Calculus Lesson \#1 The Derivative Function The Four Step Method Class Worksheet \#1

Consider the function f whose graph is shown here.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .

We will use \mathbf{x} to represent the x -coordinate of point P .

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .
We will use \mathbf{x} to represent the x -coordinate of point P .

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$. Therefore, the coordinates of point P are $(x, f(x))$.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$.
Therefore, the coordinates of point P are ($x, f(x)$).
We will use $\mathbf{x}+\Delta \mathbf{x}$ to represent the x-coordinate of point Q.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$.
Therefore, the coordinates of point P are ($x, f(x)$).
We will use $\mathbf{x}+\Delta \mathbf{x}$ to represent the x-coordinate of point Q.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$.
Therefore, the coordinates of point P are ($x, f(x)$).
We will use $\mathbf{x}+\Delta \mathbf{x}$ to represent the x -coordinate of point Q .

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$.
Therefore, the coordinates of point P are ($x, f(x)$).
We will use $\mathbf{x}+\Delta \mathbf{x}$ to represent the x-coordinate of point Q.
Note that if Δx was negative, then point Q would be to the left of point P on the graph of f.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$.
Therefore, the coordinates of point P are ($x, f(x)$).
We will use $\mathbf{x}+\Delta \mathbf{x}$ to represent the x-coordinate of point Q.
Note that if Δx was negative, then point Q would be to the left of point P on the graph of f. Its x-coordinate would still be $x+\Delta x$!!

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$.
Therefore, the coordinates of point P are ($x, f(x)$).
We will use $\mathbf{x}+\Delta \mathbf{x}$ to represent the x -coordinate of point Q .

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ.

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$.
Therefore, the coordinates of point P are ($x, f(x)$).
We will use $\mathbf{x}+\Delta \mathbf{x}$ to represent the x-coordinate of point Q.
The y-coordinate of point Q is $\mathrm{f}(\mathbf{x}+\Delta \mathbf{x})$.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .

We will use \mathbf{x} to represent the x-coordinate of point P. The y-coordinate of point P is $f(\mathbf{x})$.
Therefore, the coordinates of point P are ($x, f(x)$).
We will use $\mathbf{x}+\Delta \mathbf{x}$ to represent the x-coordinate of point Q.
The y-coordinate of point Q is $f(\mathbf{x}+\Delta \mathbf{x})$. Therefore, the coordinates of point Q are $(\mathrm{x}+\Delta \mathrm{x}, \mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$).

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .

$$
\mathbf{P}(\mathbf{x}, \mathbf{f}(\mathbf{x})) \text { and } \mathbf{Q}(\mathbf{x}+\Delta \mathbf{x}, f(\mathbf{x}+\Delta \mathbf{x}))
$$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .

$$
\mathbf{P}(\mathbf{x}, \mathbf{f}(\mathbf{x})) \text { and } \mathbf{Q}(\mathbf{x}+\Delta \mathbf{x}, \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}))
$$

The slope of line $\mathrm{PQ}=$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ .

$$
\mathbf{P}(\mathbf{x}, \mathbf{f}(\mathbf{x})) \text { and } \mathbf{Q}(\mathbf{x}+\Delta \mathbf{x}, \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}))
$$

The slope of line $P Q=\underline{f(x+\Delta x)}$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ .

$$
\mathbf{P}(\mathbf{x}, \mathbf{f}(\mathbf{x})) \text { and } \mathbf{Q}(\mathbf{x}+\Delta \mathbf{x}, \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}))
$$

The slope of line $P Q=\underline{f(x+\Delta x)}$ ï $f(x)$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ .

$$
\mathbf{P}(\mathbf{x}, f(\mathbf{x})) \text { and } \mathbf{Q}(\mathbf{x}+\Delta \mathbf{x}, f(\mathbf{x}+\Delta \mathbf{x}))
$$

The slope of line $P Q=\frac{f(x+\Delta x) \text { Ï } f(x)}{(x+\Delta x)}$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ .

$$
\mathbf{P}(\mathbf{x}, f(\mathbf{x})) \text { and } \mathbf{Q}(\mathbf{x}+\Delta \mathbf{x}, \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}))
$$

The slope of line $P Q=\frac{f(x+\Delta x) \ddot{I} f(x)}{(x+\Delta x)}$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ .

$$
\mathbf{P}(\mathbf{x}, f(\mathbf{x})) \text { and } \mathbf{Q}(\mathbf{x}+\Delta \mathbf{x}, \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}))
$$

The slope of line $P Q=\frac{f(x+\Delta x) \ddot{I} f(x)}{(x+\Delta x) \ddot{i} x}=$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ .

$$
\mathbf{P}(\mathbf{x}, f(\mathbf{x})) \text { and } \mathbf{Q}(\mathbf{x}+\Delta \mathbf{x}, \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}))
$$

The slope of line $P Q=\frac{f(x+\Delta x) \ddot{f}(x)}{(x+\Delta x) \ddot{\mathrm{x}}}=\frac{\mathbf{f}(\mathrm{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ .
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves,

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves, the value of $\Delta \mathbf{x}$ gets closer to 0

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f . Line PQ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves, the value of $\Delta \mathbf{x}$ gets closer to 0

