Algebra II

Lesson \#6 Unit 9

Class Worksheet \#6
For Worksheet \#7

This lesson involves geometric series.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$,

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\mathbf{S}_{8}=
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\mathbf{S}_{8}=
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\mathrm{S}_{8}=
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
S_{8}=3
$$

The first term is 3.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\mathbf{S}_{8}=3
$$

The first term is 3.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\mathbf{S}_{8}=3
$$

The first term is 3 . Now, multiply by 2 recursively.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
S_{8}=3+6
$$

The first term is 3 . Now, multiply by 2 recursively.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
S_{8}=3+6+12
$$

The first term is 3 . Now, multiply by 2 recursively.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
S_{8}=3+6+12+24
$$

The first term is 3 . Now, multiply by 2 recursively.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
S_{8}=3+6+12+\underset{\sim}{24}+48
$$

The first term is 3 . Now, multiply by 2 recursively.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
S_{8}=3+6+12+24+48+96
$$

The first term is 3 . Now, multiply by 2 recursively.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
S_{8}=3+6+12+24+48+96+192
$$

The first term is 3 . Now, multiply by 2 recursively.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for $\mathbf{S}_{\mathbf{n}}$, the sum of the first \mathbf{n} terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
S_{8}=3+6+12+24+48+96+192+384
$$

The first term is 3 . Now, multiply by 2 recursively.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for \mathbf{S}_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
S_{8}=3+6+12+24+48+96+192+384
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence. Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
S_{8}=3+6+12+24+48+96+192+384
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
S_{8}=3+6+12+24+48+96+192+384
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
S_{8}=3+6+12+24+48+96+192+384
$$

$2 S_{8}$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
S_{8}=3+6+12+24+48+96+192+384
$$

$$
2 \mathrm{~S}_{8}=
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\begin{aligned}
S_{8} & =3+6+12+24+48+96+192+384 \\
2 S_{8} & =6
\end{aligned}
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\begin{aligned}
S_{8} & =3+6+12+24+48+96+192+384 \\
2 S_{8} & =6+12
\end{aligned}
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\begin{aligned}
S_{8} & =3+6+12+24+48+96+192+384 \\
2 S_{8} & =6+12+24
\end{aligned}
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\begin{aligned}
S_{8} & =3+6+12+24+48+96+192+384 \\
2 S_{8} & =6+12+24+48
\end{aligned}
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\begin{aligned}
S_{8} & =3+6+12+24+48+96+192+384 \\
2 S_{8} & =6+12+24+48+96
\end{aligned}
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192
\end{aligned}
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384
\end{aligned}
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Multiply both sides of the equation by r. (2 in this case)

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Subtract the two equations.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D .
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D .
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=\mathbf{3}$ and $\mathbf{r}=\mathbf{2}$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } \mathbf{A}=\mathbf{B} \text { and } \mathbf{C}=\mathbf{D} \text {, then } \mathbf{A}-\mathbf{C}=\mathbf{B}-\mathbf{D} .
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D .
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D \text {, then } A-C=B-D
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D .
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D .
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D .
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768
\end{gathered}
$$

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D, \text { then } A-C=B-D .
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768
\end{gathered}
$$

Notice that these terms all 'cancelled each other out' in the subtraction process.

Subtract the two equations.
We are Applying the subtraction property of equations.

$$
\text { If } A=B \text { and } C=D \text {, then } A-C=B-D .
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768
\end{gathered}
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768
\end{gathered}
$$

Next, we will factor each side.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(
\end{gathered}
$$

Next, we will factor each side.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1
\end{gathered}
$$

Next, we will factor each side.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)
\end{gathered}
$$

Next, we will factor each side.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=
\end{gathered}
$$

Next, we will factor each side.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(
\end{gathered}
$$

Next, we will factor each side.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1
\end{gathered}
$$

Next, we will factor each side.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(\mathbf{1}-\mathbf{2})=3(\mathbf{1}-\mathbf{2 5 6})
\end{gathered}
$$

Next, we will factor each side.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256)
\end{gathered}
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} \mathbf{r}^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} \mathbf{r}^{n-2}+a_{1} \mathbf{r}^{n-1}
\end{gathered}
$$

Next, we will perform the same steps on this geometric series.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} \mathbf{r}^{n-2}+a_{1} \mathbf{r}^{n-1}
\end{gathered}
$$

For a geometric sequence, $a_{n}=a_{1} r^{n-1}$

Next, we will perform the same steps on this geometric series.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} \mathbf{r}^{n-2}+a_{1} \mathbf{r}^{n-1}
\end{gathered}
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} \mathbf{r}^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} \mathbf{r}^{n-2}+a_{1} \mathbf{r}^{n-1}
\end{gathered}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r_{n}
\end{gathered}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r_{n}=
\end{gathered}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r
\end{aligned}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}
\end{aligned}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}
\end{gathered}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} \mathbf{r}^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}
\end{gathered}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} \mathbf{r}^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots
\end{gathered}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} \mathbf{r}^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}
\end{gathered}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& \mathrm{S}_{8}=\mathbf{3}+\mathbf{6}+\mathbf{1 2}+\mathbf{2 4}+\mathbf{4 8}+\mathbf{9 6}+\mathbf{1 9 2}+\mathbf{3 8 4} \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& \mathrm{~S}_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} \mathbf{r}+\mathbf{a}_{1} \mathbf{r}^{2}+\mathbf{a}_{1} \mathbf{r}^{3}+\ldots+a_{1} \mathbf{r}^{n-2}+\mathbf{a}_{1} \mathbf{r}^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n}
\end{aligned}
$$

Multiply both sides by r.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n}
\end{gathered}
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& \mathrm{S}_{8}=\mathbf{3}+\mathbf{6}+\mathbf{1 2}+\mathbf{2 4}+\mathbf{4 8}+\mathbf{9 6}+\mathbf{1 9 2}+\mathbf{3 8 4} \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& \mathrm{~S}_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} \mathbf{r}+\mathbf{a}_{1} \mathbf{r}^{2}+\mathbf{a}_{1} \mathbf{r}^{3}+\ldots+a_{1} \mathbf{r}^{n-2}+\mathbf{a}_{1} \mathbf{r}^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n}
\end{aligned}
$$

Subtract the two equations.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}
\end{aligned}
$$

Subtract the two equations.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}
\end{aligned}
$$

Subtract the two equations.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r_{1}=\mathbf{a}_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=
\end{aligned}
$$

Subtract the two equations.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}
\end{aligned}
$$

Subtract the two equations.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n}
\end{aligned}
$$

Subtract the two equations.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n}
\end{aligned}
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n}
\end{aligned}
$$

Once again, notice that these terms all 'cancelled each other out' in the subtraction process.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n}
\end{aligned}
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} \mathbf{r}^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n}
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1-r)
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1-r)=
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1-r)=a_{1}(
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1-r)=a_{1}(1
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1-r)=a_{1}\left(1-r^{n}\right)
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1-r)=a_{1}\left(1-r^{n}\right)
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $a_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \sqrt{8} \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1-r)=a_{1}\left(1-r^{n}\right)
\end{aligned}
$$

Factor and compare.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1-r)=a_{1}\left(1-r^{n}\right)
\end{aligned}
$$

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $r=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
S_{n}(1-r)=a_{1}\left(1-r^{n}\right)
\end{gathered}
$$

Solve for \mathbf{S}_{n}.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{aligned}
& S_{8}=3+6+12+24+48+96+192+384 \\
& 2 S_{8}=6+12+24+48+96+192+384+768 \\
& S_{8}-2 S_{8}=3-768 \\
& S_{8}(1-2)=3(1-256) \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
& S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& S_{n}(1-r)=a_{1}\left(1-r^{n}\right) \\
& \hline S_{n}=
\end{aligned}
$$

Solve for \mathbf{S}_{n}.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
S_{n}(1-r)=a_{1}\left(1-r^{n}\right) \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{}
\end{gathered}
$$

Solve for \mathbf{S}_{n}.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
S_{n}(1-r)=a_{1}\left(1-r^{n}\right) \\
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{gathered}
$$

Solve for \mathbf{S}_{n}.

