Algebra II Worksheet \#7 Unit 9 Selected Homework Solutions
Solve each of the following problems. Show your work neatly organized.
2. Find the sum of the first 8 terms of the sequence defined by $a_{n}=(-2)^{n}$.

$$
\begin{array}{ll}
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} & S_{8}=\frac{-2\left[1-(-2)^{8}\right]}{1-(-2)} \\
S_{8}=\frac{a_{1}\left(1-r^{8}\right)}{1-r} & S_{8}=\frac{-2(1-256)}{3}=170
\end{array}
$$

5. Evaluate the series $3+6+12+24+48+\ldots+3072$.

\[

\]

6. Evaluate the infinite series $1-.5+.25-.125+\ldots$
infinite geometric series $\quad S=\frac{a_{1}}{1-\mathbf{r}}$

$$
a_{1}=1 \quad r=-0.5 \quad S=\frac{1}{1-(-.5)}=\frac{1}{1.5}=\frac{10}{15}=\frac{2}{3}
$$

Solve each of the following problems. Show your work neatly organized.
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)^{i-1}=\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)^{0}+\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)^{1}+\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)^{2}+\ldots$
infinite geometric series

$$
\begin{aligned}
& \text { finite geometric series } \\
& a_{1}=\frac{2}{3} \quad r=\frac{1}{2} \quad S=\frac{a_{1}}{1-r} \quad S=\frac{\frac{2}{3}}{1-\frac{1}{2}}=\frac{\frac{2}{3}}{\frac{1}{2}}=\frac{2}{3}(2)=\frac{4}{3}
\end{aligned}
$$

10. A ball is dropped from a height of $\mathbf{1 0 0}$ inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{8 0 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when its hits the floor for the tenth time? (Both cases below are geometric series.)

$$
\begin{gathered}
\text { Downward } \\
100+80+64+\ldots \\
\mathrm{a}_{1}=100 \quad \mathrm{r}=.8 \quad \mathrm{n}=10 \\
\mathrm{~S}_{10}=\frac{100\left(1-.8^{10}\right)}{1-.8} \approx 446.31
\end{gathered}
$$

$$
\begin{array}{rlrl}
\text { Upward } & & \\
\begin{array}{cl}
80+64+51.2+\ldots . & \text { Total }
\end{array} & \approx 446.31+346.31 \\
\mathrm{a}_{1}=80 \quad \mathrm{r}=.8 \mathrm{n}=9 & & \approx 792.6 \\
80\left(1-.8^{9}\right) & &
\end{array}
$$

$$
S_{10}=\frac{80\left(1-.8^{9}\right)}{1-.8} \approx 346.31
$$

The total vertical distance is about 792.6 inches.