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves, the value of $\Delta \mathbf{x}$ gets closer to 0 and the slope of line $P Q$ gets closer to the slope of line t.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves, the value of $\Delta \mathbf{x}$ gets closer to 0 and the slope of line $P Q$ gets closer to the slope of line t.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves, the value of $\Delta \mathbf{x}$ gets closer to 0 and the slope of line $P Q$ gets closer to the slope of line t.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves, the value of $\Delta \mathbf{x}$ gets closer to 0 and the slope of line $P Q$ gets closer to the slope of line t.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves, the value of $\Delta \mathbf{x}$ gets closer to 0 and the slope of line $P Q$ gets closer to the slope of line t.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ.
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves, the value of $\Delta \mathbf{x}$ gets closer to 0 and the slope of line $P Q$ gets closer to the slope of line t.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.
Let Q represent any other point on the graph of f. Line $P Q$ is a secant line. We will first represent the slope of line PQ .
The slope of line $P Q=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Now imagine moving point Q closer to point P along the curve. Clearly, as point Q moves, the value of $\Delta \mathbf{x}$ gets closer to 0 and the slope of line $P Q$ gets closer to the slope of line t. We say that the slope of line t is the limiting value of the slope of line PQ as Δx approaches 0 .

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

Slope of line $t=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right]$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.
Slope of line $t=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right]$

Clearly, the slope of the tangent line depends on the value of x .

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

Slope of line $t=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right]$

Clearly, the slope of the tangent line is a function of \mathbf{x}.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.
Slope of line $t=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right]$

Clearly, the slope of the tangent line is a function of \mathbf{x}.
This function is called the derivative function.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.
Slope of line $t=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta x)-f(x)}{\Delta x}\right]$

Clearly, the slope of the tangent line is a function of \mathbf{x}.
This function is called the derivative function.
The derivative of function f is commonly named f^{\prime}.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

Clearly, the slope of the tangent line is a function of \mathbf{x}.
This function is called the derivative function.
The derivative of function f is commonly named f^{\prime}.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

$$
f^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The process of finding the derivative function is called differentiation.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line \mathbf{t}.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The process of finding the derivative function is called differentiation.
The specific procedure of differentiation using the definition is called the four-step method.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

$$
f^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f (x)}}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $\mathrm{f}(\mathrm{x})$.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{f(x+\Delta x)-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f (x)}}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let \mathbf{t} be the line that is tangent to the graph of f at P.
Our goal is to find an expression for the slope of line t.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f (x)}}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Letô do some sample problems.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0.

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $\mathrm{f}(\mathrm{x})$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0.
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.

These problems are on class worksheet \#1.

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $\mathrm{f}(\mathrm{x})$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0.
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{\mathbf{2}}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{\mathbf{2}}+$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{\mathbf{2}}+\mathbf{2 x} \Delta \mathbf{x}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $\mathrm{f}(\mathrm{x})$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{\mathbf{2}}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method
Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3:

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.

$$
\begin{aligned}
& \text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2} \\
& \text { Step 2: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2} \mathbf{x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2} \\
& \text { Step 3: } \frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}
\end{aligned}
$$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4:

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(\mathbf{x})=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.
Step 3: Divide by $\Delta \mathrm{x}$.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2} \mathbf{x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(2 x+\Delta x)$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(2 \mathrm{x}+\Delta \mathrm{x})$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2} \mathbf{x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\underset{\Delta \mathbf{x} \rightarrow 0}{\operatorname{Lim}}(2 \mathrm{x}+\Delta \mathrm{x})=$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(2 \mathrm{x}+\Delta \mathrm{x})=\mathbf{2 x}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as $\Delta \mathrm{x}$ approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(2 x+\Delta x)=\mathbf{2 x}$

Given any function f. The function f^{\prime}, the derivative of f, is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})$.
If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Step 2: Subtract $f(x)$.
Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(2 x+\Delta x)=\mathbf{2 x}$

Given any function f . The function f^{\prime}, the derivative of f , is defined by

$$
\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]
$$

The four-step method

Step 1: Find $f(x+\Delta x)$.
Step 2: Subtract $f(x)$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x!!$
What does this mean?????

Step 3: Divide by Δx.
Step 4: Evaluate the limit as Δx approaches 0 .
Sample problem \#1: Given $f(x)=\mathbf{x}^{2}$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=(\mathrm{x}+\Delta \mathrm{x})^{2}=\mathbf{x}^{2}+\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} \mathrm{x}^{2}=\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}$
Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{\mathbf{2 x} \Delta \mathbf{x}+\Delta \mathbf{x}^{2}}{\Delta \mathbf{x}}=\mathbf{2 x}+\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(2 x+\Delta x)=\mathbf{2 x}$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$

What does this mean?????
Given the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $f^{\prime}(2)$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $\mathrm{f}^{\prime}(2)=2(2)$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $\mathrm{f}^{\prime}(2)=2(2)=$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $f^{\prime}(2)=2(2)=4!!$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(2,4)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $f^{\prime}(2)=2(2)=4!!$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$!!
What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $\mathrm{f}^{\prime}(-1)$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $\mathrm{f}^{\prime}(-1)=$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $\mathrm{f}^{\prime}(-1)=2$ (

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $\mathrm{f}^{\prime}(-1)=2(-1)$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $\mathrm{f}^{\prime}(-1)=2(-1)=$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $\mathrm{f}^{\prime}(-1)=2(-1)=-2!!$

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$! !

What does this mean?????
Given the function $y=f(x)=x^{2}$.
Find the slope of the line tangent to the graph of $y=f(x)=x^{2}$ at $P(-1,1)$.