This lesson involves geometric series. A geometric series is an indicated sum of the terms of a geometric sequence.
Our goal is to derive a formula for S_{n}, the sum of the first n terms of a geometric sequence. Consider the sum of the first 8 terms of the geometric sequence in which $\mathbf{a}_{1}=3$ and $\mathbf{r}=2$.

$$
\begin{gathered}
S_{8}=3+6+12+24+48+96+192+384 \\
2 S_{8}=6+12+24+48+96+192+384+768 \\
S_{8}-2 S_{8}=3-768 \\
S_{8}(1-2)=3(1-256) \\
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\ldots+a_{1} r^{n-1}+a_{1} r^{n} \\
S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
S_{n}(1-r)=a_{1}\left(1-r^{n}\right) \\
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{gathered}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\mathbf{a}_{1}\left(1-r^{n}\right)
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\mathbf{a}_{1}\left(1-\mathbf{r}^{n}\right)=
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\mathbf{a}_{1}\left(1-r^{n}\right)=a_{1}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\mathbf{a}_{1}\left(1-\mathbf{r}^{\mathbf{n}}\right)=\mathbf{a}_{1}-
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\mathbf{a}_{1}\left(1-r^{n}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\mathbf{a}_{1}\left(1-\mathbf{r}^{n}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}}
$$

Since $\mathbf{a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}-1}$,

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad \mathbf{a}_{1}\left(\mathbf{1}-\mathbf{r}^{\mathrm{n}}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} \\
& \text { Since } \mathbf{a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}-1},
\end{aligned}
$$

Multiply both sides of the equation by r.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad \mathbf{a}_{1}\left(1-r^{n}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} \\
& \text { Since } \mathbf{a}_{\mathrm{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}-1}, \mathbf{r} \mathbf{a}_{\mathrm{n}}
\end{aligned}
$$

Multiply both sides of the equation by r.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad \mathbf{a}_{1}\left(1-r^{n}\right)=a_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} \\
& \text { Since } \mathbf{a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}-1}, \mathbf{r a}_{\mathbf{n}}=
\end{aligned}
$$

Multiply both sides of the equation by r.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{gathered}
\mathbf{a}_{1}\left(\mathbf{1}-\mathbf{r}^{\mathbf{n}}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} \\
\text { Since } \mathbf{a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}-1}, \mathbf{r a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} .
\end{gathered}
$$

Multiply both sides of the equation by r.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{gathered}
\mathbf{a}_{1}\left(\mathbf{1}-\mathbf{r}^{\mathrm{n}}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} \\
\text { Since } \mathbf{a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}-1}, \mathbf{r a} \mathbf{a}_{\mathrm{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}} .
\end{gathered}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{gathered}
\mathbf{a}_{1}\left(\mathbf{1}-\mathbf{r}^{\mathrm{n}}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} \\
\text { Since } \mathbf{a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}-1}, \mathbf{r a} \mathbf{a}_{\mathrm{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}} .
\end{gathered}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{gathered}
\mathbf{a}_{1}\left(1-r^{n}\right)=a_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} \\
\text { Since } a_{n}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}-1}, r \mathbf{a}_{\mathrm{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}} .
\end{gathered}
$$

Now, make a substitution.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{gathered}
\mathbf{a}_{1}\left(1-r^{n}\right)=a_{1}-\mathbf{a}_{1} r^{n} \\
\text { Since } a_{n}=\mathbf{a}_{1} r^{n-1}, r a_{n}=a_{1} r^{n} .
\end{gathered}
$$

Now, make a substitution.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{gathered}
\mathbf{a}_{1}\left(\mathbf{1}-\mathbf{r}^{\mathrm{n}}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}}= \\
\text { Since } \mathbf{a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}-1}, \mathbf{r} \mathbf{a}_{\mathrm{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}} .
\end{gathered}
$$

Now, make a substitution.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad \mathbf{a}_{1}\left(1-r^{n}\right)=a_{1}-\mathbf{a}_{1} \mathbf{r}^{n}=a_{1} \\
& \text { Since } \mathbf{a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}-1}, \mathbf{r a}_{\mathbf{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}} .
\end{aligned}
$$

Now, make a substitution.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \mathbf{a}_{1}\left(1-r^{n}\right)=a_{1}-a_{1} r^{n}=a_{1}- \\
& \text { Since } a_{n}=a_{1} r^{n-1}, r a_{n}=a_{1} r^{n} .
\end{aligned}
$$

Now, make a substitution.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad a_{1}\left(1-r^{n}\right)=a_{1}-a_{1} r^{n}=a_{1}-r a_{n} \\
& \text { Since } a_{n}=a_{1} r^{n-1}, r a_{n}=a_{1} r^{n} .
\end{aligned}
$$

Now, make a substitution.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad \mathbf{a}_{1}\left(1-\mathbf{r}^{\mathrm{n}}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}}=\mathbf{a}_{1}-\mathbf{r} \mathbf{a}_{\mathrm{n}} \\
& \text { Since } \mathbf{a}_{\mathrm{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}-1}, \mathbf{r} \mathbf{a}_{\mathrm{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} .
\end{aligned}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad \mathbf{a}_{1}\left(1-\mathbf{r}^{\mathrm{n}}\right)=\mathbf{a}_{1}-\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}}=\mathbf{a}_{1}-\mathbf{r} \mathbf{a}_{\mathrm{n}} \\
& \text { Since } \mathbf{a}_{\mathrm{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathrm{n}-1}, \mathbf{r} \mathbf{a}_{\mathrm{n}}=\mathbf{a}_{1} \mathbf{r}^{\mathbf{n}} .
\end{aligned}
$$

Therefore, substituting again, we get

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad a_{1}\left(1-r^{n}\right)=a_{1}-a_{1} r^{n}=a_{1}-r a_{n} \\
& \text { Since } a_{n}=a_{1} r^{n-1}, r_{n}=a_{1} r^{n} .
\end{aligned}
$$

Therefore, substituting again, we get

$$
S_{n}=
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad a_{1}\left(1-r^{n}\right)=a_{1}-a_{1} r^{n}=a_{1}-r a_{n} \\
& \text { Since } a_{n}=a_{1} r^{n-1}, r a_{n}=a_{1} r^{n} .
\end{aligned}
$$

