Calculus Worksheet \#8 Unit 1 Selected Solutions

An object is propelled upward in such a way that its distance above the ground, s, (measured in feet) after t seconds is given by the function

$$
s=f(t)=192+64 t-16 t^{2}, \text { where } 0 \leq t \leq 6 .
$$

Answer the following questions.

1. Write a function for the velocity of the object in terms of t.

$$
v=f^{\prime}(t)=64-32 t
$$

2. What is the maximum height that the object will reach above the ground?

$$
\begin{gathered}
v=f^{\prime}(t)=64-32 t \quad \text { The maximum height is } f(2)=156 \text { feet. } \\
64-32 t=0 \\
t=2
\end{gathered}
$$

3. How long will it take the object to reach its maximum height? It will take 2 seconds to reach its maximum height.
4. Describe the position and the velocity of the object when $t=0 \mathrm{~s}$.

$$
\begin{aligned}
& \text { position }=f(0)=192 . \\
& \text { velocity }=f^{\prime}(0)=+64
\end{aligned}
$$

The object is 192 feet above the ground moving upward at 64 feet per second.

