Algebra 2 Worksheet \#8 Unit 9 page 1

1. Find the sum of the first 50 terms of an arithmetic sequence in which $\mathrm{a}_{1}=5$ and $\mathrm{d}=3$.
2. Find the sum of the first 10 terms of a geometric sequence in which $\mathrm{a}_{1}=5$ and $\mathrm{r}=3$.
3. Find the sum of the first 50 terms of the sequence defined by $\mathrm{a}_{\mathrm{n}}=4 \mathrm{n}-1$.
4. Find the sum of the first 10 terms of the sequence defined by $\mathrm{a}_{\mathrm{n}}=3(2)^{\mathrm{n}-1}$.
5. Find the sum of the first 10 terms of the sequence defined by $a_{n+1}=-2 a_{n}$ where $a_{1}=-1$.
6. Find the sum of the first 30 terms of the sequence defined by $a_{n+1}=a_{n}+6$ where $a_{1}=4$.
\qquad
7. Find the sum of the first 30 terms of the sequence $4,8,12,16, \ldots$
8. Find the sum of the first 10 terms of the sequence $4,8,16,32, \ldots$
9. Evaluate the series $5+8+11+14+\ldots+701$.
10. Evaluate the series $5+10+20+40+\ldots+2560$.
11. Evaluate the series $4+1+\frac{1}{4}+\frac{1}{16}+\cdots$

Algebra 2 Worksheet \#8 Unit 9 page 3

Evaluate each of the following.
12. $\sum_{k=1}^{5} k^{2}$
13. $\sum_{j=1}^{40}(-1)^{j}\left(\frac{j}{40}\right)$
14. $\sum_{i=1}^{12}(3)(2)^{i-1}$
15. $\sum_{i=1}^{\infty}(2)\left(\frac{2}{3}\right)^{i-1}$
16. $\sum_{i=1}^{60}(6 i+1)$

Algebra 2 Worksheet \#8 Unit 9 page 4

Solve each of the following.
17. A job has a starting salary of $\$ 39,000$ with a guaranteed increase of $\$ 750$ per year. Find the total salary for the first 12 years.
18. A job has a starting salary of $\$ 39,000$ with a guaranteed increase of 2% per year. Find the total salary for the first 12 years.
19. A ball is dropped from a height of 200 inches onto a concrete floor. On each bounce the ball rebounds to 80% of its previous height. What is the total vertical distance that the ball has traveled when its hits the floor for the sixteenth time?
20. A ball is dropped from a height of 200 inches onto a concrete floor. On each bounce the ball rebounds to 80% of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?