Therefore, substituting again, we get

$$
S_{n}=\xrightarrow[\mathbf{a}_{1}-\mathbf{r} \mathbf{a}_{\mathbf{n}} \leftarrow]{ }
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad a_{1}\left(1-r^{n}\right)=a_{1}-a_{1} r^{n}=a_{1}-r a_{n} \\
& \text { Since } a_{n}=a_{1} r^{n-1}, r_{n}=a_{1} r^{n} .
\end{aligned}
$$

Therefore, substituting again, we get

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
There is another, equivalent formula, for this that is useful.

$$
\begin{aligned}
& \quad a_{1}\left(1-r^{n}\right)=a_{1}-a_{1} r^{n}=a_{1}-r a_{n} \\
& \text { Since } a_{n}=a_{1} r^{n-1}, r a_{n}=a_{1} r^{n} .
\end{aligned}
$$

Therefore, substituting again, we get

$$
S_{n}=\frac{\mathbf{a}_{1}-\mathbf{r} \mathbf{a}_{\mathbf{n}}}{1-\mathbf{r}}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.
$\# 1: a_{1}=1, r=0.5$
\#2: $\mathrm{a}_{1}=1, \mathrm{r}=\mathbf{- 0 . 5}$
\#3: $\mathrm{a}_{1}=1, \mathrm{r}=2$
\#4: $a_{1}=1, r=-2$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\# 1: a_{1}=1, r=0.5
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{gathered}
\# 1: a_{1}=1, r=0.5 \\
S_{5}=
\end{gathered}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{gathered}
\# 1: a_{1}=1, r=0.5 \\
S_{5}=1
\end{gathered}
$$

The first term is $\mathbf{1 .}$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{gathered}
\# 1: a_{1}=1, r=0.5 \\
S_{5}=1
\end{gathered}
$$

The first term is 1 . Now multiply by 0.5 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.
$\# 1: a_{1}=1, r=0.5$

$$
S_{5}=1+0.5
$$

The first term is 1 . Now multiply by 0.5 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.
\#1: $a_{1}=1, r=0.5$

$$
S_{5}=1+0.5+0.25
$$

The first term is 1 . Now multiply by 0.5 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.
\#1: $a_{1}=1, r=0.5$

$$
S_{5}=1+0.5+0.25+0.125
$$

The first term is 1 . Now multiply by 0.5 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.
\#1: $a_{1}=1, r=0.5$

$$
S_{5}=1+0.5+0.25+0.125+0.0625
$$

The first term is 1 . Now multiply by 0.5 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{aligned}
& \# 1: \mathrm{a}_{1}=1, \mathrm{r}=0.5 \\
& \quad \mathrm{~S}_{5}=1+0.5+0.25+0.125+0.0625=
\end{aligned}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-0.5$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

$$
\# 2: a_{1}=1, r=-0.5
$$

$$
S_{5}=
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

$$
\# 2: a_{1}=1, r=-0.5
$$

$$
S_{5}=1
$$

The first term is $\mathbf{1 .}$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

$$
\# 2: a_{1}=1, r=-0.5
$$

$$
S_{5}=1
$$

The first term is $\mathbf{1}$. Now multiply by $\mathbf{- 0 . 5}$ recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

$$
\# 2: a_{1}=1, r=-0.5
$$

$$
S_{5}=1+-0.5
$$

The first term is $\mathbf{1}$. Now multiply by $\mathbf{- 0 . 5}$ recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $a_{1}=1, r=-0.5$

$$
S_{5}=1+-0.5+0.25
$$

The first term is $\mathbf{1}$. Now multiply by $\mathbf{- 0 . 5}$ recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

$$
\# 2: a_{1}=1, r=-0.5
$$

$$
S_{5}=1+-0.5+0.25+-0.125
$$

The first term is $\mathbf{1}$. Now multiply by $\mathbf{- 0 . 5}$ recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

$$
\# 2: a_{1}=1, r=-0.5
$$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625
$$

The first term is $\mathbf{1}$. Now multiply by $\mathbf{- 0 . 5}$ recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

$$
\# 2: a_{1}=1, r=-0.5
$$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

\#3: $\mathrm{a}_{1}=1, r=2$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& \# 3: \\
& a_{1}=1, r=2 \\
& \quad S_{5}=1
\end{aligned}
$$

The first term is 1.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& \# 3: a_{1}=1, r=2 \\
& S_{5}=1
\end{aligned}
$$

The first term is 1 . Now multiply by 2 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2
$$

The first term is 1 . Now multiply by 2 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4
$$

The first term is 1 . Now multiply by 2 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8
$$

The first term is 1 . Now multiply by 2 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16
$$

The first term is 1 . Now multiply by 2 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

\#3: $\mathrm{a}_{1}=1, \mathrm{r}=2$

$$
S_{5}=1+2+4+8+16=31
$$

\#4: $a_{1}=1, r=-2$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31
\end{aligned}
$$

$$
\begin{gathered}
\# 4: a_{1}=1, r=-2 \\
S_{5}=
\end{gathered}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31
\end{aligned}
$$

$$
\# 4: a_{1}=1, r=-2
$$

$$
S_{5}=1
$$

The first term is 1.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31
\end{aligned}
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=1
$$

The first term is 1 . Now multiply by -2 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

\#3: $\mathrm{a}_{1}=1, \mathrm{r}=2$

$$
S_{5}=1+2+4+8+16=31
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=\underset{\sim}{1+-2}
$$

The first term is $\mathbf{1}$. Now multiply by $\mathbf{- 2}$ recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $a_{1}=1, r=-0.5$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

\#3: $\mathrm{a}_{1}=1, \mathrm{r}=2$

$$
S_{5}=1+2+4+8+16=31
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=1+-2+4
$$

The first term is $\mathbf{1}$. Now multiply by $\mathbf{- 2}$ recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

\#3: $\mathrm{a}_{1}=1, \mathrm{r}=2$

$$
S_{5}=1+2+4+8+16=31
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=1+-2+4+-8
$$

The first term is 1 . Now multiply by -2 recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-0.5$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

\#3: $\mathrm{a}_{1}=1, \mathrm{r}=2$

$$
S_{5}=1+2+4+8+16=31
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=1+-2+4+-8+16
$$

The first term is 1 . Now multiply by $\mathbf{- 2}$ recursively.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31
\end{aligned}
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=1+-2+4+-8+16=
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& \# 2: a_{1}=1, r=-0.5 \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31
\end{aligned}
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=1+-2+4+-8+16=11
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\# 1: a_{1}=1, r=0.5
$$

$$
S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-0.5$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

\#3: $\mathrm{a}_{1}=1, \mathrm{r}=2$

$$
S_{5}=1+2+4+8+16=31
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=1+-2+4+-8+16=11
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=\mathbf{- 0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $a_{1}=1, r=-0.5$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

In these two examples, $|\mathrm{r}|<1$.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

In these two examples, $|r|<1$. Because of this, each successive term is closer to 0 than the one before it.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

In these two examples, $|r|<1$. Because of this, each successive term is closer to 0 than the one before it. Series like these are called converging.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

In these two examples, $|r|<1$. Because of this, each successive term is closer to 0 than the one before it. Series like these are called converging. As n increases,

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

In these two examples, $|r|<1$. Because of this, each successive term is closer to 0 than the one before it. Series like these are called converging. As \mathbf{n} increases, these terms in the formula approach $\mathbf{0}$,

