Calculus Lesson \#2b The Derivative of the Square Root Function

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)$

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=$

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{ }
$$

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\sqrt{x+\Delta x}$

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\sqrt{x+\Delta x}$
Step 2: Subtract $f(x)$.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=$

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}
$$

Step 2: $\operatorname{Subtract} \mathrm{f}(\mathrm{x}) . \quad \mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}$

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}
$$

Step 2: $\operatorname{Subtract} \mathrm{f}(\mathrm{x}) . \quad \mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}$ ï

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{l} f(x)=\sqrt{x+\Delta x} \ddot{i} \sqrt{x}$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x}$.

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} \ddot{i} \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{}$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by Δx.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{i}} \sqrt{\mathrm{x}}}{\Delta \mathrm{x}}$

Clearly, we can not divide now.

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{i}} \sqrt{\mathrm{x}}}{\Delta \mathrm{x}}$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{i}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{i}} \sqrt{\mathrm{x}}}{\Delta \mathrm{x}}$

Multiply both terms by the conjugate of the numerator.

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{i}} \sqrt{\mathrm{x}}}{\Delta \mathrm{x}}$

Multiply both terms by the conjugate of the numerator.
The conjugate of A ï B
Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{i}} \sqrt{\mathrm{x}}}{\Delta \mathrm{x}}$

Multiply both terms by the conjugate of the numerator.
The conjugate of A ï B is $\mathrm{A}+\mathrm{B}$.
Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{i} \sqrt{\mathrm{x}}}{\Delta \mathrm{x}}=$

Multiply both terms by the conjugate of the numerator.
The conjugate of A ï B is A + B.
Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})}{\Delta x}$

Multiply both terms by the conjugate of the numerator.
The conjugate of A ï B is $\mathrm{A}+\mathrm{B}$.
Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x}$

Multiply both terms by the conjugate of the numerator.
The conjugate of A ï B is $\mathrm{A}+\mathrm{B}$.
Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}$

Multiply both terms by the conjugate of the numerator.
The conjugate of A ï B is $\mathrm{A}+\mathrm{B}$.
Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{f} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}$

Clearly, we can not divide now. The technique that is needed is called órationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) i ̈ f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}$

Now, $(\mathrm{A} \ddot{\mathrm{I}} \mathrm{B})(\mathrm{A}+\mathrm{B})=\mathrm{A}^{2} \ddot{\mathrm{i}} \mathrm{B}^{2}!!!$
Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}$

Now, $(\mathrm{A} \ddot{\mathrm{i}} \mathrm{B})(\mathrm{A}+\mathrm{B})=\mathrm{A}^{2} \ddot{i} \mathrm{~B}^{2}!!!$
Clearly, we can not divide now. The technique that is needed is called órationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}$

Now, $(\mathrm{A} \ddot{\mathrm{i}} \mathrm{B})(\mathrm{A}+\mathrm{B})=\mathrm{A}^{2} \ddot{i} \mathrm{~B}^{2}$!!!
Clearly, we can not divide now. The technique that is needed is called órationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by Δx.
$\frac{f(x+\Delta x) i ̈ f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} i ̈ \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}$
$=\quad$
Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.
$\frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} i \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}$
$=(\sqrt{x+\Delta x})^{2}$
Now, $(\mathrm{A} \ddot{\mathrm{i}} \mathrm{B})(\mathrm{A}+\mathrm{B})=\mathrm{A}^{2} \ddot{i} \mathrm{~B}^{2}!!!$
Clearly, we can not divide now. The technique that is needed is called órationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
\frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x}) \\
\Delta \mathrm{x}
\end{aligned}=\frac{\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{i} \sqrt{\mathrm{x}}}{\Delta \mathrm{x}}=\frac{(\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{i} \sqrt{\mathrm{x}})(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}{\Delta \mathrm{x}(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})} .
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x}) \\
&=(\sqrt{x+\Delta x})^{2} \ddot{i} \frac{\sqrt{x+\Delta x}}{\Delta x} \sqrt{x} \\
&==\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
&\text { Now, (A } \ddot{B} B)(A+B)=A^{2} \ddot{i} B^{2}!!!
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x}) \\
&=(\sqrt{\mathrm{x}+\Delta \mathrm{x}})^{2} \ddot{i} \quad \frac{\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{i} \sqrt{\mathrm{x}}}{\Delta \mathrm{x}}
\end{aligned}=\frac{(\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{i} \sqrt{\mathrm{x}})(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}{\Delta \mathrm{x}(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})} .
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \quad=(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}
\end{aligned}
$$

$$
\text { Now, }(\mathrm{A} \ddot{\mathrm{i}} \mathrm{~B})(\mathrm{A}+\mathrm{B})=\mathrm{A}^{2} \ddot{\mathrm{i}} \mathrm{~B}^{2} \text { !!! }
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \quad=(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \quad=(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}
\end{aligned}
$$

