
Calculus   Lesson #1
The Derivative Function
The Four Step Method

Class Worksheet #1
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Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.

x

y

0

P

f



Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.

x

y

0

P

f

t



Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
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the slope of line t.



Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.

x

y

0

P

f

t

Q

Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.



Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
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We will use x to represent the 
x-coordinate of point P.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

We will use x to represent the 
x-coordinate of point P.  The y-coordinate of point P is f(x).  
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

We will use x to represent the 
x-coordinate of point P.  The y-coordinate of point P is f(x).  
Therefore, the coordinates of point P are (x, f(x)).
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
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We will use x to represent the 
x-coordinate of point P.  The y-coordinate of point P is f(x).  
Therefore, the coordinates of point P are (x, f(x)).
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the slope of line t.
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Therefore, the coordinates of point P are (x, f(x)).
We will use x + ∆x to represent the x-coordinate of point Q.  

x

y

0

f

t

Q

P

x x + ∆x

∆x

Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
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Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

We will use x to represent the 
x-coordinate of point P.  The y-coordinate of point P is f(x).  
Therefore, the coordinates of point P are (x, f(x)).
We will use x + ∆x to represent the x-coordinate of point Q.  
Note that if ∆x was negative, then point Q would be to the left 
of point P on the graph of f.  
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

We will use x to represent the 
x-coordinate of point P.  The y-coordinate of point P is f(x).  
Therefore, the coordinates of point P are (x, f(x)).
We will use x + ∆x to represent the x-coordinate of point Q.  
Note that if ∆x was negative, then point Q would be to the left 
of point P on the graph of f.  Its x-coordinate would still be x + ∆x!!
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slope of line PQ.

We will use x to represent the 
x-coordinate of point P.  The y-coordinate of point P is f(x).  
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Let P represent any point on the graph of f.
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Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

We will use x to represent the 
x-coordinate of point P.  The y-coordinate of point P is f(x).  
Therefore, the coordinates of point P are (x, f(x)).
We will use x + ∆x to represent the x-coordinate of point Q.  
The y-coordinate of point Q is f(x + ∆x).  
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Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

We will use x to represent the 
x-coordinate of point P.  The y-coordinate of point P is f(x).  
Therefore, the coordinates of point P are (x, f(x)).
We will use x + ∆x to represent the x-coordinate of point Q.  
The y-coordinate of point Q is f(x + ∆x).  Therefore, the 
coordinates of point Q are (x + ∆x , f(x + ∆x)).
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

The slope of line PQ = 

P(x, f(x)) and Q(x + ∆x, f(x + ∆x))
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
P(x, f(x)) and Q(x + ∆x, f(x + ∆x))

The slope of line PQ = f(x + ∆x)
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
P(x, f(x)) and Q(x + ∆x, f(x + ∆x))

The slope of line PQ = f(x + ∆x) – f(x)
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
P(x, f(x)) and Q(x + ∆x, f(x + ∆x))

The slope of line PQ = f(x + ∆x) – f(x)
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the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
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Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
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the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

The slope of line PQ = f(x + ∆x) – f(x)
(x + ∆x) – x
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Let P represent any point on the graph of f.
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Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

The slope of line PQ = f(x + ∆x) – f(x)
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

Now imagine moving point Q closer to point P along the curve.

x

y

0

f

t

Q

P

x x + ∆x

∆x

The slope of line PQ = f(x + ∆x) – f(x)
∆x



Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

Now imagine moving point Q closer to point P along the curve.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

Now imagine moving point Q closer to point P along the curve.
Clearly, as point Q moves, 
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

Now imagine moving point Q closer to point P along the curve.
Clearly, as point Q moves, the value of ∆x gets closer to 0
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
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Now imagine moving point Q closer to point P along the curve.
Clearly, as point Q moves, the value of ∆x gets closer to 0 and the 
slope of line PQ gets closer to the slope of line t.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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line.  We will first represent the 
slope of line PQ.
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Now imagine moving point Q closer to point P along the curve.

The slope of line PQ = f(x + ∆x) – f(x)
∆x

Clearly, as point Q moves, the value of ∆x gets closer to 0 and the 
slope of line PQ gets closer to the slope of line t.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
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Now imagine moving point Q closer to point P along the curve.

The slope of line PQ = f(x + ∆x) – f(x)
∆x

Clearly, as point Q moves, the value of ∆x gets closer to 0 and the 
slope of line PQ gets closer to the slope of line t.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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line.  We will first represent the 
slope of line PQ.
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Now imagine moving point Q closer to point P along the curve.

The slope of line PQ = f(x + ∆x) – f(x)
∆x

Clearly, as point Q moves, the value of ∆x gets closer to 0 and the 
slope of line PQ gets closer to the slope of line t.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.
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Now imagine moving point Q closer to point P along the curve.

The slope of line PQ = f(x + ∆x) – f(x)
∆x

Clearly, as point Q moves, the value of ∆x gets closer to 0 and the 
slope of line PQ gets closer to the slope of line t.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

Now imagine moving point Q closer to point P along the curve.

The slope of line PQ = f(x + ∆x) – f(x)
∆x

Clearly, as point Q moves, the value of ∆x gets closer to 0 and the 
slope of line PQ gets closer to the slope of line t.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
Let Q represent any other point on
the graph of f.  Line PQ is a secant 
line.  We will first represent the 
slope of line PQ.

Now imagine moving point Q closer to point P along the curve.

We say that the slope of line t is the limiting value of the slope 
of line PQ as ∆x approaches 0.