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $a_{1}=1, r=-0.5$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

In these two examples, $|r|<1$. Because of this, each successive term is closer to 0 than the one before it. Series like these are called converging. As \mathbf{n} increases, these terms in the formula approach 0 , and S_{n} approaches a specific number, S, as a limiting value

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

In these two examples, $|r|<1$. Because of this, each successive term is closer to 0 than the one before it. Series like these are called converging. As \mathbf{n} increases, these terms in the formula approach 0 , and S_{n} approaches a specific number, S, as a limiting value where

$$
S=\frac{a_{1}}{1-\mathbf{r}}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in 4 different geometric series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-0.5$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

In these two examples, $|r|<1$. Because of this, each successive term is closer to 0 than the one before it. Series like these are called converging. As \mathbf{n} increases, these terms in the formula approach 0 , and S_{n} approaches a specific number, S, as a limiting value where

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
$\# 1: a_{1}=1, r=0.5$

$$
S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-\mathbf{0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=\mathbf{- 0 . 5}$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-0.5$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}= \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
\# 1: & a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
S_{20}= & \underline{1(}
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-0.5$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
\# 1: & a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
S_{20}= & \left.\underline{1\left(1-0.5^{20}\right.}\right)
\end{aligned}
$$

\#2: $\mathrm{a}_{1}=1, \mathrm{r}=-0.5$

$$
S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
$$

If $|r|<1$, then $S=\frac{a_{1}}{1-r}$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5{ }^{20}\right)}{1-0.5} \approx \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

If $|r|<1$, then $S=\frac{a_{1}}{1-r}$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S= \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+\mathbf{0 . 5}+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

If $|r|<1$, then $S=\frac{a_{1}}{1-r}$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S=-1 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

If $|r|<1$, then $S=\frac{a_{1}}{1-r}$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5} \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}=
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}= \\
& 1[
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}= 1\left[1-(-0.5)^{20}\right]
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5{ }^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}=\frac{1\left[1-(-0.5)^{20}\right]}{1--0.5}
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5{ }^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}=
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5{ }^{20}\right)}{1-0.5} \approx 1.999998 \quad S=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}=\frac{1\left[1-(-0.5)^{20}\right]}{1--0.5} \approx 0.666666
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5{ }^{20}\right)}{1-0.5} \approx 1.999998 \quad \mathrm{~S}=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}=\frac{1\left[1-(-0.5)^{20}\right]}{1--0.5} \approx 0.666666 \quad \mathrm{~S}=
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5{ }^{20}\right)}{1-0.5} \approx 1.999998 \quad \mathrm{~S}=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}=\frac{1\left[1-(-0.5)^{20}\right]}{1--0.5} \approx 0.666666 \quad \mathrm{~S}=\frac{1}{}
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5{ }^{20}\right)}{1-0.5} \approx 1.999998 \quad \mathrm{~S}=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \quad S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}=\frac{1\left[1-(-0.5)^{20}\right]}{1--0.5} \approx 0.666666 \quad S=\frac{1}{1--0.5}
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5{ }^{20}\right)}{1-0.5} \approx 1.999998 \quad \mathrm{~S}=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}=\frac{1\left[1-(-0.5)^{20}\right]}{1--0.5} \approx 0.666666 \quad S=\frac{1}{1--0.5}=2 / 3
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio. We will calculate S_{20} and S for these two series.

$$
\begin{aligned}
& \# 1: a_{1}=1, r=0.5 \\
& \quad S_{5}=1+0.5+0.25+0.125+0.0625=1.9375 \\
& S_{20}=\frac{1\left(1-0.5{ }^{20}\right)}{1-0.5} \approx 1.999998 \quad \mathrm{~S}=\frac{1}{1-0.5}=2 \\
& \# 2: a_{1}=1, r=-0.5 \\
& \\
& S_{5}=1+-0.5+0.25+-0.125+0.0625=0.6875 \\
& S_{20}=\frac{1\left[1-(-0.5)^{20}\right]}{1--0.5} \approx 0.666666 \quad S=\frac{1}{1--0.5}=2 / 3
\end{aligned}
$$

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& S_{5}=1+2+4+8+16=31 \\
& \# 4: a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& S_{5}=1+2+4+8+16=31 \\
& \# 4: a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|\mathbf{r}|>1$.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& S_{5}=1+2+4+8+16=31 \\
& \# 4: a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& S_{5}=1+2+4+8+16=31 \\
& \# 4: a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will evaluate and compare S_{5} in $\mathbf{4}$ different geometric series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& S_{5}=1+2+4+8+16=31 \\
& \# 4: a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
\#3: $a_{1}=1, r=2$

$$
S_{5}=1+2+4+8+16=31
$$

\#4: $\mathrm{a}_{1}=1, \mathrm{r}=-2$

$$
S_{5}=1+-2+4+-8+16=11
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$\# 4: a_{1}=1, r=-2$

$$
S_{5}=1+-2+4+-8+16=11
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=1+-2+4+-8+16=11
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31 \\
& S_{19}= \\
& \# 4: a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=1(
$$

$$
\# 4: a_{1}=1, r=-2
$$

$$
S_{5}=1+-2+4+-8+16=11
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\underline{1\left(1-2^{19}\right)}
$$

$$
\# 4: a_{1}=1, r=-2
$$

$$
S_{5}=1+-2+4+-8+16=11
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31 \\
& S_{19}=\frac{1\left(1-2^{19}\right)}{1-2} \\
& \# 4: a_{1}=1, r=-2 \\
& \quad S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287
$$

$$
\# 4: a_{1}=1, r=-2
$$

$$
S_{5}=1+-2+4+-8+16=11
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=
$$

$$
\# 4: a_{1}=1, r=-2
$$

$$
S_{5}=1+-2+4+-8+16=11
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=1(
$$

$$
\# 4: a_{1}=1, r=-2
$$

$$
S_{5}=1+-2+4+-8+16=11
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31 \\
& S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\left(1\left(1-2^{20}\right)\right. \\
& \# 4: a_{1}=1, r=-2 \\
& \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and $S_{\mathbf{2 0}}$ for these two series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31 \\
& S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2} \\
& \# 4: a_{1}=1, r=-2 \\
& \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and $S_{\mathbf{2 0}}$ for these two series.

$$
\begin{aligned}
\# 3: & a_{1}=1, r=2 \\
& S_{5}=1+2+4+8+16=31 \\
S_{19}= & \frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575 \\
\# 4: & a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and $S_{\mathbf{2 0}}$ for these two series.

$$
\begin{aligned}
\# 3: & a_{1}=1, r=2 \\
& S_{5}=1+2+4+8+16=31 \\
S_{19}= & \frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575 \\
\# 4: & a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+-8+16=11
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

\#4: $a_{1}=1, r=-2$

$$
S_{5}=1+-2+4+-8+16=11
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31 \\
& S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575 \\
& \# 4: a_{1}=1, r=-2 \\
& \quad S_{5}=1+-2+4+\mathbf{1}+16=11 \\
& S_{19}=
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\begin{aligned}
& \# 3: a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31 \\
& S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575 \\
& \# 4: a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+\mathbf{1}+16=11 \\
& S_{19}=1
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\begin{aligned}
& \# 3: \quad a_{1}=1, r=2 \\
& \quad S_{5}=1+2+4+8+16=31 \\
& S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575 \\
& \# 4: a_{1}=1, r=-2 \\
& S_{5}=1+-2+4+\mathbf{1}+16=11 \\
& S_{19}=1\left[1-(-2)^{19}\right]
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

