and $y=1$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{I} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}=10 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}{ }^{2} \\
& \text { b. } \quad V_{i}=\pi\left(\left(10 \ddot{i} x_{i}^{2}\right)^{2} \ddot{i} 1^{2}\right) \Delta x \\
& \mathrm{r}=1 \\
& \mathrm{~h}=\Delta \mathrm{x} \\
& \text { c. } V=\pi \int_{-3}^{3}\left(\left(10 \ddot{i} x^{2}\right)^{2} \ddot{i} 1\right) d x \\
& V=\pi \int_{-3}^{3}\left(x^{4} \ddot{i} 20 x^{2}+99\right) d x
\end{aligned}
$$

d. $V \approx 1040 \mathrm{cu}$. units

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersò to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $y=-2$.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$R=y_{i}+2$
r =
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2 \\
& \mathrm{r}=3 \\
& \mathrm{~h}=
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2 \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2= \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \mathrm{i} \mathrm{x}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \mathrm{I} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi .
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2}\right)\right.
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} .\right.
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}} .\right.
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}} 3\right.
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \quad V_{\mathrm{i}}=\pi\left(\left(12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}} 3^{2}\right.
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}} 3^{2}\right) \Delta \mathrm{x}, ~ l
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}} 3^{2}\right) \Delta \mathrm{x},
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& R=y_{i}+2=12 \ddot{i} x_{i}^{2} \\
& r=3 \\
& h=\Delta x \\
& \text { b. } V_{i}=\pi\left(\left(12 \ddot{i} x_{i}^{2}\right)^{2} \ddot{i} 3^{2}\right) \Delta x \\
& \text { c. } V=
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \\
& r=3 \\
& h=\Delta x \\
& \text { b. } V_{i}=\pi\left(\left(12 \ddot{i} x_{i}^{2}\right)^{2} \ddot{i} 3^{2}\right) \Delta x \\
& \text { c. } \mathrm{V}=\pi
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \\
& r=3 \\
& \mathrm{~h}=\Delta \mathrm{x} \\
& \text { b. } V_{i}=\pi\left(\left(12 \ddot{i} x_{i}^{2}\right)^{2} \ddot{i} 3^{2}\right) \Delta x \\
& \text { c. } \mathrm{V}=\pi \int
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $V=\pi\left(R^{2} \ddot{I} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \mathrm{V}_{\mathrm{i}}=\pi\left(\left(12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}} 3^{2}\right) \Delta \mathrm{x}, ~\left(\begin{array}{ll}
\\
& \text { c. } \left.\quad V=\pi \int\left(12 \ddot{i} x^{2}\right)^{2} \ddot{\mathrm{i}} 9\right) \mathrm{dx}
\end{array}\right.
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $\quad V=\pi\left(R^{2} \ddot{I} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned} \quad \text { b. } \mathrm{V}_{\mathrm{i}}=\pi\left(\left(12 \ddot{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}} 3^{2}\right) \Delta \mathrm{x}, ~\left(\begin{array}{c}
-3
\end{array}\right.
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Washers: $\quad V=\pi\left(R^{2} \ddot{I} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{\mathrm{i}}+2=12 \ddot{\mathrm{I}} \mathrm{x}_{\mathrm{i}}^{2} \\
& r=3 \\
& h=\Delta x \\
& \text { b. } V_{i}=\pi\left(\left(12 \ddot{i} x_{i}^{2}\right)^{2} \ddot{i} 3^{2}\right) \Delta x \\
& \text { c. } V=\pi \int_{-3}^{3}\left(\left(12 \ddot{i} x^{2}\right)^{2} \ddot{i} 9\right) d x
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-x^{2}$ and $y=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region bounded by $\mathbf{y}=10-\mathbf{x}^{2}$ and $\mathbf{y}=1$ is rotated about the line $\mathbf{y}=\mathbf{- 2}$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=$
$r=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=$
$r=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=$
$\mathrm{r}=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=$
$r=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=$
$r=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\mathrm{R}=\mathrm{y}_{2}
$$

$$
\mathrm{r}=
$$

$$
\mathrm{h}=
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\mathrm{R}=\mathrm{y}_{2}
$$

$$
\mathrm{r}=\mathrm{y}_{1}
$$

$$
\mathrm{h}=
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\mathrm{R}=\mathrm{y}_{2}
$$