Solution: The derivative function gives the slope of the line tangent to the graph of f at the point $\mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ as a function of $\mathrm{x}!!$

If $f(x)=x^{\mathbf{2}}$, then $f^{\prime}(x)=2 x!!$
Therefore, the slope of the tangent line is $\mathrm{f}^{\prime}(-1)=2(-1)=-2!!$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1:

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4($

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x)$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{gathered}
\text { Step 1: } \mathbf{f (x + \Delta x)}=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}= \\
=5
\end{gathered}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{gathered}
\text { Step 1: } \mathbf{f (x + \Delta x)}=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}= \\
=5+4 x
\end{gathered}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{gathered}
\text { Step 1: } \mathbf{f (x + \Delta x)}=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}= \\
=5+4 x+4 \Delta x
\end{gathered}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{gathered}
\text { Step 1: } \mathbf{f (x + \Delta x)}=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}= \\
=5+4 x+4 \Delta x \ddot{i}
\end{gathered}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}= \\
& =5+4 x+4 \Delta x \text { ï }\left(x^{2}\right.
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\text { Step 1: } \begin{array}{r}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}}(\mathrm{x}+\Delta \mathrm{x})^{2}= \\
=5+4 \mathrm{x}+4 \Delta \mathrm{x} \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}\right.
\end{array}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Step 1: } \mathbf{f (x + \Delta x)}=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}= \\
&=5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f (x + \Delta x}) & =5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}= \\
= & 5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)=
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f (x}+\Delta \mathbf{x}) & =5+4(x+\Delta x) \ddot{̈}(x+\Delta x)^{2}= \\
= & 5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)= \\
= & 5+4 x+4 \Delta x
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f (x + \Delta x)} & =5+4(x+\Delta x) \ddot{~}(x+\Delta x)^{2}= \\
= & 5+4 x+4 \Delta x i ̈\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)= \\
= & 5+4 x+4 \Delta x \ddot{i} x^{2}
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f (x}+\Delta \mathbf{x}) & =5+4(x+\Delta x) \ddot{~}(x+\Delta x)^{2}= \\
= & 5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)= \\
= & 5+4 x+4 \Delta x \text { ï } x^{2} \ddot{i} 2 x \Delta x
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Step 1: } \mathbf{f (x + \Delta x)}=5+4(x+\Delta x) \ddot{~}(x+\Delta x)^{2}= \\
&= 5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)= \\
&=5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}}(\mathrm{x}+\Delta \mathrm{x})^{2}= \\
&= 5+4 \mathrm{x}+4 \Delta \mathrm{x} \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
&=\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}}(\mathrm{x}+\Delta \mathrm{x})^{2}= \\
&= 5+4 \mathrm{x}+4 \Delta \mathrm{x} \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
&=\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{\mathbf{2}}
\end{aligned}
$$

Step 2:

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}}(\mathrm{x}+\Delta \mathrm{x})^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right)
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}}(\mathrm{x}+\Delta \mathrm{x})^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}}(\mathrm{x}+\Delta \mathrm{x})^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x i ̈ x^{2}\right)
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}}(\mathrm{x}+\Delta \mathrm{x})^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x i ̈ x^{2}\right)=
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}}(\mathrm{x}+\Delta \mathrm{x})^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{̈} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}(5+4 x \text { ï x} 2)= \\
& =
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{i}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \text { ï } x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{̈} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \text { ï x } x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2} \ddot{i} 5
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{̈} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \text { ï x } x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \text { ï } x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \text { ï x } x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}=
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{̈} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{̈}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \text { ï x} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)= \\
& = \\
& =
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{i}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =4 \Delta x
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =4 \Delta x
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =4 \Delta x \text { ï } 2 x \Delta x
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =4 \Delta x \text { ï } 2 x \Delta x \ddot{̈} \Delta x^{2}
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{x} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{̈}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{\mathrm{I}} 5 \ddot{\mathrm{i}} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{x} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{̈}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{\mathrm{I}} 5 \ddot{\mathrm{i}} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3:

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{x} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{̈}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{\mathrm{I}} 5 \ddot{\mathrm{i}} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{x} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{̈}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{\mathrm{I}} 5 \ddot{\mathrm{i}} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \text { ї } 2 x \Delta x \text { ï } \Delta x^{2}}{}$

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \text { ï } 2 x \Delta x \text { ï } \Delta x^{2}}{\Delta x}$

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \text { ї } 2 \mathrm{x} \Delta \mathrm{x} \text { ї } \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=$

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{x} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{̈}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{\mathrm{I}} 5 \ddot{\mathrm{i}} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=4$

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{x} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{̈}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{\mathrm{I}} 5 \ddot{\mathrm{i}} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{i} 2 x \Delta x \ddot{i} \Delta x^{2}}{\Delta x}=4 \ddot{i}$

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{i}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=4 \ddot{\mathrm{I}} 2 \mathrm{x}$

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \text { ï } 2 x \Delta x \ddot{i} \Delta x^{2}}{\Delta x}=4 \ddot{i} 2 x$ ï

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta x-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{i}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=4$ ї 2 x ї $\Delta \mathrm{x}$

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$

Step 4:

Sample problem \#2: Given $f(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{i}\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta x-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{x} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{̈}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{\mathrm{I}} 5 \ddot{\mathrm{i}} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$

Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{i}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \text { Ï } 2 x \Delta x \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{i}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{x} \Delta x^{2}\right) \ddot{i}\left(5+4 x \text { ï } x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \text { Ï } 2 x \Delta x \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{i}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{\mathrm{i}} \mathrm{x}^{2} \ddot{\mathrm{i}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}}\left(5+4 \mathrm{x} \ddot{\mathrm{i}} \mathrm{x}^{2}\right)= \\
& =5+4 \mathrm{x}+4 \Delta \mathrm{x} \ddot{\mathrm{i}} \mathrm{x}^{2} \ddot{\mathrm{i}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2} \ddot{\mathrm{i}} 5 \ddot{\mathrm{i}} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \text { Ï } 2 x \Delta x \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{i}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{\mathrm{i}} \mathrm{x}^{2} \ddot{\mathrm{i}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}}\left(5+4 \mathrm{x} \ddot{\mathrm{i}} \mathrm{x}^{2}\right)= \\
& =5+4 \mathrm{x}+4 \Delta \mathrm{x} \ddot{\mathrm{i}} \mathrm{x}^{2} \ddot{\mathrm{i}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2} \ddot{\mathrm{i}} 5 \ddot{\mathrm{i}} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta x \rightarrow 0}(4$ ï $2 x$ ï $\Delta x)$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{\mathrm{I}} \mathrm{x}^{2} \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}}\left(5+4 \mathrm{x} \ddot{\mathrm{I}} \mathrm{x}^{2}\right)= \\
& =5+4 \mathrm{x}+4 \Delta \mathrm{x} \ddot{\mathrm{I}} \mathrm{x}^{2} \mathrm{i} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2} \ddot{\mathrm{I}} 5 \mathrm{i} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =\mathbf{4} \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{i}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{f(x+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta x \rightarrow 0}(4$ ï $2 x$ ï $\Delta x)=$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{\mathrm{I}} \mathrm{x}^{2} \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}}\left(5+4 \mathrm{x} \ddot{\mathrm{I}} \mathrm{x}^{2}\right)= \\
& =5+4 \mathrm{x}+4 \Delta \mathrm{x} \ddot{\mathrm{I}} \mathrm{x}^{2} \mathrm{i} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2} \ddot{\mathrm{I}} 5 \mathrm{i} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =\mathbf{4} \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 \ddot{i} 2 x$ ï $\Delta \mathrm{x})=$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4$ ï $2 x$ ï $\Delta x)=4$ ï $2 x$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2}\right) \ddot{i}\left(5+4 x \ddot{i} x^{2}\right)= \\
& =5+4 x+4 \Delta x \ddot{i} x^{2} \ddot{i} 2 x \Delta x \ddot{\mathrm{i}} \Delta x^{2} \ddot{i} 5 \ddot{i} 4 x+x^{2}= \\
& =4 \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}}{\Delta \mathrm{x}}=\mathbf{4}-\mathbf{2 x}-\Delta \mathbf{x}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4$ ї $2 x$ ï $\Delta x)=\mathbf{4}-\mathbf{2 x}$

Sample problem \#2: Given $\mathbf{f}(\mathbf{x})=\mathbf{5}+\mathbf{4 x}-\mathbf{x}^{\mathbf{2}}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=5+4(x+\Delta x) \ddot{i}(x+\Delta x)^{2}=$

$$
\begin{aligned}
& =5+4 x+4 \Delta x \ddot{\mathrm{I}}\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)= \\
& =\mathbf{5}+\mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{x}^{2}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(5+4 x+4 \Delta x \ddot{\mathrm{I}} \mathrm{x}^{2} \ddot{\mathrm{I}} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{I}} \Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}}\left(5+4 \mathrm{x} \ddot{\mathrm{I}} \mathrm{x}^{2}\right)= \\
& =5+4 \mathrm{x}+4 \Delta \mathrm{x} \ddot{\mathrm{I}} \mathrm{x}^{2} \mathrm{i} 2 \mathrm{x} \Delta \mathrm{x} \ddot{\mathrm{i}} \Delta \mathrm{x}^{2} \ddot{\mathrm{I}} 5 \mathrm{i} 4 \mathrm{x}+\mathrm{x}^{2}= \\
& =\mathbf{4} \Delta \mathbf{x}-\mathbf{2 x} \Delta \mathbf{x}-\Delta \mathbf{x}^{2}
\end{aligned}
$$

Step 3: $\frac{f(x+\Delta x)-f(x)}{\Delta \mathbf{x}}=\frac{4 \Delta x \text { ї } 2 x \Delta x \ddot{i} \Delta x^{2}}{\Delta x}=\mathbf{x}-\mathbf{2 x}-\Delta \mathbf{x}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4$ ї $2 x$ ï $\Delta x)=\mathbf{4}-\mathbf{2 x}$
If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

If $f(x)=5+4 x-x^{\mathbf{2}}$, then $f^{\prime}(x)=4-2 x$

$$
{ }^{10} \boldsymbol{f}^{\mathbf{y}}
$$

Find the slope of the line tangent to the graph of $y=f(x)=5+4 x$ ï x^{2} at $\mathrm{P}(0,5)$.

If $f(x)=5+4 x-x^{\mathbf{2}}$, then $f^{\prime}(x)=4-2 x$

$$
{ }^{10} \boldsymbol{f}^{\mathbf{y}}
$$

Find the slope of the line tangent to the graph of $y=f(x)=5+4 x$ ï x^{2} at $\mathrm{P}(0,5)$.