The denominator does not change.
Clearly, we can not divide now. The technique that is needed is called órationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \quad \text { The denominator does not change. }
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{f}(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \quad=\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{f}(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} i \ddot{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \quad=\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{f}(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} i \ddot{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \quad=\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \left.\frac{f(x+\Delta x) \ddot{f}(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} i}{\Delta x} \sqrt{x}\right)(\sqrt{x+\Delta x}+\sqrt{x}) \\
& \quad=\frac{(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{(x+\Delta x)}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{f}(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \quad=\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{(x+\Delta x) \ddot{i}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{f}(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \quad=\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{(x+\Delta x) \ddot{i} x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{f}(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \quad=\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{(x+\Delta x) \ddot{i} x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{f}(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& \left.=\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{(x+\Delta x) \ddot{i} x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x}}\right)
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} \ddot{i} \sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\frac{(\sqrt{x+\Delta x})^{2} i(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{(x+\Delta x) \ddot{i} x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{\Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{f} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{x} \sqrt{x}}{\Delta x}=\frac{(\sqrt{x+\Delta x} i}{\Delta x(\sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\frac{(\sqrt{x+\Delta x})^{2} i(\sqrt{x})}{\Delta x(\sqrt{x+\Delta x})^{2}}=\frac{(x+\Delta x) ~ i ̈ x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{\Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this. Now we can cancel the common factor, $\Delta \mathrm{x}$.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{i} \sqrt{\mathrm{x}}}{\Delta \mathrm{x}}=\frac{(\sqrt{\mathrm{x}+\Delta \mathrm{x}} \ddot{i} \sqrt{\mathrm{x}})(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}{\Delta \mathrm{x}(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})} \\
& \quad=\frac{(\sqrt{\mathrm{x}+\Delta \mathrm{x}})^{2} \ddot{i}(\sqrt{\mathrm{x}})^{2}}{\Delta \mathrm{x}(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}=\frac{(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{x}} \mathrm{x}}{\Delta \mathrm{x}(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}=\frac{1 \Delta x}{\Delta x(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this. Now we can cancel the common factor, $\Delta \mathrm{x}$.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}= \\
& \quad=\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{(x+\Delta x) \ddot{i} x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{1 \Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this. Now we can cancel the common factor, $\Delta \mathrm{x}$.

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\begin{aligned}
& \frac{f(x+\Delta x) \ddot{i} f(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\frac{(\sqrt{x+\Delta x})^{2} \ddot{i}(\sqrt{x})^{2}}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{(x+\Delta x) \ddot{i} x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{1 \Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
\end{aligned}
$$

Clearly, we can not divide now. The technique that is needed is called óationalizing the numeratorô It looks like this. Now we can cancel the common factor, $\Delta \mathrm{x}$.

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) \ddot{i} f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by Δx.
$\frac{f(x+\Delta x) \ddot{f}(x)}{\Delta x}=\frac{\sqrt{x+\Delta x} \ddot{i} \sqrt{x}}{\Delta x}=\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})=\sqrt{\mathrm{x}+\Delta \mathrm{x}}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { Ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\sqrt{x+\Delta x} \ddot{i} \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { Ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\sqrt{x+\Delta x} \ddot{i} \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { Ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

$$
f^{\prime}(\mathbf{x})=
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\sqrt{x+\Delta x} \ddot{i} \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]=
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]=\frac{1}{}
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}\right]=\frac{1}{0}
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x}$ ï \sqrt{x}
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]=\frac{1}{\sqrt{x}}
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]=\frac{1}{\sqrt{x}+}
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$. $\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]=\frac{1}{\sqrt{x}+\sqrt{x}}
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$. $\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]=\frac{1}{\sqrt{x}+\sqrt{x}}=
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta x . \frac{f(x+\Delta x) i ̈ ~}{f(x)}$ $x \mathrm{x}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{0}
$$

The Derivative of the Square Root Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x}$. $\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) і ̈ \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
$$

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
f^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\frac{1}{2 \sqrt{\mathbf{x}}}
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

$$
f(x+\Delta x)=\sqrt{x+\Delta x}
$$

Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\sqrt{x+\Delta x} i ̈ \sqrt{x}$
Step 3: Divide by $\Delta \mathrm{x} . \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{1}{(\sqrt{\mathrm{x}+\Delta \mathrm{x}}+\sqrt{\mathrm{x}})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})}\right]=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
$$

The Derivative of the Square Root Function

Consider the function $y=f(x)=\sqrt{x}$.
According to the definition of derivative,

$$
f^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(\mathbf{x})}{\Delta x}\right]=\frac{1}{2 \sqrt{\mathbf{x}}}
$$

The Derivative of the Square Root Function

$$
\begin{aligned}
& y=f(x)=\sqrt{x} \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

The Derivative of the Square Root Function

$$
\begin{aligned}
& y=f(x)=\sqrt{x} \quad \text { Consider the graph of the square root function. } \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

The Derivative of the Square Root Function

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}
$$

Consider the graph of the square root function.