$$
\mathrm{r}=\mathrm{y}_{1}
$$

$$
\mathrm{h}=\Delta \mathrm{x}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{y}_{2}=$
$r=y_{1}$
$h=\Delta x$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$R=y_{2}=\sqrt{\frac{x_{i}}{2}}$
$r=y_{1}$
$h=\Delta x$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$R=y_{2}=\sqrt{\frac{x_{i}}{2}}$
$\mathrm{r}=\mathrm{y}_{1}=$
$h=\Delta x$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}
$$

$$
\mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}}
$$

$$
\mathrm{h}=\Delta \mathrm{x}
$$

b. $V_{i}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}
$$

$$
\mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}}
$$

$$
\mathrm{h}=\Delta \mathrm{x}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}\right)\right.
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}\right)^{2}\right.
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}\right)^{2} \ddot{i}\right.
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad V_{i}=\pi\left[\left(\sqrt{\frac{x_{i}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} x_{i}\right)\right.
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{x_{\mathrm{i}}}{2}}\right)^{2} \ddot{i} \quad\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right.
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad V_{i}=\pi\left[\left(\sqrt{\frac{x_{i}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} x_{i}\right)^{2}\right] \Delta x
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad V_{i}=\pi\left[\left(\sqrt{\frac{x_{\mathrm{i}}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} x_{i}\right)^{2}\right] \Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \Delta \mathrm{x}
\end{aligned}
$$

c. $\mathrm{V}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \Delta \mathrm{x}
\end{aligned}
$$

c. $\quad V=\pi$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \\
& \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{x_{i}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} x_{i}\right)^{2}\right] \Delta \mathrm{x} \\
& \\
& \text { c. } \quad \mathrm{V}=\pi \int
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{x_{i}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \Delta \mathrm{x} \\
& \\
& \text { c. } \quad \mathrm{V}=\pi \int\left(\frac{1}{2} \mathrm{x} \ddot{{ }_{4}}{ }_{4}^{1} \mathrm{x}^{2}\right) \mathrm{dx}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \Delta \mathrm{x}
\end{aligned}
$$

c. $V=\pi \int_{0}\left(\frac{1}{2} x \ddot{1} \frac{1}{4} x^{2}\right) d x$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \\
& \quad \text { b. } \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{x_{i}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \Delta \mathrm{x} \\
& \text { c. } \quad \mathrm{V}=\pi \int_{0}^{2}\left(\frac{1}{2} \mathrm{x} \ddot{\mathrm{i}} \frac{1}{4} \mathrm{x}^{2}\right) \mathrm{dx}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \\
& \quad \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{x_{\mathrm{i}}}{2}}\right)^{2} \ddot{i}\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \Delta \mathrm{x} \\
& \text { c. } \quad \mathrm{V}=\pi \int_{0}^{2}\left(\frac{1}{2} \mathrm{x} \ddot{\mathrm{i}} \frac{1}{4} \mathrm{x}^{2}\right) \mathrm{dx}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. }
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}\right)^{2} \ddot{\mathrm{I}}\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \Delta \mathrm{x}$
c. $V=\pi \int_{0}^{2}\left(\frac{1}{2} x \ddot{i} \frac{1}{4} x^{2}\right) d x$
d. $\mathrm{V} \approx$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. }
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}\right)^{2} \mathrm{i}\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \Delta \mathrm{x}$
c. $V=\pi \int_{0}^{2}\left(\frac{1}{2} x \ddot{i} \frac{1}{4} x^{2}\right) d x$
d. $V \approx 1.05 \mathrm{cu}$. units

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the x-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{y}_{2}=\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}} \\
& \mathrm{r}=\mathrm{y}_{1}=\frac{1}{2} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{x} \quad \text { b. }
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left[\left(\sqrt{\frac{\mathrm{x}_{\mathrm{i}}}{2}}\right)^{2} \ddot{\mathrm{I}}\left(\frac{1}{2} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \Delta \mathrm{x}$
c. $V=\pi \int_{0}^{2}\left(\frac{1}{2} x \ddot{i} \frac{1}{4} x^{2}\right) d x$
d. $V \approx 1.05 \mathrm{cu}$. units

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=$
$r=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{aligned}
& \text { Washers: } \mathrm{V}=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h} \\
& \mathrm{R}= \\
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{aligned}
& \text { Washers: } \mathrm{V}=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h} \\
& \mathrm{R}= \\
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