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
$\square{ }^{10} \boldsymbol{q}^{\mathbf{y}}$
Find the slope of the line tangent to the graph of $y=f(x)=5+4 x$ ï x^{2} at $\mathrm{P}(0,5)$.

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

$$
{ }^{10} \hat{f}^{\mathbf{y}}
$$

Find the slope of the line tangent to the graph of $y=f(x)=5+4 x i ̈ x^{2}$ at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

$$
\square{ }^{10} \mathfrak{f}^{\mathbf{y}}
$$

Find the slope of the line tangent to the graph of $y=f(x)=5+4 x$ ï x^{2} at $\mathrm{P}(0,5)$.

The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ï 2(0)

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $y=f(x)=5+4 x$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ï $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x} \boldsymbol{\mathrm { i }} \mathrm{x}^{2}$ at $\mathrm{P}(3,8)$.

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x}$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ï $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x} \boldsymbol{\mathrm { I }} \mathrm{x}^{2}$ at $\mathrm{P}(3,8)$.

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x}$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ï $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x} \boldsymbol{\mathrm { i }} \mathrm{x}^{2}$ at $\mathrm{P}(3,8)$.
The slope of the tangent line is

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $y=f(x)=5+4 x$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ї $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x} \boldsymbol{\mathrm { I }} \mathrm{x}^{2}$ at $\mathrm{P}(3,8)$.

The slope of the tangent line is $\mathrm{f}^{\prime}(3)$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x}$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ї $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x} \boldsymbol{\mathrm { I }} \mathrm{x}^{2}$ at $\mathrm{P}(3,8)$.

The slope of the tangent line is $f^{\prime}(3)=$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x}$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ї $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x} \boldsymbol{\mathrm { I }} \mathrm{x}^{2}$ at $\mathrm{P}(3,8)$.

The slope of the tangent line is $\mathrm{f}^{\prime}(3)=4$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x}$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ї $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x} \boldsymbol{\mathrm { I }} \mathrm{x}^{2}$ at $\mathrm{P}(3,8)$.

The slope of the tangent line is $f^{\prime}(3)=4 i$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x}$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ї $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x} \boldsymbol{\mathrm { I }} \mathrm{x}^{2}$ at $\mathrm{P}(3,8)$.

The slope of the tangent line is $f^{\prime}(3)=4$ ï 2(3)

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $y=f(x)=5+4 x$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ї $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x}$ Ï x^{2} at $\mathrm{P}(3,8)$.

The slope of the tangent line is
$f^{\prime}(3)=4$ ї $2(3)=$

If $f(x)=5+4 x-x^{2}$, then $f^{\prime}(x)=4-2 x$
Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x}$ ï x^{2} at $\mathrm{P}(0,5)$.
The slope of the tangent line is $\mathrm{f}^{\prime}(0)=4$ ї $2(0)=4$

Find the slope of the line tangent to the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})=5+4 \mathrm{x}$ Ï x^{2} at $\mathrm{P}(3,8)$.

The slope of the tangent line is $f^{\prime}(3)=4$ ï $2(3)=\mathbf{- 2}$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1:

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4($

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(\mathrm{x}+\Delta \mathrm{x})$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \text { ї } 1= \\
& =4 \mathrm{x}
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \text { ї } 1= \\
& =4 \mathrm{x}+
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =4(x+\Delta x) \ddot{I} 1= \\
= & \mathbf{4} \mathbf{x}+\mathbf{4} \Delta \mathbf{x}
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
& \text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \text { ї } 1= \\
& =4 x+4 \Delta x-
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =4(x+\Delta x) \ddot{I} 1= \\
= & 4 \mathbf{x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{1}
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} 1= \\
= & \mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{1}
\end{aligned}
$$

Step 2:

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =4(\mathrm{x}+\Delta \mathrm{x}) \ddot{\mathrm{I}} 1= \\
= & \mathbf{4 x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{1}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =4(x+\Delta x) \ddot{I} 1= \\
= & 4 \mathbf{x}+\mathbf{4} \Delta \mathbf{x}-\mathbf{1}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$
$=4 x+4 \Delta x-1$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$
$=4 x+4 \Delta x-1$
Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

Sample problem \#3: Given $\mathbf{f}(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=(4 x+4 \Delta x \ddot{i} 1)
$$

Sample problem \#3: Given $\mathbf{f}(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=(4 x+4 \Delta x \ddot{z} 1) \ddot{z}
$$

Sample problem \#3: Given $\mathbf{f}(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=(4 x+4 \Delta x \ddot{i} 1) \ddot{i}(4 x \text { ï } 1)
$$

Sample problem \#3: Given $\mathbf{f}(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{i} 1) \ddot{i}(4 x \ddot{̈} 1)= \\
& =
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{i} 1) \ddot{i}(4 x \ddot{̈} 1)= \\
& =4 x+4 \Delta x \ddot{i} 1
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \ddot{̈} 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \ddot{̈} 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{i} 4 x+1
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \text { ï 1) } 1 \text { ï }(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x i ̈ 1) i ̈(4 x i ̈ l)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{x}+1= \\
& =
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{z} 1) і ̈(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{z}+1= \\
& =4 \Delta x
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{i}(4 x \mathrm{i} 1)= \\
& =4 x+4 \Delta x \ddot{i} \backslash 1 \text { ï } 4 x+1= \\
& =4 \Delta x
\end{aligned}
$$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \text { ï 1) } 1 \text { ï }(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{i} 1) \ddot{i}(4 x \ddot{̈} 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{i} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3:

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \text { Ï } 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}$

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \text { Ï } 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=$

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{̈} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{}$

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \text { Ï } 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}$

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{z} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta \mathrm{x}}=$

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{z} 1) \ddot{i}(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta x}=\mathbf{4}$

Sample problem \#3: Given $f(x)=4 x-1$. Find $f^{\prime}(x)$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta x}=\mathbf{4}$
Step 4:

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}($

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta x}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ Ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta x}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ Ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \text { Ï } 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta x}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x)$ Ï $1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$,

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{̈} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$, then

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{̈} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{i}(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta x}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$, then $f^{\prime}(x)=4$.