\#4: $\mathrm{a}_{1}=1, r=-2$

$$
\begin{aligned}
& \quad S_{5}=1+-2+4+-8+16=11 \\
& S_{19}=\frac{1\left[1-(-2)^{19}\right]}{1--2}
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

\#4: $\mathrm{a}_{1}=1, r=-2$

$$
\begin{aligned}
& S_{5}=1+-2+4+-8+16=11 \\
& S_{19}=\frac{1\left[1-(-2)^{19}\right]}{1--2}=174,763
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

\#4: $\mathrm{a}_{1}=1, r=-2$

$$
\begin{aligned}
& S_{5}=1+-2+4+-8+16=11 \\
& S_{19}=\frac{1\left[1-(-2)^{19}\right]}{1--2}=174,763 \quad S_{20}=
\end{aligned}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

\#4: $\mathrm{a}_{1}=1, r=-2$

$$
\begin{array}{r}
S_{5}=1+-2+4+-8+16=11 \\
S_{19}=\frac{1\left[1-(-2)^{19}\right]}{1--2}=174,763 \quad S_{20}=\frac{1[}{1[}
\end{array}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

\#4: $\mathrm{a}_{1}=1, r=-2$

$$
\begin{gathered}
S_{5}=1+-2+4+-8+16=11 \\
S_{19}=\frac{1\left[1-(-2)^{19}\right]}{1--2}=174,763 \quad S_{20}=\underline{1\left[1-(-2)^{20}\right]}
\end{gathered}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

\#4: $\mathrm{a}_{1}=1, r=-2$

$$
\begin{gathered}
S_{5}=1+-2+4+-8+16=11 \\
S_{19}=\frac{1\left[1-(-2)^{19}\right]}{1--2}=174,763 \quad S_{20}=\frac{1\left[1-(-2)^{20}\right]}{1--2}
\end{gathered}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

\#4: $\mathrm{a}_{1}=1, r=-2$

$$
\begin{gathered}
S_{5}=1+-2+4+-8+16=11 \\
S_{19}=\frac{1\left[1-(-2)^{19}\right]}{1--2}=174,763 \quad S_{20}=\frac{1\left[1-(-2)^{20}\right]}{1--2} \approx-349,525.7
\end{gathered}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

$$
\# 4: a_{1}=1, r=-2
$$

$$
\begin{gathered}
S_{5}=1+-2+4+-8+16=11 \\
S_{19}=\frac{1\left[1-(-2)^{19}\right]}{1--2}=174,763 \quad S_{20}=\frac{1\left[1-(-2)^{20}\right]}{1--2} \approx-349,525.7
\end{gathered}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As n increases, the absolute value of S_{n} increases as well.

The sum of the first \mathbf{n} terms of a geometric series is

$$
S_{n}=\frac{\mathbf{a}_{1}\left(1-r^{n}\right)}{1-r} \quad \text { or } \quad S_{n}=\frac{\mathbf{a}_{1}-r \mathbf{a}_{n}}{1-r}
$$

where a_{1} is the first term and r is the common ratio.
We will calculate S_{19} and S_{20} for these two series.

$$
\# 3: a_{1}=1, r=2
$$

$$
S_{5}=1+2+4+8+16=31
$$

$$
S_{19}=\frac{1\left(1-2^{19}\right)}{1-2}=524,287 \quad S_{20}=\frac{1\left(1-2^{20}\right)}{1-2}=1,048,575
$$

\#4: $a_{1}=1, r=-2$

$$
\begin{gathered}
S_{5}=1+-2+4+-8+16=11 \\
S_{19}=\frac{1\left[1-(-2)^{19}\right]}{1--2}=174,763 \quad S_{20}=\frac{1\left[1-(-2)^{20}\right]}{1--2} \approx-349,525.7
\end{gathered}
$$

In these two examples, $|r|>1$. Because of this, each successive term is further from 0 than the one before it. Series like these are called diverging. As \mathbf{n} increases, the absolute value of \mathbf{S}_{n} increases as well.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.
2. Find the sum of the first $\mathbf{1 0}$ terms of the sequence defined by $a_{n}=(-3)^{n}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.
2. Find the sum of the first $\mathbf{1 0}$ terms of the sequence defined by $a_{n}=(-3)^{n}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

The series is geometric.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{array}{ll}
\text { hich } a_{1}=2 \text { and } r=3 . \\
n=6 \quad \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{6}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{6}=2(
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{6}=2\left(1-3^{6}\right)
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{aligned}
& \text { nich } a_{1}=2 \text { and } r=3 . \\
& \qquad \begin{array}{l}
\text { The series is geometric. } \\
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{array}
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{aligned}
& \text { hich } a_{1}=2 \text { and } r=3 . \\
& n=6 \quad \text { The series is geometric. } \\
& \qquad S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{aligned}
& \text { hich } a_{1}=2 \text { and } r=3 . \\
& n=6 \quad \text { The series is geometric. } \\
& \qquad S_{6}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2}
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{gathered}
\begin{array}{l}
\text { nich } a_{1}=2 \text { and } r=3 . \\
n=6
\end{array} \quad \text { The series is geometric. } \\
\qquad S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{aligned}
& \text { hich } a_{1}=2 \text { and } r=3 \text {. } \\
& \begin{array}{l}
\text { The series is geometric. } \\
\text { The }
\end{array} S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& \qquad \begin{array}{r}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{array}
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{aligned}
& \text { hich } a_{1}=2 \text { and } r=3 . \\
& n=6 \\
& \text { The series is geometric. } \longrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& \qquad S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
& S_{6}=728
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{aligned}
& d r=3 . \\
& \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first $\mathbf{1 0}$ terms of the sequence defined by $a_{n}=(-3)^{n}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.
$n=6 \quad$ The series is geometric. $\longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first $\mathbf{1 0}$ terms of the sequence defined by $a_{n}=(-3)^{n}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{aligned}
& d r=3 . \\
& \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first $\mathbf{1 0}$ terms of the sequence defined by $a_{n}=(-3)^{n} . \quad a_{1}=$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first $\mathbf{1 0}$ terms of the sequence defined by $a_{n}=(-3)^{n} . \quad a_{1}=(-3)^{1}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{aligned}
& d r=3 \text {. } \\
& \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n} . \quad a_{1}=(-3)^{1}=-3$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first $\mathbf{1 0}$ terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3 \quad a_{2}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{aligned}
& d r=3 \text {. } \\
& \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3 \quad a_{2}=(-3)^{2}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{aligned}
& d r=3 \text {. } \\
& \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3 \quad a_{2}=(-3)^{2}=9
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9 \quad a_{3}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{aligned}
& \text { d } r=3 \text {. } \\
& \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

The first term is -3.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{aligned}
& d r=3 . \\
& \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3 \quad a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

The first term is $\mathbf{- 3}$. Then multiply by $\mathbf{- 3}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3 \quad a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

The first term is $\mathbf{- 3}$. Then multiply by $\mathbf{- 3}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

The series is geometric.

