Find the equations of the lines that are tangent and normal to the graph of each of the following functions at the point on the graph with the given x-coordinate.

1.
$$f(x) = ln(x^2) - 2$$
; $x = 1$
 2. $f(x) = 2e^x + 3x$; $x = 0$

 tangent:
 tangent:

 normal:
 normal:

3.
$$f(x) = \frac{e^x}{\cos x}$$
; $x = 0$
tangent:
normal:
4. $f(x) = \frac{x + \sin x}{\cos x}$; $x = 0$
tangent:
normal:

Solve the following problems.

5. A rectangle has one side on the x-axis and its upper two vertices on the graph of the function $f(x) = e^{-2x^2}$. What is the maximum area of the rectangle?

Find the area of the region described in each problem. Round your answers to 3 significant digits.

6. The region is bounded by the x-axis, the lines x = .5 and x = 2, and the curve y = 8/x.

7. The region is bounded by the x-axis, the lines $x = \pi/6$ and $x = \pi/3$, and the curve $y = \tan x$.

8. The region is bounded by the x-axis, the lines x = 1 and x = 3, and the curve $y = 3e^{-0.5x}$.

9. The region is bounded by the x-axis and the curve $y = \sin x$ from x = 0 to $x = \pi$.

Find the volume of the solid formed when the given region is rotated about the x-axis. Round your answers to 3 significant digits.

10. The region is bounded by the x-axis, the lines x = .5 and x = 2, and the curve y = 8/x.

11. The region is bounded by the x-axis, the lines $x = \pi/6$ and $x = \pi/3$, and the curve $y = \tan x$.

12. The region is bounded by the x-axis, the lines x = 1 and x = 3, and the curve $y = 3e^{-0.5x}$.

13. The region is bounded by the x-axis and the curve $y = \sin x$ from x = 0 to $x = \pi$.

Calculus Worksheet #5 Unit 10 page 4

Find the average value of the given function, y = f(x), over the given interval, [a, b]. 14. $f(x) = \sin x$; $[0, \pi/3]$

15. $f(x) = \tan x$; $[0, \pi/3]$

16. f(x) = 1/x; [1, 5]

17. $f(x) = e^x$; [0, ln 2]

18. $f(x) = 3^x$; [1, 3]