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{̈} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{(}(4 x \text { Ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{~} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$, then $f^{\prime}(x)=4$.

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{̈} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{~}(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta x}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$, then $f^{\prime}(x)=4$.
Note:

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{~}(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$, then $f^{\prime}(x)=4$.
Note: Since this is a linear function,

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{~}(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$, then $f^{\prime}(x)=4$.
Note: Since this is a linear function, the derivative

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{~}(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$, then $f^{\prime}(x)=4$.
Note: Since this is a linear function, the derivative (slope)

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{~}(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta x}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$, then $f^{\prime}(x)=4$.
Note: Since this is a linear function, the derivative (slope) is a constant.

Sample problem \#3: Given $f(\mathbf{x})=\mathbf{4 x}-\mathbf{1}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=4(x+\Delta x) \ddot{i} 1=$

$$
=4 x+4 \Delta x-1
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =(4 x+4 \Delta x \ddot{̈} 1) \ddot{~}(4 x \text { ï } 1)= \\
& =4 x+4 \Delta x \text { ï } 1 \ddot{\mathrm{I}} 4 x+1= \\
& =4 \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \Delta x}{\Delta x}=\mathbf{4}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4)=\mathbf{4}$
If $f(x)=4 x-1$, then $f^{\prime}(x)=4$.
Note: Since this is a linear function, the derivative (slope) is a constant.

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1:

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2($

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}}$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(x+\Delta x)^{2} \ddot{i} 3($

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \mathrm{i} 3(\mathrm{x}+\Delta \mathrm{x})$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(x+\Delta x)^{2} \ddot{i} 3(x+\Delta x)+5$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$ ї $3(\mathrm{x}+\Delta \mathrm{x})+5=$ $=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$ ї $3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
=2(
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$ ї $3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
=2\left(\mathrm{x}^{2}\right.
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$ ї $3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
=2\left(\mathrm{x}^{2}+\right.
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{gathered}
\text { Step 1: } \begin{array}{c}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
=2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}\right.
\end{array} .
\end{gathered}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$ ї $3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
=2\left(x^{2}+2 x \Delta x+\right.
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$ ï $3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
=2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right)
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
=2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \ddot{i}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \begin{aligned}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
& =2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} 3 \mathrm{x}
\end{aligned}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$ ї $3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
=2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \ddot{i} 3 x \ddot{i}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f (x + \Delta x)} & =2(x+\Delta x)^{2} \ddot{i} 3(x+\Delta x)+5= \\
= & 2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \ddot{i} 3 x \ddot{̈} 3 \Delta x
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\begin{aligned}
\text { Step 1: } \mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
= & 2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} 3 \mathrm{x} \ddot{\mathrm{I}} 3 \Delta \mathrm{x}+
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\text { Step 1: } \begin{array}{rl}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
= & 2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{i}} 3 \mathrm{x} \\
\mathrm{i} & 3 \Delta x+5
\end{array}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$ ї $3(\mathrm{x}+\Delta \mathrm{x})+5=$
$=2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)$ ї 3 x ї $3 \Delta \mathrm{x}+5=$
$=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2}$ ї $3(\mathrm{x}+\Delta \mathrm{x})+5=$
$=2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right)$ ї 3 x ї $3 \Delta \mathrm{x}+5=$
$=2 \mathrm{x}^{2}$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\text { Step 1: } \begin{aligned}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{I}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
& =2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} 3 \mathrm{x} \text { ї } 3 \Delta \mathrm{x}+5= \\
& =2 \mathrm{x}^{2}+
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\text { Step 1: } \begin{aligned}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{I}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
= & 2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \text { ï } 3 \mathrm{x} \text { ї } 3 \Delta \mathrm{x}+5= \\
& =2 \mathrm{x}^{2}+4 \mathrm{x} \Delta \mathrm{x}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\text { Step 1: } \begin{aligned}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{I}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
= & 2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} 3 \mathrm{x} \ddot{\mathrm{I}} 3 \Delta \mathrm{x}+5= \\
& =2 \mathrm{x}^{2}+4 \mathrm{x} \Delta \mathrm{x}+
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\text { Step 1: } \begin{aligned}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\ddot{ }} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
= & 2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} 3 \mathrm{x} \ddot{\mathrm{i}} 3 \Delta \mathrm{x}+5= \\
& =2 \mathrm{x}^{2}+4 \mathrm{x} \Delta \mathrm{x}+2 \Delta \mathrm{x}^{2}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\text { Step 1: } \begin{aligned}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
= & 2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \text { ï } 3 \mathrm{x} \text { ï } 3 \Delta \mathrm{x}+5= \\
= & 2 \mathrm{x}^{2}+4 \mathrm{x} \Delta \mathrm{x}+2 \Delta \mathrm{x}^{2} \ddot{\mathrm{i}} 3 \mathrm{x} \text { ï } 3 \Delta x+5
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\text { Step 1: } \begin{aligned}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{I}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
= & 2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} 3 \mathrm{x} \ddot{\mathrm{i}} 3 \Delta \mathrm{x}+5= \\
= & \mathbf{2} \mathbf{x}^{2}+\mathbf{4} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.

