Calculus Lesson #1
The Derivative Function
The Four Step Method

Class Worksheet #1
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.

Let t be the line that is tangent to AY
the graph of f at P.
Our goal is to find an expression for
the slope of line t.
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Consider the function f whose graph is shown here.

Let P represent any point on the graph of f.

Let t be the line that is tangent to
the graph of f at P.

Our goal is to find an expression for
the slope of line t.

Let Q represent any other point on
the graph of f.
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Let P represent any point on the graph of f.

Let t be the line that is tangent to
the graph of f at P.

Our goal is to find an expression for
the slope of line t.

Let Q represent any other point on

the graph of f. Line PQ is a secant
line.
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We will use x to represent the
X-coordinate of point P.
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We will use x to represent the
x-coordinate of point P. The y-coordinate of point P is f(x).
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We will use x to represent the
x-coordinate of point P. The y-coordinate of point P is f(x).
Therefore, the coordinates of point P are (X, f(x)).
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We will use x to represent the

x-coordinate of point P. The y-coordinate of point P is f(x).
Therefore, the coordinates of point P are (X, f(x)).

We will use x + Ax to represent the x-coordinate of point Q.
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the graph of f at P.
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Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.
Let t be the line that is tangent to AY
the graph of f at P.

Our goal is to find an expression for
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the graph of f. Line PQ is a secant
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Now imagine moving point Q closer to point P along the curve.
Clearly, as point Q moves, the value of Ax gets closer to 0 and the
slope of line PQ gets closer to the slope of line t.
We say that the slope of line t is the limiting value of the slope
of line PQ as Ax approaches 0.




Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.

Let t be the line that is tangent to Y
A

the graph of f at P. f
Our goal is to find an expression for Q/
the slope of line t. 7/

. _ At

Slope of line t = Al—im It Av) — 1) »
x>0 AX =
- S e X
B X “A"H




Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.

Let t be the line that is tangent to Y
A

the graph of f at P. f
Our goal is to find an expression for Q/
the slope of line t. 7/

. _ At

Slope of line t = Al—im It Av) — 1) »
x>0 AX =
- S e X
B X “A"H

Clearly, the slope of the tangent line depends on the value of x.
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This function is called the derivative function.
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The derivative of function f is commonly named f"'.
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The process of finding the derivative function is called differentiation.



Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.

Let t be the line that is tangent to Y
A
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The process of finding the derivative function is called differentiation.

The specific procedure of differentiation using the definition is
called the four-step method.
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Step 1: Find f(x + AX).
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Step 1: Find f(x + AX).
Step 2: Subtract f(x).
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Step 1: Find f(x + AX).
Step 2: Subtract f(x).
Step 3: Divide by Ax.
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Let P represent any point on the graph of f.

Let t be the line that is tangent to Y
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Step 1: Find f(x + AX).

Step 2: Subtract f(x).

Step 3: Divide by Ax.

Step 4. Evaluate the limit as Ax approaches 0.




Consider the function f whose graph is shown here.
Let P represent any point on the graph of f.

Let t be the line that is tangent to Y
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Step 1: Find f(x + AX).

Step 2: Subtract f(X). | et’s do some sample problems.
Step 3: Divide by Ax.

Step 4. Evaluate the limit as Ax approaches 0.




Given any function f. The function ', the derivative of f, is defined by

_Lim f(x + Ax) — f(x?
 Ax>0 AX
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The four-step method

Step 1. Find f(x + AX).

Step 2: Subtract f(x).

Step 3: Divide by Ax.

Step 4. Evaluate the limit as Ax approaches 0.
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The four-step method
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Sample problem #1: Given f(x) = x%. Find f’(x).
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Sample problem #1: Given f(x) = x%. Find f’(x).

These problems are on class worksheet #1.
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Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2: f(x + Ax) — f(x) =



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).
Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?
Step 2: f(x + Ax) — f(x) =



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2: f(x + Ax) — f(x) =
= (5 + 4X + 4AX — X% — 2X AX — AX?)



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2: f(x + Ax) — f(x) =
= (5 + 4X + 4AX — X% — 2X AX — AX?) —



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2: f(x + Ax) — f(x) =
= (5 + 4X + 4AX — X2 — 2X AX — AX2) — (5 + 4X — X?)