\quad Washers: $\mathrm{V}=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h}$
$\mathrm{R}=\mathrm{x}_{2}$
$\mathrm{r}=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{aligned}
& \quad \text { Washers: } \mathrm{V}=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h} \\
& \mathrm{R}=\mathrm{x}_{2} \\
& \mathrm{r}=\mathrm{x}_{1} \\
& \mathrm{~h}=
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\mathrm{R}=\mathrm{x}_{2}
$$

$$
\mathrm{r}=\mathrm{x}_{1}
$$

$$
h=\Delta y
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=$
$r=x_{1}$
$\mathrm{h}=\Delta \mathrm{y}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{aligned}
& \text { Washers: } \mathrm{V}=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{I}} \mathrm{r}^{2}\right) \mathrm{h} \\
& \mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{r}=\mathrm{x}_{1} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{aligned}
& \text { Washers: } \mathrm{V}=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{I}} \mathrm{r}^{2}\right) \mathrm{h} \\
& \mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{r}=\mathrm{x}_{1}= \\
& \mathrm{h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{aligned}
& \text { Washers: } \mathrm{V}=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{I}} \mathrm{r}^{2}\right) \mathrm{h} \\
& \mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $V_{i}=$ $\mathrm{h}=\Delta \mathrm{y}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{array}{ll}
\text { Washers: } & \mathrm{V}=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{I}} \mathrm{r}^{2}\right) \mathrm{h} \\
\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}} & \\
\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}^{2} & \mathrm{~b} . \quad \mathrm{V}_{\mathrm{i}}=\pi \\
\mathrm{h}=\Delta \mathrm{y} &
\end{array}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)\right.$
$\mathrm{h}=\Delta \mathrm{y}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right.$
$\mathrm{h}=\Delta \mathrm{y}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{i}}\right.$
$h=\Delta y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{i}} \quad\left(2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)\right.$
$\mathrm{h}=\Delta \mathrm{y}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \mathrm{i}\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right.$
$\mathrm{h}=\Delta \mathrm{y}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{array}{rl}
\text { Washers: } & \mathrm{V}=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{I}} \mathrm{r}^{2}\right) \mathrm{h} \\
\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}} & \\
\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}^{2} & \mathrm{~b} . \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{I}}\left(2 \mathrm{y}_{\mathrm{i}}^{2}\right)^{2}\right) \Delta \mathrm{y} \\
\mathrm{~h}=\Delta \mathrm{y}
\end{array}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{i}}\left(2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2}\right) \Delta \mathrm{y}$
$\mathrm{h}=\Delta \mathrm{y}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{aligned}
\text { Washers: } & \mathrm{V}=\pi\left(\mathrm{R}^{2} \mathrm{i} \mathrm{r}^{2}\right) \mathrm{h} \\
\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}} & \\
\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}^{2} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{I}}\left(2 \mathrm{y}_{\mathrm{i}}^{2}\right)^{2}\right) \Delta \mathrm{y} \\
\mathrm{~h}=\Delta \mathrm{y} & \text { c. } \quad \mathrm{V}=
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

$$
\begin{aligned}
\text { Washers: } & \mathrm{V}=\pi\left(\mathrm{R}^{2} \mathrm{i} \mathrm{r}^{2}\right) \mathrm{h} \\
\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}} & \\
\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}^{2} & \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{I}}\left(2 \mathrm{y}_{\mathrm{i}}^{2}\right)^{2}\right) \Delta \mathrm{y} \\
\mathrm{~h}=\Delta \mathrm{y} & \text { c. } \quad \mathrm{V}=\pi
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{i}}\left(2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2}\right) \Delta \mathrm{y}$
$h=\Delta y$
c. $\mathrm{V}=\pi \int$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{i}}\left(2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2}\right) \Delta \mathrm{y}$
$h=\Delta y$
c. $V=\pi \int\left((2 y)^{2} \ddot{i}\left(2 y^{2}\right)^{2}\right) d y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{i}}\left(2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2}\right) \Delta \mathrm{y}$
$h=\Delta y$
c. $V=\pi \int_{0}\left((2 y)^{2} \ddot{i}\left(2 y^{2}\right)^{2}\right) d y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{i}}\left(2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2}\right) \Delta \mathrm{y}$
$h=\Delta y$
c. $V=\pi \int_{0}^{1}\left((2 y)^{2} \ddot{i}\left(2 y^{2}\right)^{2}\right) d y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{i}}\left(2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2}\right) \Delta \mathrm{y}$
$h=\Delta y$
c. $V=\pi \int_{0}^{1}\left((2 y)^{2} \ddot{i}\left(2 y^{2}\right)^{2}\right) d y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(2 \mathrm{y}_{\mathrm{i}}\right)^{2} \ddot{\mathrm{i}}\left(2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2}\right) \Delta \mathrm{y}$
$h=\Delta y$
c. $V=\pi \int_{0}^{1}\left((2 y)^{2} \ddot{i}\left(2 y^{2}\right)^{2}\right) d y$
$V=\pi \int_{0}^{1}\left(4 y^{2} \ddot{i} 4 y^{4}\right) d y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
$\mathrm{h}=\Delta \mathrm{y}$
c. $V=\pi \int_{0}^{1}\left((2 y)^{2} \ddot{i}\left(2 y^{2}\right)^{2}\right) d y$
$V=\pi \int_{0}^{1}\left(4 y^{2} \ddot{i} 4 y^{4}\right) d y$
d. $\mathrm{V} \approx$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
$\mathrm{h}=\Delta \mathrm{y}$
c. $V=\pi \int_{0}^{1}\left((2 y)^{2} \ddot{i}\left(2 y^{2}\right)^{2}\right) d y$
$V=\pi \int_{0}^{1}\left(4 y^{2} \ddot{i} 4 y^{4}\right) d y$
d. $V \approx 1.68 \mathrm{cu}$. units