$$
\text { Step 1: } \begin{aligned}
\mathbf{f}(\mathbf{x}+\Delta \mathbf{x}) & =2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{I}} 3(\mathrm{x}+\Delta \mathrm{x})+5= \\
= & 2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \ddot{\mathrm{I}} 3 \mathrm{x} \ddot{\mathrm{i}} 3 \Delta \mathrm{x}+5= \\
= & \mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2:

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4} \mathbf{x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \ddot{~} 3 x \ddot{x} 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4} \mathbf{x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5\right)
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{I}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{z} 3 \Delta x+5\right) \ddot{i}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4} \mathbf{x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
=\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)=
$$

$$
=
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 x \ddot{̈} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{\text { in }} 3 x \ddot{\text { in }} 3 \Delta x+5
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 x \ddot{̈} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{\ddot{i}}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 x \ddot{̈} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \text { Ï } 3 \mathrm{x} \text { Ï } 3 \Delta \mathrm{x}+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4} \mathbf{x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 x \ddot{̈} 3 \Delta x+5\right) \ddot{\imath}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{\mathrm{i}} 2 x^{2}+
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 x \ddot{̈} 3 \Delta x+5\right) \ddot{\imath}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 x \ddot{̈} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \ddot{i}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 x \ddot{̈} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{̈} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{̈} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \ddot{i} 5= \\
& =
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{z} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{\imath}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 x \Delta x
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{z} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{\imath}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 x \Delta x+
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{z} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{\imath}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 x \Delta x+2 \Delta x^{2}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} \text {, } 2 x \text { ï } 3 \Delta x+5 \ddot{i} 2 x^{2}+3 \times \ddot{x} 5= \\
& =4 x \Delta x+2 \Delta x^{2}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} \not \subset x \ddot{x} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 \times \ddot{x} 5= \\
& =4 x \Delta x+2 \Delta x^{2} \ddot{i}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} \text {, } 2 x \text { ï } 3 \Delta x+5 \ddot{i} 2 x^{2}+3 \nless \ddot{x} 5= \\
& =4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i}, 2 x \text { ï } 3 \Delta x+\left\langle 反 i ̈ 2 x^{2}+3 \times \ddot{x}\right\rangle\langle= \\
& =4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+2 \Delta \mathbf{x}^{2}-\mathbf{3} \Delta \mathbf{x}
\end{aligned}
$$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 }}-\mathbf{3} \Delta \mathbf{x}
\end{aligned}
$$

Step 3:

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 }}-\mathbf{3} \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{}$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{f(x+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f (x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=4 x$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta \mathrm{x}^{2} \ddot{\mathrm{I}} 3 \Delta \mathrm{x}}{\Delta \mathrm{x}}=4 \mathrm{x}+$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=4 x+2 \Delta x$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=4 x+2 \Delta x \ddot{i}$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=4 x+2 \Delta x$ ï 3

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \mathrm{x} \Delta \mathrm{x}+2 \Delta \mathrm{x}^{2} \ddot{\mathrm{i}} 3 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4 x}+\mathbf{2} \Delta \mathbf{x}-\mathbf{3}$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =2 x^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta x+\mathbf{x}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \mathrm{x} \Delta \mathrm{x}+2 \Delta \mathrm{x}^{2} \ddot{\mathrm{i}} 3 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4 x}+\mathbf{2} \Delta \mathbf{x}-\mathbf{3}$

Step 4:

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=\mathbf{x}+\mathbf{2} \Delta \mathbf{x}-\mathbf{3}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \mathrm{x} \Delta \mathrm{x}+2 \Delta \mathrm{x}^{2} \ddot{\mathrm{i}} 3 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4 x}+\mathbf{2} \Delta \mathbf{x}-\mathbf{3}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=\mathbf{x}+\mathbf{2} \Delta \mathbf{x}-\mathbf{3}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}($

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \ddot{i} 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} x^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta x+\mathbf{x}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=\mathbf{x}+\mathbf{x} \Delta \mathbf{x}-\mathbf{3}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3)

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \ddot{i} 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} x^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta x+\mathbf{x}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=\mathbf{4 x}+\mathbf{2} \Delta \mathbf{x}-\mathbf{3}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{ }\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 }}-\mathbf{3} \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=\mathbf{x}+\underset{0}{\mathbf{2} \Delta \mathbf{x}-\mathbf{3}}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\underset{\Delta x \rightarrow 0}{\operatorname{Lim}}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x \mathrm{x}$ ï 3$)=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3} \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=\mathbf{x}+\mathbf{2} \Delta \mathbf{x}-\mathbf{3}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=4 x$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{\mathrm{I}} 3 \Delta x}{\Delta \mathrm{x}}=\mathbf{4 x}+\underset{\mathbf{2}}{\mathbf{2} \Delta \mathbf{x}-\mathbf{3}} \mathrm{0}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=4 x$ ï

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \ddot{i}\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{̈} 3 \Delta x}{\Delta x}=4 \mathbf{x}+\underset{0}{\mathbf{2} \Delta x-3}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=4 x$ ï 3