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?
Step 2: f(x + Ax) — f(x) =
=(5+4X+4AAX = X2 = 2X AX = AX?) = (B + 4x — X?) =



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?
Step 2: f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5 + 4X + 4AX — X2 — 2XAX — AX?



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?
Step 2: f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 — 2XAX — AX? =5



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?
Step 2: f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 — 2XAX — AX? — 5 — 4X



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?
Step 2: f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 — 2XAX — AX? — 5 — 4X + X2



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4x + 4AX — (X% + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?
Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5 + 4x + 4Ax — x? — 2x Ax — Ax?
Step 2: f(x + Ax) — f(x) =

=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4x + X2 =



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5 + 4x + 4Ax — x? — 2x Ax — Ax?
Step 2: f(x + Ax) — f(x) =

=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=B+ 4X + 4AX — X2 — 2XAX — AX2 —% — AX + X2 =



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4x + 4AX — (X% + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?
Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=B + 4% + 4AX — X2 — 2XAX — AX2 —§ — 4K + X2 =



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).
Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4x + 4AX — (X% + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?
Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=B + 4% + 4AX — X2 — 2XAX — AX2 —§ — 4K + X2 =
= 4AX



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).
Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4x + 4AX — (X% + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?
Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=B+ 4K + 4AX — 2 — 2XAX — AX2 - — 4K + X2 =
= 4AX



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).
Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4x + 4AX — (X% + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?
Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=B+ 4K + 4AX — 2 — 2XAX — AX2 - — 4K + X2 =
= 4AX — 2X AX



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).
Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4x + 4AX — (X% + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?
Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=B+ 4K + 4AX — 2 — 2XAX — AX2 - — 4K + X2 =
= 4AX — 2X AX — AX?



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).
Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4x + 4AX — (X% + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?
Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4Ax — 2X Ax — Ax?



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4x + 4AX — (X% + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4Ax — 2X Ax — Ax?

Step 3:



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3 f(x + Ax) — f(x)

Ste
¥ AX




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3 f(x + Ax) —f(x) _

Ste
¥ AX




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Ste
¥ AX




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(X) _ 4AX — 2XAX — AX? _

Step
AX AX




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(X) _ 4AX — 2XAX — AX? _

Step
AX AX

A




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(X) _ 4AX — 2XAX — AX? _

Step
AX AX

4 —




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 -2X




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 - 2X -




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 —-2X - AX




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 -2x — Ax




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 -2x — Ax

Step 4.



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 -2x — Ax

Step 4: f'(x) =



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 -2x — Ax

[ f(x + Ax) — f(x)
Step 4: f'(x)= LIM ( Az )




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 -2x — Ax

[ f(x + Ax) — f(x)
Step 4: f'(x)= LIM ( Az )




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 -2x — Ax

e Lim?(x+Ax)—f(x7: :
Step 4 £'(x) = 350 ~ AI;_r)nO




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =

Step

=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4x + X2 =

= 4AX — 2x AX — Ax?

Step 4: f'(x)

AX

— Lim
AX >0

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

=4 -2x — Ax

AX

?(x + AX) — f(x?

AX

= Lim (4 — 2Xx — AX)
Ax>0



Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step
AX AX

=4 -2x — Ax

e L-m?(x+Ax)—f(x7: - oy _
Step 4: f'(x)= ' ~ AI;(|_r>n0(4 2X — AX)




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4x + 4AX — (X% + 2XAX + AX?) =
=5+ 4x + 4Ax — x? — 2x Ax — Ax?

Step 2. f(x + Ax) — f(x) =
=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4X + X? =
= 4Ax — 2X Ax — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step =4 - 2x — Ax
AX AX 0

o Ul AY ] = i e
Step 4. f'(x) = Ax|->0 - AI;(|_r>n0(4 2X — AX)




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).

Step 1: f(x + Ax) =5+ 4(X + AX) — (X + AX)? =
=5+ 4X + 4AX — (X2 + 2XAX + AX?) =
=5+ 4x + 4AX — x2 — 2x AX — Ax?