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

The Derivative of the Square Root Function

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}
$$

Consider the graph of the square root function.

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

The Derivative of the Square Root Function

$$
y=f(x)=\sqrt{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$f(x)$
0	0

Consider the graph of the square root function.

The Derivative of the Square Root Function

$$
y=f(x)=\sqrt{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$f(x)$
0	0

Consider the graph of the square root function.

The Derivative of the Square Root Function

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}
$$

Consider the graph of the square root function.

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$
0	0
1	

The Derivative of the Square Root Function

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}
$$

Consider the graph of the square root function.

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$
0	0
1	1

The Derivative of the Square Root Function

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}
$$

Consider the graph of the square root function.

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$
0	0
1	1

The Derivative of the Square Root Function

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}
$$

Consider the graph of the square root function.

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$
0	0
1	1
4	

The Derivative of the Square Root Function

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}
$$

Consider the graph of the square root function.

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$
0	0
1	1
4	2

The Derivative of the Square Root Function

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}
$$

Consider the graph of the square root function.

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$
0	0
1	1
4	2

The Derivative of the Square Root Function

$$
\begin{aligned}
& y=f(x)=\sqrt{x} \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\
& \text { Consider the graph of the square root function. }
\end{aligned}
$$

The Derivative of the Square Root Function

$$
\begin{aligned}
& \mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}} \quad \text { Consider the graph of the square root function. } \\
& \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}} \\
& \begin{array}{|l|l|}
\mathrm{x} & \mathrm{f}(\mathrm{x}) \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 4 & 2 \\
\hline 9 & 3 \\
\hline
\end{array}
\end{aligned}
$$

The Derivative of the Square Root Function

$$
\begin{aligned}
& \mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}} \quad \text { Consider the graph of the square root function. } \\
& \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}} \\
& \begin{array}{|l|l|}
\mathrm{x} & \mathrm{f}(\mathrm{x}) \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 4 & 2 \\
\hline 9 & 3 \\
\hline
\end{array}
\end{aligned}
$$

The Derivative of the Square Root Function

$$
\begin{aligned}
& \mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}} \quad \text { Consider the graph of the square root function. } \\
& \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}} \\
& \begin{array}{l|l|}
\mathrm{x} & \mathrm{f}(\mathrm{x}) \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 4 & 2 \\
\hline 9 & 3 \\
\hline
\end{array}
\end{aligned}
$$

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(x)- & \text { Now consider derivative function. }
\end{array}
$$

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

x	$\mathrm{f}(\mathrm{x})$
0	0
1	1
4	2
9	3

The Derivative of the Square Root Function

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	
1	1	
4	2	
9	3	

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)- & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	
1	1	
4	2	
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)- & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	
1	1	
4	2	
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
\text { Now consider derivative function. }
\end{array}
$$

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(x)-=1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	
4	2	
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(x)=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	
4	2	
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
\text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
\text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
\text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
\text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(x)-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	$\mathbf{1} / \mathbf{4}$
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	$\mathbf{1} / \mathbf{4}$
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(\mathrm{y})=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	$\mathbf{1} / \mathbf{4}$
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	$\mathbf{1} / \mathbf{4}$
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	$\mathbf{1} / \mathbf{4}$
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(x)-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	$\mathbf{1} / \mathbf{4}$
9	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(\mathrm{y})=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	$\mathbf{1} / 4$
9	3	$\mathbf{1 / 6}$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	$\mathbf{1} / 4$
9	3	$\mathbf{1 / 6}$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1 / 2}$
4	2	$\mathbf{1} / \mathbf{4}$
9	3	$\mathbf{1 / 6}$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(v)=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1 / 2}$
4	2	$\mathbf{1} / \mathbf{4}$
9	3	$\mathbf{1 / 6}$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(\mathrm{y})=-1 & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
0	0	-
1	1	$\mathbf{1} / \mathbf{2}$
4	2	$\mathbf{1} / 4$
9	3	$\mathbf{1} / 6$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Square Root Function

$$
\begin{array}{ll}
y=f(x)=\sqrt{x} & \text { Consider the graph of the square root function. } \\
f^{\prime}(\mathrm{v})- & \text { Now consider derivative function. }
\end{array}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \sqrt{\mathrm{x}}}
$$

Remember, the derivative gives the slope of the tangent line.