The first term is $\mathbf{- 3}$. Then multiply by $\mathbf{- 3}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\square S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
\begin{array}{lll}
a_{1}=(-3)^{1}=-3 & a_{2}=(-3)^{2}=9 & a_{3}=(-3)^{3}=-27 \\
\text { The series is geometric. } \Longleftrightarrow & S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{array}
$$

The first term is $\mathbf{- 3}$. Then multiply by $\mathbf{- 3}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
\begin{array}{lll}
a_{1}=(-3)^{1}=-3 & a_{2}=(-3)^{2}=9 & a_{3}=(-3)^{3}=-27 \\
\text { The series is geometric. } \Longleftrightarrow & S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{array}
$$

The first term is $\mathbf{- 3}$. Then multiply by $\mathbf{- 3}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
r=-3
$$

$$
\begin{array}{lll}
a_{1}=(-3)^{1}=-3 & a_{2}=(-3)^{2}=9 & a_{3}=(-3)^{3}=-27 \\
\text { The series is geometric. } \Longleftrightarrow & S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{array}
$$

The first term is $\mathbf{- 3}$. Then multiply by $\mathbf{- 3}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\square S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
r=-3
$$

$$
\begin{array}{ll}
a_{1}=(-3)^{1}=-3 \quad a_{2}=(-3)^{2}=9 & a_{3}=(-3)^{3}=-27 \\
\text { The series is geometric. } \Longleftrightarrow & S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{array}{r}
\mathrm{n}=6 \quad \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{array}
$$

2. Find the sum of the first 10 terms of the sequence defined
by $a_{n}=(-3)^{n}$.

$$
r=-3
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{array}{r}
n=6 \quad \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{array}
$$

2. Find the sum of the first 10 terms of the sequence defined
by $a_{n}=(-3)^{n}$.

$$
r=-3
$$

$$
\mathrm{n}=10
$$

$a_{1}=(-3)^{1}=-3 \quad a_{2}=(-3)^{2}=9 \quad a_{3}=(-3)^{3}=-27$
The series is geometric. $\longrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
\mathbf{r}=-3
$$

$$
\mathbf{n}=10
$$

The series is geometric. $\longrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined
by $\mathrm{a}_{\mathrm{n}}=(-3)^{\mathrm{n}}$.
$r=-3$
$\mathrm{n}=10$
$a_{1}=(-3)^{1}=-3$
$a_{2}=(-3)^{2}=9$
$a_{3}=(-3)^{3}=-27$
The series is geometric. $\longrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{aligned}
& d r=3 \text {. } \\
& \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \text {. }
\end{aligned}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

The series is geometric. $\square S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\begin{aligned}
& d r=3 \text {. } \\
& \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \text {. }
\end{aligned}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined
by $\mathrm{a}_{\mathrm{n}}=(-3)^{\mathrm{n}}$.

$$
r=-3
$$

$$
\mathrm{n}=10
$$

$a_{1}=(-3)^{1}=-3$
$a_{2}=(-3)^{2}=9$
$a_{3}=(-3)^{3}=-27$
The series is geometric. $\longrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{10}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{10}=\frac{-3[}{}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
S_{10}=\underline{-3\left[1-(-3)^{10}\right]}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{10}=\frac{-3\left[1-(-3)^{10}\right]}{1--3}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{10}=\frac{-3\left[1-(-3)^{10}\right]}{1--3}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

The series is geometric. $\square S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{10}=\frac{-3\left[1-(-3)^{10}\right]}{1--3}=\underline{177,144}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{10}=\frac{-3\left[1-(-3)^{10}\right]}{1--3}=\frac{177,144}{4}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{10}=\frac{-3\left[1-(-3)^{10}\right]}{1--3}=\frac{177,144}{4} \\
S_{10}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{10}=\frac{-3\left[1-(-3)^{10}\right]}{1--3}=\frac{177,144}{4} \\
S_{10}=44,286
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
n=6
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{gathered}
$$

2. Find the sum of the first 10 terms of the sequence defined by $a_{n}=(-3)^{n}$.

$$
a_{1}=(-3)^{1}=-3
$$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

$$
r=-3
$$

$$
\mathrm{n}=10
$$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{10}=\frac{-3\left[1-(-3)^{10}\right]}{1--3}=\frac{177,144}{4} \\
S_{10}=44,286
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.

1. Find the sum of the first 6 terms of a geometric sequence in which $a_{1}=2$ and $r=3$.

$$
\begin{array}{r}
\mathrm{n}=6 \quad \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{6}=\frac{2\left(1-3^{6}\right)}{1-3}=\frac{-1,456}{-2} \\
S_{6}=728
\end{array}
$$

2. Find the sum of the first 10 terms of the sequence defined
by $\mathrm{a}_{\mathrm{n}}=(-3)^{\mathrm{n}}$.
$r=-3$
$\mathrm{n}=10$
$a_{1}=(-3)^{1}=-3$

$$
a_{2}=(-3)^{2}=9
$$

$$
a_{3}=(-3)^{3}=-27
$$

The series is geometric. $\square S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{gathered}
S_{10}=\frac{-3\left[1-(-3)^{10}\right]}{1--3}=\frac{177,144}{4} \\
S_{10}=44,286
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.
4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.
4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\mathrm{n}=7
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\mathrm{n}=7
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined
by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.
$\mathrm{n}=7$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined
by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.
$\mathrm{n}=7$

The first term is $\mathbf{1 2 5}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined
by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.
$\mathrm{n}=7$

The first term is $\mathbf{1 2 5}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.
$\mathrm{n}=7$

The first term is 125 . Then multiply by 0.4 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined
by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.
$\mathrm{n}=7$
$r=0.4$
The first term is 125 . Then multiply by 0.4 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.
$n=7 \quad$ The series is geometric.
$r=0.4$
The first term is 125 . Then multiply by 0.4 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{gathered}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{gathered} \quad \text { The series is geometric. }
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
n=7 \quad \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
r=0.4
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{r}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{array}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{rr}
\mathbf{n}=7 & \text { The sel } \\
\mathbf{r}=0.4 & \\
& \mathrm{~S}_{7}=
\end{array}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{cc}
\mathbf{n}=7 & \text { The series is geometric. } \\
\mathbf{r}=\mathbf{0 . 4} & \mathrm{S}_{7}= \\
\hline \mathbf{1 2 5 (}
\end{array}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{cc}
\mathrm{n}=7 & \text { The series is geometric. } \\
\mathbf{r}=0.4 & \mathrm{~S}_{7}=\mathbf{1 2 5 (1 - 0 . 4 ^ { 7 })}
\end{array}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{cc}
\mathrm{n}=7 & \text { The series is geometric. } \\
\mathrm{r}=0.4 & \mathrm{~S}_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4}
\end{array}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{array}{cc}
\begin{array}{c}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{array} & \text { The series is geometric. } \\
\mathrm{S}_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{cc}
\begin{array}{c}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{array} & \text { The series is geometric. } \longrightarrow \mathrm{S} \\
& \mathrm{~S}_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \underline{124.8}
\end{array}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{array} & \text { The series is geometric. } \longrightarrow \mathrm{S}_{\mathrm{n}}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{array} & \text { The series is geometric. } \longrightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}} \\
& \mathrm{~S}_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow \mathrm{~S}_{7}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \text { by } a_{n+1}=0.4 a_{n} \text { where } a_{1}=125 \text {. } \\
& \mathrm{n}=7 \\
& \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& \mathbf{r}=\mathbf{0 . 4} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \text { by } a_{n+1}=0.4 a_{n} \text { where } a_{1}=125 \text {. } \\
& \mathrm{n}=7 \\
& \text { The series is geometric. } \square S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& \mathbf{r}=\mathbf{0 . 4} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
n=8
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\mathrm{n}=\mathbf{8}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\mathrm{n}=\mathbf{8}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\mathrm{n}=\mathbf{8}
$$

