Calculus Lesson \#1 Unit 11

 Class Worksheet \#1
Solids of Revolution

Disks

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}} \\
& \mathrm{~h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i} \\
& h=\Delta x
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $V_{i}=$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi($

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5\right)$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $V_{i}=\pi\left(\frac{-1}{2} x_{i}+5\right)^{2}$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $V_{i}=\pi\left(\frac{-1}{2} x_{i}+5\right)^{2} \Delta x$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(\frac{-1}{2} x_{i}+5\right)^{2} \Delta x$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(\frac{-1}{2} x_{i}+5\right)^{2} \Delta x$
c. $\mathrm{V}=$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5\right)^{2} \Delta \mathrm{x}$
c. $\mathrm{V}=\pi$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(\frac{-1}{2} x_{i}+5\right)^{2} \Delta x$
c. $\mathrm{V}=\pi \int$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(\frac{-1}{2} x_{i}+5\right)^{2} \Delta x$
c. $V=\pi \int\left(\frac{-1}{2} x+5\right)^{2} d x$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(\frac{-1}{2} x_{i}+5\right)^{2} \Delta x$
c. $V=\pi \int_{0}\left(\frac{-1}{2} x+5\right)^{2} d x$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(\frac{-1}{2} x_{i}+5\right)^{2} \Delta x$
c. $V=\pi \int_{0}^{10}\left(\frac{-1}{2} x+5\right)^{2} d x$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $V_{i}=\pi\left(\frac{-1}{2} x_{i}+5\right)^{2} \Delta x$
c. $V=\pi \int_{0}^{10}\left(-\frac{1}{2} x+5\right)^{2} d x$
d. $\mathrm{V} \approx$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5\right)^{2} \Delta \mathrm{x}$
c. $V=\pi \int_{0}^{10}\left(-\frac{1}{2} x+5\right)^{2} d x$
d. $V \approx 262$ cu. units

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1a. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the x -axis.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5 \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\frac{-1}{2} \mathrm{x}_{\mathrm{i}}+5\right)^{2} \Delta \mathrm{x}$
c. $V=\pi \int_{0}^{10}\left(\frac{-1}{2} x+5\right)^{2} d x$
d. $V \approx 262$ cu. units

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=x_{i} \\
& h=\Delta y
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $V_{i}=$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2}$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $\mathrm{V}=$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $\mathrm{V}=\pi$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $\mathrm{V}=\pi \int$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $V=\pi \int(-2 y+10)^{2} d y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $V=\pi \int_{0}(-2 y+10)^{2} d y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $V=\pi \int_{0}^{5}(-2 y+10)^{2} d y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $V=\pi \int_{0}^{5}(-2 y+10)^{2} d y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $V=\pi \int_{0}^{5}(-2 y+10)^{2} d y$
d. $\mathrm{V} \approx$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $V=\pi \int_{0}^{5}(-2 y+10)^{2} d y$
d. $V \approx 524$ cu. units

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 1b. The region in the first quadrant bounded by $x+2 y=10$ and the coordinate axes is rotated about the y-axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{x}_{\mathrm{i}}=-2 \mathrm{y}_{\mathrm{i}}+10 \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(-2 \mathrm{y}_{\mathrm{i}}+10\right)^{2} \Delta \mathrm{y}$
c. $V=\pi \int_{0}^{5}(-2 y+10)^{2} d y$
d. $V \approx 524$ cu. units

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i} \\
& h=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i} \\
& h=\Delta x
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}= \\
& h=\Delta x
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

b. $V_{i}=$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2}$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$
c. $\mathrm{V}=$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\sqrt{\mathrm{x}_{\mathrm{i}}} \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$
c. $\mathrm{V}=\pi$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\sqrt{\mathrm{x}_{\mathrm{i}}} \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$
c. $\mathrm{V}=\pi \int$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\sqrt{\mathrm{x}_{\mathrm{i}}} \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$
c. $V=\pi \int x d x$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$
c. $V=\pi \int_{0} \mathrm{x} d \mathrm{x}$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& r=y_{i}=\sqrt{x_{i}} \\
& h=\Delta x
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$
c. $V=\pi \int_{0}^{9} x d x$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\sqrt{\mathrm{x}_{\mathrm{i}}} \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$
c. $V=\pi \int_{0}^{9} x d x$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=y_{\mathrm{i}}=\sqrt{\mathrm{x}_{\mathrm{i}}} \\
& \mathrm{~h}=\Delta \mathrm{x} \\
& \text { b. } \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x} \\
& \text { c. } \mathrm{V}=\pi \int_{0}^{9} \mathrm{x} d \mathrm{x} \\
& \text { d. } \mathrm{V} \approx
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\sqrt{\mathrm{x}_{\mathrm{i}}} \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$
c. $V=\pi \int_{0}^{9} x d x$
d. $V \approx 127$ cu. units

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2a. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $\mathrm{x}=9$ is rotated about the x -axis.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{y}_{\mathrm{i}}=\sqrt{\mathrm{x}_{\mathrm{i}}} \\
& \mathrm{~h}=\Delta \mathrm{x}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(\sqrt{\mathrm{x}_{\mathrm{i}}}\right)^{2} \Delta \mathrm{x}$
c. $V=\pi \int_{0}^{9} x d x$
d. $\mathrm{V} \approx 127 \mathrm{cu}$. units

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9- \\
& \mathrm{h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $V_{i}=$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\mathrm{V}_{\mathrm{i}}=\pi\left(9-\mathrm{y}_{\mathrm{i}}{ }^{2}\right)$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad \mathrm{V}_{\mathrm{i}}=\pi\left(9-\mathrm{y}_{\mathrm{i}}^{2}\right)^{2}$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $\mathrm{V}=$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}{ }^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $\mathrm{V}=\pi$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $\mathrm{V}=\pi \int$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $V=\pi \int\left(9-y^{2}\right)^{2} d y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $V=\pi \int_{0}\left(9-y^{2}\right)^{2} d y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $V=\pi \int_{0}^{3}\left(9-y^{2}\right)^{2} d y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $V=\pi \int_{0}^{3}\left(9-y^{2}\right)^{2} d y$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $V=\pi \int_{0}^{3}\left(9-y^{2}\right)^{2} d y$
d. $\mathrm{V} \approx$

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $V=\pi \int_{0}^{3}\left(9-y^{2}\right)^{2} d y$
d. $V \approx 407$ cu. units

Calculus Class Worksheet \#1 Unit 11 Solutions

Use "disks" to find the volume generated by rotating the given region about the given line. For each problem, you must
a) sketch the generating region, showing a typical generating rectangle,
b) write an expression for the volume generated by this rectangle,
c) express the exact volume of the solid as a definite integral, and
d) evaluate the integral.

Sample 2b. The region in the first quadrant bounded by $x=y^{2}$, the x-axis, and the line $x=9$ is rotated about the line $x=9$.
a.

Disks: $V=\pi r^{2} h$

$$
\begin{aligned}
& \mathrm{r}=9-\mathrm{x}_{\mathrm{i}}=9-\mathrm{y}_{\mathrm{i}}^{2} \\
& \mathrm{~h}=\Delta \mathrm{y}
\end{aligned}
$$

b. $\quad V_{i}=\pi\left(9-y_{i}^{2}\right)^{2} \Delta y$
c. $V=\pi \int_{0}^{3}\left(9-y^{2}\right)^{2} d y$
d. $V \approx 407$ cu. units

