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Our goal is to derive a formula for Sn, the sum of the first n 
terms of a geometric sequence.  Consider the sum of the first 8 
terms of the geometric sequence in which a1 = 3 and r = 2.
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Sn(1 – r) = a1(1 – rn)

Our goal is to derive a formula for Sn, the sum of the first n 
terms of a geometric sequence.  Consider the sum of the first 8 
terms of the geometric sequence in which a1 = 3 and r = 2.
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where a1 is the first term and r is the common ratio.

There is another, equivalent formula, for this that is useful.

a1(1 – rn) =



Sn = 
a1(1 – rn)

1 – r
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where a1 is the first term and r is the common ratio.

There is another, equivalent formula, for this that is useful.

a1(1 – rn) = a1
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where a1 is the first term and r is the common ratio.
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where a1 is the first term and r is the common ratio.
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where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

#1:  a1 = 1,  r = 0.5

#3:  a1 = 1,  r = 2

#2:  a1 = 1,  r = -0.5

#4:  a1 = 1,  r = -2

We will evaluate and compare S5 in 4 different geometric series.
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where a1 is the first term and r is the common ratio.
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We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

The first term is 1.  Now multiply by 0.5 recursively.
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We will evaluate and compare S5 in 4 different geometric series.
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where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

The first term is 1.  Now multiply by 0.5 recursively.

S5 = 1 + 0.5 + 0.25
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where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

The first term is 1.  Now multiply by 0.5 recursively.

S5 = 1 + 0.5 + 0.25 + 0.125
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where a1 is the first term and r is the common ratio.
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a1 – ran
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We will evaluate and compare S5 in 4 different geometric series.
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The first term is 1.  Now multiply by 0.5 recursively.
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S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 =



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.
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We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 
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We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 
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The first term is 1.  
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where a1 is the first term and r is the common ratio.
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or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

The first term is 1.  Now multiply by -0.5 recursively.

S5 = 1
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where a1 is the first term and r is the common ratio.
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or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

The first term is 1.  Now multiply by -0.5 recursively.

S5 = 1 + -0.5
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where a1 is the first term and r is the common ratio.
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or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

The first term is 1.  Now multiply by -0.5 recursively.

S5 = 1 + -0.5 + 0.25
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where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

The first term is 1.  Now multiply by -0.5 recursively.

S5 = 1 + -0.5 + 0.25 + -0.125
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1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

The first term is 1.  Now multiply by -0.5 recursively.

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 =
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a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 =



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

The first term is 1.  

S5 = 1



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

The first term is 1.  Now multiply by 2 recursively.

S5 = 1



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

The first term is 1.  Now multiply by 2 recursively.

S5 = 1 + 2



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

The first term is 1.  Now multiply by 2 recursively.

S5 = 1 + 2 + 4



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

The first term is 1.  Now multiply by 2 recursively.

S5 = 1 + 2 + 4 + 8



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

The first term is 1.  Now multiply by 2 recursively.

S5 = 1 + 2 + 4 + 8 + 16



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 =



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

S5 =



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

The first term is 1.  

S5 = 1



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

The first term is 1.  Now multiply by -2 recursively.

S5 = 1



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

The first term is 1.  Now multiply by -2 recursively.

S5 = 1 + -2



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

The first term is 1.  Now multiply by -2 recursively.

S5 = 1 + -2 + 4



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

The first term is 1.  Now multiply by -2 recursively.

S5 = 1 + -2 + 4 + -8



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

The first term is 1.  Now multiply by -2 recursively.

S5 = 1 + -2 + 4 + -8 + 16



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

S5 = 1 + -2 + 4 + -8 + 16 =



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

S5 = 1 + -2 + 4 + -8 + 16 = 11



Sn = 
a1(1 – rn)

1 – r

The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 
a1 – ran

1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

#3:  a1 = 1,  r = 2

S5 = 1 + 2 + 4 + 8 + 16 = 31

#4:  a1 = 1,  r = -2

S5 = 1 + -2 + 4 + -8 + 16 = 11



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

In these two examples, |r| < 1. 