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 \Delta x}{\Delta x}=\mathbf{x}+\underset{0}{\mathbf{2} \Delta \mathbf{x}-\mathbf{3}}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=4 \mathbf{x}-\mathbf{3}$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta x+\mathbf{x} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \mathrm{x} \Delta \mathrm{x}+2 \Delta \mathrm{x}^{2} \ddot{\mathrm{I}} 3 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4 x}+\underset{0}{\mathbf{2} \Delta \mathbf{x}-\mathbf{3}}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta x \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=\mathbf{4 x}-\mathbf{3}$
If $f(x)=2 x^{2}-3 x+5$,

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) i ̈\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 } - \mathbf { 3 } \Delta \mathbf { x }}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \mathrm{x} \Delta \mathrm{x}+2 \Delta \mathrm{x}^{2} \ddot{\mathrm{I}} 3 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4 x}+\underset{0}{\mathbf{2} \Delta \mathbf{x}-\mathbf{3}}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=4 \mathbf{x}-\mathbf{3}$
If $f(x)=2 x^{2}-3 x+5$, then

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \text { ï }\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 }}-\mathbf{3} \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \mathrm{x} \Delta \mathrm{x}+2 \Delta \mathrm{x}^{2} \ddot{\mathrm{I}} 3 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4 x}+\underset{0}{\mathbf{2} \Delta \mathbf{x}-\mathbf{3}}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=4 \mathbf{x}-\mathbf{3}$
If $f(x)=2 x^{2}-3 x+5$, then $f^{\prime}(x)$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \text { ï }\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 }}-\mathbf{3} \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 \mathrm{x} \Delta \mathrm{x}+2 \Delta \mathrm{x}^{2} \ddot{\mathrm{I}} 3 \Delta \mathrm{x}}{\Delta \mathrm{x}}=\mathbf{4 x}+\underset{0}{\mathbf{2} \Delta \mathbf{x}-\mathbf{3}}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=4 \mathbf{x}-\mathbf{3}$
If $f(x)=2 x^{2}-3 x+5$, then $f^{\prime}(x)=$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+\Delta \mathrm{x}^{2}\right) \text { Ï } 3 \mathrm{x} \text { Ï } 3 \Delta \mathrm{x}+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4} \mathbf{x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \text { ï }\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 }}-\mathbf{3} \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 \Delta x}{\Delta x}=\mathbf{4 x}+\underset{\mathbf{2}}{\mathbf{2} \Delta \mathbf{x}-\mathbf{3}}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=4 \mathbf{x}-\mathbf{3}$
If $f(x)=2 x^{2}-3 x+5$, then $f^{\prime}(x)=4 x-3$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(\mathrm{x}+\Delta \mathrm{x})^{2} \ddot{\mathrm{i}} 3(\mathrm{x}+\Delta \mathrm{x})+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { Ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4 x} \Delta \mathbf{x}+\mathbf{2} \Delta x^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& =\left(2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{x} 3 \Delta x+5\right) \text { ï }\left(2 x^{2} \ddot{i} 3 x+5\right)= \\
& =2 x^{2}+4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 x \ddot{i} 3 \Delta x+5 \ddot{i} 2 x^{2}+3 x \text { ï } 5= \\
& =4 \mathbf{x} \Delta \mathbf{x}+\mathbf{2 \Delta x ^ { 2 }}-\mathbf{3} \Delta \mathbf{x}
\end{aligned}
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{\ddot{ }} 3 \Delta x}{\Delta x}=\mathbf{x}+\underset{\mathbf{x}}{\mathbf{2} \Delta \mathbf{x}-\mathbf{3}}$
0
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta \mathbf{x} \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=\mathbf{4 x}-\mathbf{3}$
If $f(x)=2 x^{2}-3 x+5$, then $f^{\prime}(x)=4 x-3$

Sample problem \#4: Given $\mathbf{f}(\mathbf{x})=\mathbf{2} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{5}$. Find $\mathrm{f}^{\prime}(\mathrm{x})$.
Step 1: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=2(x+\Delta x)^{2} \ddot{i} 3(x+\Delta x)+5=$

$$
\begin{aligned}
& =2\left(x^{2}+2 x \Delta x+\Delta x^{2}\right) \text { ï } 3 x \text { ï } 3 \Delta x+5= \\
& =\mathbf{2} \mathbf{x}^{2}+\mathbf{4} \mathbf{x} \Delta \mathbf{x}+\mathbf{2} \Delta \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{3} \Delta \mathbf{x}+\mathbf{5}
\end{aligned}
$$

Step 2: $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})=$

Good luck on your homework !!

$$
=4 x \Delta x+2 \Delta x^{2}-3 \Delta x
$$

Step 3: $\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}=\frac{4 x \Delta x+2 \Delta x^{2} \ddot{i} 3 \Delta x}{\Delta x}=\mathbf{x} x+2 \Delta \mathbf{x}-\mathbf{3}$
Step 4: $\mathbf{f}^{\prime}(\mathbf{x})=\operatorname{Lim}_{\Delta x \rightarrow 0}\left[\frac{\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}}\right]=\operatorname{Lim}_{\Delta x \rightarrow 0}(4 x+2 \Delta x$ ï 3$)=4 x-\mathbf{3}$
If $f(x)=2 x^{2}-3 x+5$, then $f^{\prime}(x)=4 x-3$

