Calculus Lesson \#2a The Derivative of the Reciprocal Function

The Derivative of the Reciprocal Function

The Derivative of the Reciprocal Function
Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{X}}$.

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The Derivative of the Reciprocal Function

Consider the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=-1$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).
$\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})=$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}+\Delta \mathrm{x}}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{I}}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{I}} \frac{1}{\mathrm{x}}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{I}} \frac{1}{\mathrm{x}}=
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).
$f(x+\Delta x)$ Ï $f(x)=\frac{1}{x+\Delta x}$ ї $\frac{1}{x}=$
$=$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \text { ї } \frac{1}{\mathrm{x}}= \\
& =\frac{}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \text { ї } \frac{1}{\mathrm{x}}= \\
& =\frac{\mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{i}} \mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{i}} \frac{1}{\mathrm{x}}= \\
& =\frac{\mathrm{x} \ddot{\mathrm{i}}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{i}} \mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{i}} \frac{1}{\mathrm{x}}= \\
& =\frac{\mathrm{x} \ddot{\mathrm{I}}(\mathrm{x}+\Delta \mathrm{x})}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \text { ї } \frac{1}{\mathrm{x}}= \\
& =\frac{\mathrm{x} \ddot{\mathrm{I}(\mathrm{x}+\Delta \mathrm{x})}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}=
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) i ̈ f(x) & =\frac{1}{x+\Delta x} \ddot{i} \frac{1}{x}= \\
& =\frac{x \ddot{i}(x+\Delta x)}{x(x+\Delta x)}=\frac{}{x(x+\Delta x)}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \ddot{\ddot{ } \frac{1}{\mathrm{x}}=} \\
& =\frac{\mathrm{x} \ddot{\mathrm{i}(x+\Delta x)}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}=\frac{\mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{I}} \frac{1}{\mathrm{x}}= \\
& =\frac{\mathrm{x} \ddot{\mathrm{i}(x+\Delta x)}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}=\frac{\mathrm{x} \ddot{\mathrm{i} x}}{x(x+\Delta x)}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) \ddot{i} f(x) & =\frac{1}{x+\Delta x} \ddot{i} \frac{1}{x}= \\
& =\frac{x \ddot{i}(x+\Delta x)}{x(x+\Delta x)}=\frac{x \ddot{i} x \ddot{i} \Delta x}{x(x+\Delta x)}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) \ddot{i} f(x) & =\frac{1}{x+\Delta x} \ddot{i} \frac{1}{x}= \\
& =\frac{x \ddot{i}(x+\Delta x)}{x(x+\Delta x)}=\frac{x \ddot{i} x \ddot{i} \Delta x}{x(x+\Delta x)}=
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) \ddot{\mathrm{f}}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{I}} \frac{1}{\mathrm{x}}= \\
& =\frac{\mathrm{x} \ddot{\mathrm{i}(x+\Delta x)}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}=\frac{\mathrm{x} \ddot{\mathrm{i} x} \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}=\frac{}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract f(x).

$$
\begin{aligned}
f(x+\Delta x) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \frac{1}{\mathrm{x}}= \\
& =\frac{\mathrm{x} \ddot{\mathrm{I}(\mathrm{x}+\Delta \mathrm{x})}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}=\frac{\mathrm{x} \ddot{\mathrm{i} x} \mathrm{i} \Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
f^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x) \ddot{~} f(x)=\frac{-\Delta x}{x(x+\Delta x)}$

$$
\begin{aligned}
f(x+\Delta x) \ddot{\mathrm{f}} \mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}+\Delta \mathrm{x}} \ddot{\mathrm{i}} \frac{1}{\mathrm{x}}= \\
& =\frac{\mathrm{x} \ddot{\mathrm{I}(\mathrm{x}+\Delta \mathrm{x})}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}=\frac{\mathrm{x} \ddot{\mathrm{i} x} \mathrm{i} \Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
\end{aligned}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) i ̈ f(x)=\frac{-\Delta x}{x(x+\Delta x)}$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x) i ̈ f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
f^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} \mathrm{f}(\mathrm{x}) . \quad \mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$ Ï $\mathrm{f}(\mathrm{x})=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \mathrm{i} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}=
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \mathrm{i} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} .
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \cdot \frac{1}{\Delta \mathrm{x}}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \cdot \frac{1}{\Delta \mathrm{x}}=
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) i ̈ f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \text { ï } \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \cdot \frac{1}{\Delta \mathrm{x}}=
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \mathrm{i} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \cdot \frac{1}{\Delta \mathrm{x}}=-\frac{-1}{}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: Subtract $f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x}$.