Sn = 
a1(1 – rn)

1 – r
a1 – ran



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

In these two examples, |r| < 1. Because of this, each successive term is 
closer to 0 than the one before it.  

Sn = 
a1(1 – rn)

1 – r
a1 – ran



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

In these two examples, |r| < 1. Because of this, each successive term is 
closer to 0 than the one before it.  Series like these are called 
converging.  

Sn = 
a1(1 – rn)

1 – r
a1 – ran



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

In these two examples, |r| < 1. Because of this, each successive term is 
closer to 0 than the one before it.  Series like these are called 
converging.  As n increases, 

Sn = 
a1(1 – rn)

1 – r
a1 – ran



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

In these two examples, |r| < 1. Because of this, each successive term is 
closer to 0 than the one before it.  Series like these are called 
converging.  As n increases, these terms in the formula approach 0, 

Sn = 
a1(1 – rn)

1 – r
a1 – ran



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

In these two examples, |r| < 1. Because of this, each successive term is 
closer to 0 than the one before it.  Series like these are called 
converging.  As n increases, these terms in the formula approach 0, 
and Sn approaches a specific number, S, as a limiting value

Sn = 
a1(1 – rn)

1 – r
a1 – ran



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

In these two examples, |r| < 1. Because of this, each successive term is 
closer to 0 than the one before it.  Series like these are called 
converging.  As n increases, these terms in the formula approach 0, 
and Sn approaches a specific number, S, as a limiting value where 

Sn = 
a1(1 – rn)

1 – r
a1 – ran

S = 
a1

1 – r



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will evaluate and compare S5 in 4 different geometric series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

In these two examples, |r| < 1. Because of this, each successive term is 
closer to 0 than the one before it.  Series like these are called 
converging.  As n increases, these terms in the formula approach 0, 
and Sn approaches a specific number, S, as a limiting value where 

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 

S20 = 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 

S20 = 1(



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 

S20 = 1(1 – 0.5 20) 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 

S20 = 1 – 0.5 
1(1 – 0.5 20) 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 

S20 = 1 – 0.5 
1(1 – 0.5 20) 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 

S20 = 1 – 0.5 
1(1 – 0.5 20)  1.999998



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

S20 = 1 – 0.5 
1(1 – 0.5 20)  1.999998

a1

1 – rIf |r| < 1, then  S = 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

S20 = 1 – 0.5 
1(1 – 0.5 20)  1.999998

a1

1 – rIf |r| < 1, then  S = 

S = 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

S20 = 1 – 0.5 
1(1 – 0.5 20)  1.999998

a1

1 – rIf |r| < 1, then  S = 

S = 1 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

S20 = 1 – 0.5 
1(1 – 0.5 20)  1.999998

a1

1 – rIf |r| < 1, then  S = 

S = 1 – 0.5 
1 



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

S20 = 1 – 0.5 
1(1 – 0.5 20)  1.999998

a1

1 – rIf |r| < 1, then  S = 

S = 1 – 0.5 
1 = 2



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

S20 = 1 – 0.5 
1(1 – 0.5 20)  1.999998

a1

1 – rIf |r| < 1, then  S = 

S = 1 – 0.5 
1 = 2



The sum of the first n terms of a geometric series is

where a1 is the first term and r is the common ratio.

Sn = 1 – r
or

We will calculate S20 and S for these two series.

#1:  a1 = 1,  r = 0.5

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1.9375 

#2:  a1 = 1,  r = -0.5

S5 = 1 + -0.5 + 0.25 + -0.125 + 0.0625 = 0.6875

Sn = 
a1(1 – rn)

1 – r
a1 – ran

a1

1 – rIf |r| < 1, then  S = 

S20 = 1 – 0.5 
1(1 – 0.5 20)  1.999998 S = 1 – 0.5 

1 = 2
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