Calculus Unit 1 Lesson \#5a
 The Velocity Function Class Worksheet 5a

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds.
Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds.
Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.
Our goal is to find a function for the velocity of the ball after t seconds.
Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

Note that if $\Delta t<0$, then point Q would be to the left of point P on the graph.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.
Slope $=$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$. Slope $=\underline{f(t+\Delta t)}$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$. Slope $=\underline{f(t+\Delta t)-}$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$. Slope $=\underline{f(t+\Delta t)-f(t)}$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$. Slope $=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{(\mathbf{t}+\Delta \mathbf{t})}$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$. Slope $=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{(\mathbf{t}+\Delta \mathbf{t})-}$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$. Slope $=\frac{f(t+\Delta t)-\mathbf{f}(\mathbf{t})}{(\mathbf{t}+\Delta \mathbf{t})-\mathbf{t}}$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$. Slope $=\frac{f(t+\Delta t)-f(t)}{(t+\Delta t)-t}=$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.
We will represent the slope of line $P Q$. Slope $=\frac{f(t+\Delta t)-f(t)}{(t+\Delta t)-t}=\frac{f(t+\Delta t)-f(t)}{}$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$. Slope $=\frac{f(t+\Delta t)-f(t)}{(t+\Delta t)-t}=\frac{f(t+\Delta t)-f(t)}{\Delta t}$

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.
We will represent the slope of line $P Q$. Slope $=\frac{f(t+\Delta t)-\mathbf{f}(\mathbf{t})}{(\mathbf{t}+\Delta \mathbf{t})-\mathbf{t}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}$
This represents the average velocity of the ball over this time interval.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
V_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

This represents the average velocity of the ball over this time interval.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(t+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
V_{a v g}=\frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function

$$
h=f(t)=-5 t^{2}+30 t+35
$$

Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.
We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
Now imagine moving point Q closer to point P along the curve.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
Now imagine moving point Q closer to point P along the curve.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
Now imagine moving point Q closer to point P along the curve. As this happens, Δ t gets closer to 0

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
Now imagine moving point Q closer to point P along the curve. As this happens, Δ t gets closer to 0

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
Now imagine moving point Q closer to point P along the curve. As this happens, Δ t gets closer to 0 and the slope
 of line $P Q$ gets closer to the slope of d.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
Now imagine moving point Q closer to point P along the curve. As this happens, Δ t gets closer to 0 and the slope
 of line $P Q$ gets closer to the slope of d.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
Now imagine moving point Q closer to point P along the curve. As this happens, Δ t gets closer to 0 and the slope
 of line $P Q$ gets closer to the slope of d.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
Now imagine moving point Q closer to point P along the curve. As this happens, Δ t gets closer to 0 and the slope
 of line $P Q$ gets closer to the slope of d.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
Now imagine moving point Q closer to point P along the curve. As this happens, Δ t gets closer to 0 and the slope
 of line $P Q$ gets closer to the slope of d.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
The slope of line d is the limiting value of the slope of line PQ as Δt approaches 0.

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
The slope of line d is the limiting value of the slope of line $P Q$ as Δt approaches $0 \downarrow$

$$
\text { Slope of } d=\operatorname{Lim}_{\Delta t \rightarrow 0}\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}\right]
$$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds. Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(t+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.
The slope of line d is the limiting value of the slope of line $P Q$ as Δt approaches $0 \downarrow$

$$
\text { Slope of } d=\operatorname{Lim}_{\Delta t \rightarrow 0}\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}\right]
$$

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds.
Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(\mathbf{t}+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.

$$
V=\operatorname{Lim}_{\Delta t \rightarrow 0}\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}\right]
$$

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.
Our goal is to find a function for the velocity of the ball after t seconds.
Let $P(t, f(t))$ represent any point on the graph of $h=f(t)$.
Let $\mathbf{Q}(t+\Delta t, f(t+\Delta t))$ represent any other point on the graph of $h=f(t)$.

We will represent the slope of line $P Q$.

$$
\mathbf{V}_{\mathrm{avg}}=\frac{\mathbf{f}(\mathbf{t}+\Delta \mathbf{t})-\mathbf{f}(\mathbf{t})}{\Delta \mathbf{t}}
$$

Line d is the line that is tangent to the graph at point P. The slope of line d is the velocity of the ball at time t.

$$
V=\operatorname{Lim}_{\Delta t \rightarrow 0}\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}\right]
$$

This, of course, is the derivative of function f !!!