Step 2. f(x + Ax) — f(x) =

=(5+4AX+4AX - X2 —=2X AX — AX?) = (B +4X —X?) =
=5+ 4X + 4AX — X2 = 2XAX — AX? =5 —4x + X2 =

= 4AX — 2x AX — Ax?

3. f(x + Ax) —f(x) _ 4AX — 2XAX — AX?

Step =4 - 2x — Ax
AX AX 0
e L'm?(x+Ax)—f(x7: : oy ‘l 4
Step 4: f'(x) = Ax|->0 - AI;(| _r)no(4 2X — AX) = 4 — 2X




Sample problem #2: Given f(x) =5 + 4x — x2. Find f '(X).
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= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax



Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
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Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax

3 f(x + Ax) — f(x)
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¥ AX




Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax
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= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
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Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
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Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
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Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
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= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax
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Step
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Step 4.



Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
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3. f(x + Ax) — f(x) _ 4XAX + 2AX*— 3AX
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax
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Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax

3. f(x + Ax) — f(x) _ 4XAX + 2AX*— 3AX

Step =4x +2Ax -3
AX AX 0
Step4: £'(x)= I3 ~ AI;(|_r>n()(4x +2AX—-3)=4x -3




Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax

3. f(x + Ax) — f(x) _ 4XAX + 2AX*— 3AX

Step =4x +2Ax -3
AX AX 0
Step4: £'(x)= I3 ~ AI;(|_r>n()(4x +2AX—-3)=4x -3

If f(x) = 2x? - 3x + 5,



Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax

3. f(x + Ax) — f(x) _ 4XAX + 2AX*— 3AX

Step =4x +2Ax -3
AX AX 0
Step4: £'(x)= I3 ~ AI;(|_r>n()(4x +2AX—-3)=4x -3

If f(x) = 2x?> — 3x + 5, then



Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax

3. f(x + Ax) — f(x) _ 4XAX + 2AX*— 3AX

Step =4x +2Ax -3
AX AX 0
Step4: £'(x)= I3 ~ AI;(|_r>n()(4x +2AX—-3)=4x -3

If f(x) = 2x? — 3x + 5, then f'(x)



Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax

3. f(x + Ax) — f(x) _ 4XAX + 2AX*— 3AX

Step =4x +2Ax -3
AX AX 0
Step4: £'(x)= I3 ~ AI;(|_r>n()(4x +2AX—-3)=4x -3

If f(x) = 2x* - 3x + 5, then f '(x) =



Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax

3. f(x + Ax) — f(x) _ 4XAX + 2AX*— 3AX

Step =4x +2Ax -3
AX AX 0
Step4: £'(x)= I3 ~ AI;(|_r>n()(4x +2AX—-3)=4x -3

If f(x) =2x>-3x+5,thenf'(x)=4x-3



Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5
Step 2. f(x + Ax) — f(x) =
= (2X?% + AXAX + 2AX? = 3Xx — 3AX + 5) — (2x? = 3x + 5) =
= 2X2 + 4XAX + 2AX? = 3X —=3AX +5-2x2+ 3x -5 =
= 4xAX + 2Ax? - 3Ax

3. f(x + Ax) — f(x) _ 4XAX + 2AX*— 3AX

Step =4x +2Ax -3
AX AX 0
Step4: £'(x)= I3 ~ AI;(|_r>n()(4x +2AX—-3)=4x -3

If f(x) =2x?>-3x+5,thenf'(x)=4x -3



Sample problem #4: Given f(x) =2x?>-3x + 5. Find f'(x).

Step 1: f(x + Ax) =2(X + AX)° = 3(X + AX) +5 =
= 2(X? + 2XAX + AX?) = 3x —3Ax + 5 =
= 2x? + 4xAX + 2Ax? - 3x - 3Ax + 5

Step 2: f(x + Ax) — f(x) =

Good luck on your homework !!
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= 4xAx + 2Ax2 - 3Ax

 A(x + Ax) - f(x) _ 4XAX + 2AX?*— 3AX

Step 3 =4x +2Ax -3
AX AX 0
e L'm?(x+Ax)—f(x) _ ‘l
Step 4: f'(x) = Ax|->0 - Al;(I _r>n0(4x +2AX-3)=4x -3

If f(x) =2x?>-3x+5,thenf'(x)=4x -3