The first term is 7.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{array} & \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
n=8
$$

$$
a_{1}=7
$$

The first term is 7.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{l}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{aligned}
& n=8 \\
& a_{1}=7
\end{aligned}
$$

The first term is 7. Then multiply by 2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{l}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\mathrm{n}=\mathbf{8}
$$

$$
a_{1}=7
$$

The first term is 7. Then multiply by 2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
n=8
$$

$$
a_{1}=7
$$

The first term is 7. Then multiply by 2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \Longrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\mathrm{n}=\mathbf{8}
$$

$$
a_{1}=7
$$

The first term is 7. Then multiply by 2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{l}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{aligned}
& n=8 \\
& a_{1}=7
\end{aligned}
$$

The first term is 7. Then multiply by 2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \begin{array}{c}
\text { by } a_{n+1}=0.4 a_{n} \text { where } a_{1}=125 . \\
n=7 \\
\mathrm{n}=0.4
\end{array} \\
& \text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
n=8
$$

$$
\mathbf{a}_{1}=7
$$

$$
r=2
$$

The first term is 7. Then multiply by 2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{array} & \text { The series is geometric. } \Longrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$.
$n=8 \quad$ The series is geometric.
$a_{1}=7$
$r=2$
The first term is 7. Then multiply by 2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{l}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{aligned}
& \mathrm{n}=8 \\
& \mathbf{a}_{1}=7 \\
& \mathbf{r}=\mathbf{2}
\end{aligned}
$$

The series is geometric.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{array} & \text { The series is geometric. } \Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-r} \\
& \mathrm{~S}_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{aligned}
& \mathrm{n}=8 \\
& \mathbf{a}_{1}=7 \\
& \mathbf{r}=\mathbf{2}
\end{aligned}
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
\mathrm{n}=7 \\
\mathrm{r}=0.4
\end{array} & \text { The series is geometric. } \longrightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-r} \\
& \mathrm{~S}_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow \mathrm{~S}_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
n=8
$$

$$
\text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{aligned}
& a_{1}=7 \\
& r=2
\end{aligned}
$$

$$
\mathbf{S}_{8}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \longrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\mathrm{n}=\mathbf{8}
$$

$$
\text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{array}{r}
a_{1}=7 \\
r=2
\end{array}
$$

$$
S_{8}=7(
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \begin{array}{c}
\text { by } a_{n+1}=0.4 a_{n} \\
n=7 \\
n=0.4
\end{array} \\
& \text { where } a_{1}=125 . \\
& \text { The series is geometric. } \square S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{aligned}
& \mathrm{n}=8 \\
& \mathbf{a}_{1}=7 \\
& \mathbf{r}=\mathbf{2}
\end{aligned}
$$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
S_{8}=\underline{7\left(1-2^{8}\right)}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \begin{array}{c}
\text { by } a_{n+1}=0.4 a_{n} \\
n=7 \\
n=0.4
\end{array} \\
& \text { where } a_{1}=125 . \\
& \text { The series is geometric. } \square S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{aligned}
& \mathrm{n}=8 \\
& \mathbf{a}_{1}=7 \\
& \mathbf{r}=\mathbf{2}
\end{aligned}
$$

$$
\text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
S_{8}=\frac{7\left(1-2^{8}\right)}{1-2}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \begin{array}{c}
\text { by } a_{n+1}=0.4 a_{n} \\
\begin{array}{c}
n=7 \\
r=0.4
\end{array} \\
\text { where } a_{1}=125 . \\
\text { The series is geometric. } \\
\\
S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{7} \approx 208
\end{array}
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{aligned}
& \mathrm{n}=8 \text { The series is geometric. } \longmapsto \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{n}\right)}{1-\mathrm{r}} \\
& \mathrm{a}_{1}=7 \\
& \mathrm{r}=2 \mathrm{~S}_{8}=\frac{7\left(1-2^{8}\right)}{1-2}= \\
&
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \begin{array}{c}
\text { by } a_{n+1}=0.4 a_{n} \\
\begin{array}{c}
n=7 \\
r=0.4
\end{array} \\
\text { where } a_{1}=125 . \\
\text { The series is geometric. } \\
\\
S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{7} \approx 208
\end{array}
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{array}{rc}
\mathrm{n}=8 & \text { The series is geometric. } \longmapsto \\
\mathrm{a}_{1}=7 & \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}} \\
\mathrm{r}=2 & \mathrm{~S}_{8}=\frac{7\left(1-2^{8}\right)}{1-2}=\frac{-1785}{}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \begin{array}{c}
\text { by } a_{n+1}=0.4 a_{n} \\
\begin{array}{c}
n=7 \\
r=0.4
\end{array} \\
\text { where } a_{1}=125 . \\
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{array}{rc}
\mathrm{n}=8 & \text { The series is geometric. } \longmapsto \\
\mathrm{a}_{1}=7 & \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{n}\right)}{1-\mathrm{r}} \\
\mathrm{r}=2 & \mathrm{~S}_{8}=\frac{7\left(1-2^{8}\right)}{1-2}=\frac{-1785}{-1}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \begin{array}{c}
\text { by } a_{n+1}=0.4 a_{n} \\
\begin{array}{c}
n=7 \\
r=0.4
\end{array} \\
\text { where } a_{1}=125 . \\
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{array}{rr}
\mathrm{n}=8 & \text { The series is geometric. } \Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}} \\
\mathrm{a}_{1}=7 \\
\mathrm{r}=2 & \mathrm{~S}_{8}=\frac{7\left(1-2^{8}\right)}{1-2}=\frac{-1785}{-1} \Rightarrow \mathrm{~S}_{8}=
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \begin{array}{c}
\text { by } a_{n+1}=0.4 a_{n} \\
\begin{array}{c}
n=7 \\
r=0.4
\end{array} \\
\text { where } a_{1}=125 . \\
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{array}{rr}
\mathrm{n}=8 & \text { The series is geometric. } \Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}} \\
\mathrm{a}_{1}=7 \\
\mathrm{r}=2 & \mathrm{~S}_{8}=\frac{7\left(1-2^{8}\right)}{1-2}=\frac{-1785}{-1} \Rightarrow \mathrm{~S}_{8}=1785
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined

$$
\begin{aligned}
& \begin{array}{c}
\text { by } a_{n+1}=0.4 a_{n} \\
\begin{array}{c}
n=7 \\
r=0.4
\end{array} \\
\text { where } a_{1}=125 . \\
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
\end{aligned}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{array}{rr}
\mathrm{n}=8 & \text { The series is geometric. } \longmapsto \\
\mathrm{a}_{1}=7 & \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}} \\
\mathrm{r}=2 & \mathrm{~S}_{8}=\frac{7\left(1-2^{8}\right)}{1-2}=\frac{-1785}{-1} \Rightarrow \mathrm{~S}_{8}=1785
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
3. Find the sum of the first 7 terms of the sequence defined by $a_{n+1}=0.4 a_{n}$ where $a_{1}=125$.

$$
\begin{array}{ll}
\begin{array}{c}
n=7 \\
r=0.4
\end{array} & \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{125\left(1-0.4^{7}\right)}{1-0.4} \approx \frac{124.8}{0.6} \Rightarrow S_{7} \approx 208
\end{array}
$$

4. Find the sum of the first 8 terms of the sequence $7,14,28,56, \ldots$

$$
\begin{array}{rr}
\mathrm{n}=8 & \text { The series is geometric. } \longrightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}} \\
\mathrm{a}_{1}=7 \\
\mathrm{r}=2 & \mathrm{~S}_{8}=\frac{7\left(1-2^{8}\right)}{1-2}=\frac{-1785}{-1} \Rightarrow \mathrm{~S}_{8}=1785
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.
6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.
6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series 5-10+20-40+... +1280 .