Calculus Class Worksheet \#5a Unit 1

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h, in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
\mathbf{V}=
$$

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
\mathbf{V}=\mathbf{f}^{\prime}(\mathbf{t})=
$$

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t
$$

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+\mathbf{3 0 t}+\mathbf{3 5}$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+
$$

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+\mathbf{3 0}
$$

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0		
1		
2		
3		
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\rightarrow \mathbf{0}$		
1		
2		
3		
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\rightarrow \mathbf{0}$	35	
$\mathbf{1}$		
2		
3		
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{0}$	35	
$\mathbf{\rightarrow 1}$		
2		
3		
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{0}$	35	
$\mathbf{\rightarrow 1}$	60	
2		
3		
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{0}$	35	
$\mathbf{1}$	60	
$\mathbf{\rightarrow 2}$		
3		
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{0}$	35	
1	60	
$\mathbf{\rightarrow 2}$	75	
3		
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{0}$	35	
1	60	
2	75	
3		
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4		
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
75		
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
75	60	
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6		
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7		

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t + 3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{0}$	35	
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{\rightarrow 0}$	35	30
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{0}$	35	30
$\mathbf{1}$	60	
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{0}$	35	30
$\mathbf{1}$	60	20
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
$\mathbf{0}$	35	30
1	60	20
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-\mathbf{1 0 t}+\mathbf{3 0}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

A steel ball is propelled upward in such a way that its height, h , in meters, above the ground after t seconds is given by the function $h=f(t)=-5 t^{2}+30 t+35$.

1. Express the velocity of the ball as a function of t.

$$
V=f^{\prime}(t)=\underline{-10 t+30}
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 2 seconds?
5. What is the velocity of the ball after 2 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 2 seconds?
5. What is the velocity of the ball after 2 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 2 seconds?
5. What is the velocity of the ball after 2 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after $\mathbf{2}$ seconds? $\mathbf{7 5}$ meters
5. What is the velocity of the ball after 2 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 2 seconds? $\mathbf{7 5}$ meters
5. What is the velocity of the ball after 2 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after $\mathbf{2}$ seconds? $\mathbf{7 5}$ meters
5. What is the velocity of the ball after 2 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after $\mathbf{2}$ seconds? $\mathbf{7 5}$ meters
5. What is the velocity of the ball after 2 seconds? moving up at 10 mps .

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 2 seconds? $\mathbf{7 5}$ meters
5. What is the velocity of the ball after 2 seconds? moving up at 10 mps .

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 5 seconds?
5. What is the velocity of the ball after 5 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

t seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 5 seconds?
5. What is the velocity of the ball after 5 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 5 seconds?
5. What is the velocity of the ball after 5 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 5 seconds?

60 meters
7. What is the velocity of the ball after 5 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 5 seconds?

60 meters
7. What is the velocity of the ball after 5 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 5 seconds?

60 meters
7. What is the velocity of the ball after 5 seconds?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 5 seconds? 60 meters
5. What is the velocity of the ball after 5 seconds? moving down at 20 mps .

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How high above the ground is the ball after 5 seconds? 60 meters
5. What is the velocity of the ball after 5 seconds? moving down at 20 mps .

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. What is the maximum height of the ball in its flight?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. What is the maximum height of the ball in its flight?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. What is the maximum height of the ball in its flight?
$\underline{80 \text { meters }}$

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. What is the maximum height of the ball in its flight?

80 meters
The maximum value of $h=f(t)$ occurs when $v=f^{\prime}(t)=0$!!

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How fast is the ball moving as it hits the ground?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How fast is the ball moving as it hits the ground?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How fast is the ball moving as it hits the ground?

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How fast is the ball moving as it hits the ground? 40 meters per second

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How fast is the ball moving as it hits the ground? 40 meters per second

This is called the impact speed.

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

4. How fast is the ball moving as it hits the ground? 40 meters per second

This is called the impact speed. (Speed is never negative.)

Calculus Class Worksheet \#5a Unit 1

$$
h=f(t)=-5 t^{2}+30 t+35 . \quad V=f^{\prime}(t)=-10 t+30
$$

2. Fill out the table below.

\mathbf{t} seconds	$\mathbf{f}(\mathbf{t})$ meters	$\mathbf{f}^{\prime}(\mathbf{t})$ meters per second
0	35	30
1	60	20
2	75	10
3	80	0
4	75	-10
5	60	-20
6	35	-30
7	0	-40

3. Graph function f below.

