## Calculus Worksheet \#4 Unit 1 Selected Solutions

Find all stationary points for each of the following functions. Use values of $f(x)$, the function itself, to classify each as a maximum, a minimum, or neither. Show your work and your answers neatly organized.
2. $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+3 \mathrm{x}^{3}-14 \mathrm{x}^{2}+10$

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}+9 x^{2}-28 x \\
4 x^{3}+9 x^{2}-28 x=0 \\
x\left(4 x^{2}+9 x-29\right)=0 \\
x(4 x-7)(x+4)=0 \\
x=0 \text { or } x=7 / 4 \text { or } x=-4
\end{gathered}
$$

$f(-4)=\mathbf{- 1 5 0}$ is a relative minimum.
$f(0)=10$ is a relative maximum.
$f(1.75) \approx-7.42$ is a relative minimum.
$\left.\left.\begin{array}{l|l}\mathrm{x} & \mathrm{f}(\mathrm{x}) \\ \hline-5 & -90 \\ \hline-4 & -150 \\ \hline-1 & -6 \\ \hline 0 & 10 \\ \hline 1 & 0 \\ \hline 7 / 4 & -7.42 \\ \hline 2 & -6 \\ \hline\end{array}\right\rangle<\begin{array}{c} \\ \hline\end{array}\right\rangle \stackrel{\text { minimum }}{ }$

Find all stationary points for each of the following functions. Use values of $f$ ' $(x)$, the slope, to classify each as a maximum, a minimum, or neither. Show your work and your answers neatly organized.
6. $y=f(x)=x^{3}-x^{2}-5 x-2$

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}-2 x-5 \\
3 x^{2}-2 x-5=0 \\
(3 x-5)(x+1)=0 \\
x=5 / 3 \text { or } x=-1
\end{gathered}
$$

$f(-1)=1$ is a relative maximum.
$f(5 / 3) \approx-8.48$ is a relative minimum

| x | $\mathrm{f}(\mathrm{x})$ | $\mathrm{f}^{\prime}(\mathrm{x})$ |
| :--- | :---: | :---: |
| -2 |  | +11 |
| -1 | 1 | 0 |
| 0 |  | -5 |
| $5 / 3$ | -8.48 | 0 |
| 2 |  | +3 |


$\searrow /<$ minimum