The slope of line PQ = f(x + ∆x) – f(x)
∆x

Clearly, as point Q moves, the value of ∆x gets closer to 0 and the 
slope of line PQ gets closer to the slope of line t.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.

Slope of line t = Lim
∆x 0

f(x + ∆x) – f(x)
∆x
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.

Clearly, the slope of the tangent line depends on the value of x.

Slope of line t = Lim f(x + ∆x) – f(x)
∆x∆x 0
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.

Clearly, the slope of the tangent line is a function of x.

Slope of line t = Lim f(x + ∆x) – f(x)
∆x∆x 0
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.

Clearly, the slope of the tangent line is a function of x.
This function is called the derivative function.

Slope of line t = Lim f(x + ∆x) – f(x)
∆x∆x 0
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.

Clearly, the slope of the tangent line is a function of x.
This function is called the derivative function.

The derivative of function f is commonly named f ′.

Slope of line t = Lim f(x + ∆x) – f(x)
∆x∆x 0
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.

Clearly, the slope of the tangent line is a function of x.
This function is called the derivative function.

The derivative of function f is commonly named f ′.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.

The process of finding the derivative function is called differentiation.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to 
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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These problems are on class worksheet #1.
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Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0)



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) =



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 –



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0)



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).
The slope of the tangent line is 



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).
The slope of the tangent line is 
f ′(3)



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).
The slope of the tangent line is 
f ′(3) =



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).
The slope of the tangent line is 
f ′(3) = 4



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).
The slope of the tangent line is 
f ′(3) = 4 –



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).
The slope of the tangent line is 
f ′(3) = 4 – 2(3)



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).
The slope of the tangent line is 
f ′(3) = 4 – 2(3) =



y

4

2

6

8

10

-2

x
20-4-6-8 4 6 8-2

-4

-6

-8

-10

(3,8)

(0,5)

If f(x) = 5 + 4x – x2 , then f ′(x) = 4 – 2x 

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(0,5).
The slope of the tangent line is 
f ′(0) = 4 – 2(0) = 4

Find the slope of the line tangent 
to the graph of y = f(x) = 5 + 4x – x2

at P(3,8).
The slope of the tangent line is 
f ′(3) = 4 – 2(3) = -2



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:  f(x + ∆x) =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:  f(x + ∆x) = 4(



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:  f(x + ∆x) = 4(x + ∆x)



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x +



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x –



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x)

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) –

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x)

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1)



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) –



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1)



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
=



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =
=



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =
=



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =
= 4∆x



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =
= 4∆x



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =
= 4∆x



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 3:

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

=

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4:

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4:

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: =

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4)

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) =

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , 



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , then



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , then f ′(x) = 4 . 



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , then f ′(x) = 4 . 



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , then f ′(x) = 4 . 

Note:



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , then f ′(x) = 4 . 

Note:  Since this is a linear function, 



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , then f ′(x) = 4 . 

Note:  Since this is a linear function, the derivative



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , then f ′(x) = 4 . 

Note:  Since this is a linear function, the derivative (slope)



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , then f ′(x) = 4 . 

Note:  Since this is a linear function, the derivative (slope) is a constant.



Sample problem #3:  Given f(x) = 4x – 1.  Find f ′(x).

Step 4: = Lim (4) = 4

Step 3: f(x + ∆x) – f(x)
∆x

= 4∆x
∆x

= 4

Step 2:  f(x + ∆x) – f(x) =

= 4∆x

Step 1:  f(x + ∆x) = 4(x + ∆x) – 1 =
= 4x + 4∆x – 1

= (4x + 4∆x – 1) – (4x – 1) =
= 4x + 4∆x – 1 – 4x + 1 =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

If f(x) = 4x – 1 , then f ′(x) = 4 . 

Note:  Since this is a linear function, the derivative (slope) is a constant.



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x)



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) =



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 –



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x)



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) +



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
=



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 +



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x +



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2)



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) –



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x –



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x +



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
=



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 +



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x +



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x)

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) –

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x)

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

=



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5)



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) –



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5)



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
=



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 –



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 +



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x –



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
=



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
=



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x +



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 –



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3:

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

=

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x +

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x –

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x – 3

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x – 3

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 4:

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x – 3

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 4:

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x – 3

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0

= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 4: =

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x – 3

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0

= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 4: = Lim (

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x – 3

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 4: = Lim (4x + 2∆x – 3)

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x – 3

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 4: = Lim (4x + 2∆x – 3) =

Step 3: f(x + ∆x) – f(x)
∆x

=
∆x

= 4x + 2∆x – 3

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x



Sample problem #4:  Given f(x) = 2x2 – 3x + 5 .  Find f ′(x).

Step 4: = Lim (4x + 2∆x – 3) =

0
Step 3: f(x + ∆x) – f(x)

∆x
=

∆x
= 4x + 2∆x – 3

Step 2:  f(x + ∆x) – f(x) =

Step 1:  f(x + ∆x) = 2(x + ∆x)2 – 3(x + ∆x) + 5 =
= 2(x2 + 2x∆x + ∆x2) – 3x – 3∆x + 5 =
= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5

= (2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5) – (2x2 – 3x + 5) =

f ′(x) = Lim f(x + ∆x) – f(x)
∆x∆x 0 ∆x 0

= 2x2 + 4x∆x + 2∆x2 – 3x – 3∆x + 5 – 2x2 + 3x – 5 =
= 4x∆x + 2∆x2 – 3∆x

4x∆x + 2∆x2 – 3∆x
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Good luck on your homework !!