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{i}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \cdot \frac{1}{\Delta \mathrm{x}}=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f (\mathbf { x })}}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x) i ̈ f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta \mathrm{x} \cdot \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$

$$
\frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{i}} \mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \div \Delta \mathrm{x}=\frac{-\Delta \mathrm{x}}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})} \cdot \frac{1}{\Delta \mathrm{x}}=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
f^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} f(x)=\frac{-1}{x(x+\Delta x)}$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
$f^{\prime}(\mathbf{x})=$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}\right]
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
$\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{-1}{x(x+\Delta x)}\right]=$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
$\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{-1}{x(x+\Delta x)}\right]=$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
$\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{-1}{x(x+\Delta x)}\right]=\frac{-1}{0}$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
$\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}\right]=\frac{-1}{\mathrm{x}(}$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
$\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{-1}{x(x+\Delta x)}\right]=\frac{-1}{x(x+0)}$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f (\mathbf { x })}}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
$\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}\right]=\frac{-1}{\mathrm{x}(\mathrm{x}+0)}=$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f (\mathbf { x })}}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}\right]=\frac{-1}{\mathrm{x}(\mathrm{x}+0)}=\frac{-1}{0}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f (\mathbf { x })}}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . \quad f(x+\Delta x)$ ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} \mathrm{f}(\mathrm{x})=\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{-1}{\mathrm{x}(\mathrm{x}+\Delta \mathrm{x})}\right]=\frac{-1}{\mathrm{x}(\mathrm{x}+0)}=\frac{-1}{\mathrm{x}^{2}}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\frac{-1}{\mathrm{x}^{2}}
$$

The four-step method
Step 1: Find $f(x+\Delta x) . \quad f(x+\Delta x)=\frac{1}{x+\Delta x}$
Step 2: $\operatorname{Subtract} f(x) . f(x+\Delta x)$ Ï $f(x)=\frac{-\Delta x}{x(x+\Delta x)}$
Step 3: Divide by $\Delta x \cdot \frac{f(x+\Delta x)}{\Delta x} f(x)=\frac{-1}{x(x+\Delta x)}$
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{-1}{x(x+\Delta x)}\right]=\frac{-1}{x(x+0)}=\frac{-1}{x^{2}}
$$

The Derivative of the Reciprocal Function

Consider the function $y=f(x)=\frac{1}{x}$.
According to the definition of derivative,

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\frac{-1}{\mathrm{x}^{2}}
$$

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	$1 / 3$

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	$1 / 3$

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	$1 / 3$
$1 / 2$	

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	$1 / 3$
$1 / 2$	2

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	$1 / 3$
$1 / 2$	2

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	$1 / 3$
$1 / 2$	2
$1 / 3$	

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	$1 / 3$
$1 / 2$	2
$1 / 3$	3

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	$1 / 3$
$1 / 2$	2
$1 / 3$	3

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
y=f(x)=\frac{1}{x}
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{\mathrm{x}^{2}}
$$

x	$\mathrm{f}(\mathrm{x})$
1	1
2	$1 / 2$
3	$1 / 3$
$1 / 2$	2
$1 / 3$	3

Consider the graph of the reciprocal function.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function.
Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	
2	$1 / 2$	
3	$1 / 3$	
$1 / 2$	2	
$1 / 3$	3	

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	
2	$1 / 2$	
3	$1 / 3$	
$1 / 2$	2	
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	
2	$1 / 2$	
3	$1 / 3$	
$1 / 2$	2	
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	
3	$1 / 3$	
$1 / 2$	2	
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	
3	$1 / 3$	
$1 / 2$	2	
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	
$1 / 2$	2	
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	
$1 / 2$	2	
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	
$1 / 3$	3	

$$
\mathrm{f}^{\prime}(3)=-1 / 9
$$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	
$1 / 3$	3	

$$
\mathrm{f}^{\prime}(3)=-1 / 9
$$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	
$1 / 3$	3	

$$
\mathrm{f}^{\prime}(3)=-1 / 9
$$

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

$$
f^{\prime}(1 / 2)=-4
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

$$
f^{\prime}(1 / 2)=-4
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

$$
f^{\prime}(1 / 2)=-4
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	

$$
f^{\prime}(1 / 2)=-4
$$

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

$$
f^{\prime}(1 / 3)=-9
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	-9

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

$$
f^{\prime}(1 / 3)=-9
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	-9

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	-9

$$
f^{\prime}(1 / 3)=-9
$$

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	-9

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
1	1	-1
2	$1 / 2$	$-1 / 4$
3	$1 / 3$	$-1 / 9$
$1 / 2$	2	-4
$1 / 3$	3	-9

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2		

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3		

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$		

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$		

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Here are some more points on the graph.
Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \quad \text { Consider the graph of the reciprocal function. } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	
$-1 / 2$	-2	
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	-4
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	-4
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	-4
$-1 / 3$	-3	

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	-4
$-1 / 3$	-3	-9

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	-4
$-1 / 3$	-3	-9

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	-4
$-1 / 3$	-3	-9

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	-4
$-1 / 3$	-3	-9

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	-1
-2	$-1 / 2$	$-1 / 4$
-3	$-1 / 3$	$-1 / 9$
$-1 / 2$	-2	-4
$-1 / 3$	-3	-9

Remember, the derivative gives the slope of the tangent line.

The Derivative of the Reciprocal Function

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}
\end{aligned}
$$

Consider the graph of the reciprocal function. Now consider derivative function.

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$
-1	-1	
-2	$-1 / 2$	-
-3	$-1 / 3$	$-1 / 7$
$-1 / 2$	-2	-4
$-1 / 3$	-3	-9

Remember, the derivative gives the slope of the tangent line.