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the y-axis.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=\mathrm{x}_{2}=2 \mathrm{y}_{\mathrm{i}}$
$\mathrm{r}=\mathrm{x}_{1}=2 \mathrm{y}_{\mathrm{i}}{ }^{2}$
$\mathrm{h}=\Delta \mathrm{y}$
c. $V=\pi \int_{0}^{1}\left((2 y)^{2} \ddot{i}\left(2 y^{2}\right)^{2}\right) d y$
$V=\pi \int_{0}^{1}\left(4 y^{2} \ddot{i} 4 y^{4}\right) d y$
d. $V \approx 1.68 \mathrm{cu}$. units

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
a.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$
$\mathrm{R}=$
$\mathrm{r}=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h}$
a.

$\mathrm{R}=$
$\mathrm{r}=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h}$
a.

$\mathrm{R}=$
$\mathrm{r}=$
$\mathrm{h}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
a.

$$
\begin{aligned}
& \mathrm{R}= \\
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Washers: $V=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{I}} \mathrm{x}_{1} \\
& \mathrm{r}=3 \ddot{\mathrm{I}} \mathrm{x}_{2} \\
& \mathrm{~h}=
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{I}} \mathrm{x}_{1} \\
& \mathrm{r}=3 \ddot{\mathrm{I}} \mathrm{x}_{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}= \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{I}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{I}} \mathrm{x}_{1}=3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{I}} \mathrm{x}_{2}= \\
& \mathrm{h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $V_{i}=$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)\right.$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \mathrm{i} 2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2}\right.$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{i}}\right.$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2} \mathrm{i}\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}\right)\right.$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(\left(3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}}\left(3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right.$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2} \mathrm{i}\left(3 \mathrm{i} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \Delta \mathrm{y}$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
a.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $V_{i}=\pi\left(\left(3 \ddot{i} 2 y_{i}\right)^{2} \ddot{i}\left(3 \ddot{i} 2 y_{i}\right)^{2}\right) \Delta y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{I}} \mathrm{x}_{1}=3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \mathrm{i} \mathrm{x}_{2}=3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y} \\
& \\
& \text { b. } \mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}}\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \Delta \mathrm{y} \\
& \text { c. } \mathrm{V}=
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{I}} \mathrm{x}_{1}=3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \mathrm{i} \mathrm{x}_{2}=3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y} \\
& \\
& \text { b. } \mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}^{2}\right)^{2} \ddot{\mathrm{I}}\left(3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \Delta \mathrm{y} \\
& \text { c. } \quad \mathrm{V}=\pi
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.

Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y} \\
& \text { b. } \quad \mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}^{2}\right)^{2} \mathrm{i}\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \Delta \mathrm{y} \\
& \text { c. } \quad \mathrm{V}=\pi \int
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $V_{i}=\pi\left(\left(3 \ddot{i} 2 y_{i}\right)^{2} \ddot{i}\left(3 \ddot{i} 2 y_{i}\right)^{2}\right) \Delta y$
c. $V=\pi \int\left(\left(3 \ddot{i} 2 y^{2}\right)^{2} \ddot{i}(3 \ddot{i} 2 y)^{2}\right) d y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2} \mathrm{i}\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \Delta \mathrm{y}$
c. $V=\pi \int_{0}\left(\left(3 \ddot{i} 2 y^{2}\right)^{2} \ddot{i}(3 \ddot{i} 2 y)^{2}\right) d y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $V_{i}=\pi\left(\left(3 \ddot{i} 2 y_{i}\right)^{2} \ddot{i}\left(3 \ddot{i} 2 y_{i}\right)^{2}\right) \Delta y$
c. $V=\pi \int_{0}^{1}\left(\left(3 \ddot{i} 2 y^{2}\right)^{2} \ddot{i}(3 \ddot{i} 2 y)^{2}\right) d y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(R^{2} \ddot{i} r^{2}\right) h$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2} \mathrm{i}\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \Delta \mathrm{y}$
c. $V=\pi \int_{0}^{1}\left(\left(3 \ddot{i} 2 y^{2}\right)^{2} \ddot{i}(3 \ddot{i} 2 y)^{2}\right) d y$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h}$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{I}} \mathrm{x}_{1}=3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{I}} \mathrm{x}_{2}=3 \ddot{\mathrm{I}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y} \\
& \text { b. } \quad V_{i}=\pi\left(\left(3 \ddot{i} 2 y_{i}^{2}\right)^{2} \ddot{i}\left(3 \ddot{i} 2 y_{i}\right)^{2}\right) \Delta y \\
& \text { c. } \quad V=\pi \int_{0}^{1}\left(\left(3 \ddot{i} 2 y^{2}\right)^{2} \ddot{i}(3 \ddot{i} 2 y)^{2}\right) d y \\
& \quad V=\pi \int_{0}^{1}\left(4 y^{4} \ddot{i} 16 y^{2}+12 y\right) d y
\end{aligned}
$$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h}$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2} \mathrm{i}\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \Delta \mathrm{y}$
c. $V=\pi \int_{0}^{1}\left(\left(3 \ddot{i} 2 y^{2}\right)^{2} \ddot{i}(3 \ddot{i} 2 y)^{2}\right) d y$

$$
V=\pi \int_{0}^{1}\left(4 y^{4} \ddot{i} 16 y^{2}+12 y\right) d y
$$

d. $\mathrm{V} \approx$

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h}$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{r}=3 \ddot{\mathrm{i}} \mathrm{x}_{2}=3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2} \mathrm{i}\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \Delta \mathrm{y}$
c. $V=\pi \int_{0}^{1}\left(\left(3 \ddot{i} 2 y^{2}\right)^{2} \ddot{i}(3 \ddot{i} 2 y)^{2}\right) d y$

$$
\mathrm{V}=\pi \int_{0}^{1}\left(4 \mathrm{y}^{4} \mathrm{i} 16 \mathrm{y}^{2}+12 \mathrm{y}\right) \mathrm{dy}
$$

d. $V \approx 4.61 \mathrm{cu}$. units

Calculus Class Worksheet \#2 Unit 11 Solutions

Use ñwashersòto find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2c. The region enclosed by $x=2 y^{2}$ and $x=2 y$ is rotated about the line $x=3$.
Washers: $V=\pi\left(\mathrm{R}^{2} \ddot{\mathrm{i}} \mathrm{r}^{2}\right) \mathrm{h}$

$$
\begin{aligned}
& \mathrm{R}=3 \ddot{\mathrm{i}} \mathrm{x}_{1}=3 \mathrm{i} 2 \mathrm{y}_{\mathrm{i}}{ }^{2} \\
& r=3 \ddot{\mathrm{I}} \mathrm{x}_{2}=3 \mathrm{i} 2 \mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y} \\
& \text { b. } \mathrm{V}_{\mathrm{i}}=\pi\left(\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}{ }^{2}\right)^{2} \mathrm{i}\left(3 \ddot{\mathrm{i}} 2 \mathrm{y}_{\mathrm{i}}\right)^{2}\right) \Delta \mathrm{y} \\
& \text { c. } V=\pi \int_{0}^{1}\left(\left(3 \ddot{i} 2 y^{2}\right)^{2} \ddot{i}(3 \ddot{i} 2 y)^{2}\right) d y \\
& V=\pi \int_{0}^{1}\left(4 y^{4} i ̈ 16 y^{2}+12 y\right) d y \\
& \text { d. } V \approx 4.61 \mathrm{cu} \text {. units }
\end{aligned}
$$