The first term is 5 .

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
a_{1}=5
$$

The first term is 5.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
a_{1}=5
$$

The first term is 5 . Then multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$. $a_{1}=5$

The first term is 5 . Then multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$. $a_{1}=5$

The first term is 5 . Then multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$. $a_{1}=5$

The first term is 5 . Then multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
a_{1}=5
$$

The first term is 5 . Then multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.
$a_{1}=5$
The series is geometric.

The first term is 5 . Then multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.
$a_{1}=5$
$r=-2$

The series is geometric.

The first term is 5 . Then multiply by -2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.
$a_{1}=5 \quad$ The series is geometric.
$r=-2$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
& a_{1}=5 \\
& \hline r=-2
\end{aligned}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
& a_{1}=5 \\
& r=-2
\end{aligned}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
& a_{1}=5 \\
& r=-2 \\
& a_{n}=
\end{aligned} \quad \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
a_{1} & =5 \\
r & =-2 \\
a_{n} & =1280
\end{aligned} \quad \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.
$a_{1}=5$
The series is geometric.

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
r=-2
$$

$$
a_{n}=1280
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
a_{1} & =5 \\
r & =-2 \\
a_{n} & =1280
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
& a_{1}=5 \\
& r=-2 \\
& a_{n}=1280 \\
& \hline
\end{aligned}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
S_{n}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
& a_{1}=5 \\
& r=-2 \\
& a_{n}=1280 \\
& \hline
\end{aligned}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
S_{n}=\frac{5}{}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
a_{1} & =5 \\
r & =-2 \\
a_{n} & =1280
\end{aligned}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
S_{n}=\frac{5-}{}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
a_{1} & =5 \\
r & =-2 \\
a_{n} & =1280
\end{aligned}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
S_{n}=\frac{5--2(}{}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
a_{1} & =5 \\
r & =-2 \\
a_{n} & =1280
\end{aligned}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
S_{n}=\frac{5--2(1280)}{}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{aligned}
a_{1} & =5 \\
r & =-2 \\
a_{n} & =1280
\end{aligned}
$$

The series is geometric.

$$
S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
S_{n}=\frac{5--2(1280)}{1--2}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
a_{1}=5 & \text { The series is geometric. } \\
r=-2 & \\
a_{n}=1280 & S_{n}=\frac{5--2(1280)}{1--2}=
\end{array}
$$

$S_{n}=\frac{a_{1}-r a_{n}}{1-r}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
a_{1}=5 \quad \text { The series is geometric. } \longmapsto \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
r=-2
$$

$$
a_{n}=1280
$$

$$
S_{n}=\frac{5--2(1280)}{1--2}=\underline{2565}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
a_{1}=5 & \text { The series is geometric. } \longrightarrow \\
r=-2 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
a_{n}=1280 & S_{n}=\frac{5--2(1280)}{1--2}=\frac{2565}{3}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
a_{1}=5 \quad \text { The series is geometric. } \longmapsto \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
r=-2
$$

$$
a_{n}=1280
$$

$\mathrm{a}_{\mathrm{n}}=\mathbf{1 2 8 0}$

$$
S_{n}=\frac{5--2(1280)}{1--2}=\frac{2565}{3} \Rightarrow
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
a_{1}=5 \quad \text { The series is geometric. } \longmapsto \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

$$
r=-2
$$

$$
a_{n}=1280
$$

$$
S_{n}=\frac{5--2(1280)}{1--2}=\frac{2565}{3} \Rightarrow S_{n}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1-2(1280) \\
1-2565 \\
3 & S_{n}=855
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \Rightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \square \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \Rightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5--2(1280)}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

The first term is $\mathbf{1 0}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \Rightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

$$
a_{1}=10
$$

The first term is $\mathbf{1 0}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r & =-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

$$
a_{1}=10
$$

The first term is 10 . Then multiply by 0.2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

$$
a_{1}=10
$$

The first term is 10 . Then multiply by 0.2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

$$
a_{1}=10
$$

The first term is 10 . Then multiply by 0.2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

$$
a_{1}=10
$$

The first term is 10 . Then multiply by 0.2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r & =-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

$$
a_{1}=10
$$

The first term is 10 . Then multiply by 0.2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

$$
\begin{aligned}
& a_{1}=10 \\
& \hline r=0.2
\end{aligned}
$$

The first term is 10 . Then multiply by 0.2 recursively.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \Rightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $10+2+0.4+0.08+\ldots$

$$
\begin{aligned}
& \mathbf{a}_{1}=10 \\
& \mathrm{r}=0.2
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& a_{1}=10 \\
& r=0.2
\end{aligned}
$$

This is an infinite
geometric series.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& a_{1}=10 \\
& \hline r=0.2
\end{aligned}
$$

This is an infinite geometric series. \Longrightarrow If $|\mathbf{r}|<1$,

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& a_{1}=10 \\
& r=0.2
\end{aligned}
$$

This is an infinite geometric series.
\Longrightarrow If $|r|<1$, then $S=\frac{a_{1}}{1-r}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& a_{1}=10 \\
& \hline r=0.2
\end{aligned}
$$

This is an infinite geometric series. \Longrightarrow If $|r|<1$, then $S=\frac{a_{1}}{1-r}$.

$$
\mathbf{S}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280
\end{array} \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& a_{1}=10 \\
& r=0.2
\end{aligned}
$$

This is an infinite geometric series.

If $|r|<1$, then $S=\frac{a_{1}}{1-r}$.

$$
S=\frac{10}{}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280
\end{array} \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& a_{1}=10 \\
& \hline r=0.2
\end{aligned}
$$

This is an infinite geometric series.

If $|r|<1$, then $S=\frac{a_{1}}{1-r}$.

$$
S=\frac{10}{1-0.2}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{array}{cc}
a_{1}=10 \\
r=0.2
\end{array} \begin{aligned}
& \text { This is an infinite } \\
& \text { geometric series. }
\end{aligned} \longrightarrow \text { If }|r|<1 \text {, then } S=\frac{a_{1}}{1-r} .
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& \begin{array}{l}
a_{1}=10 \\
r=0.2
\end{array} \quad \begin{array}{l}
\text { This is an infinite } \\
\text { geometric series. }
\end{array} \longrightarrow \text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r} . \\
& \qquad S=\frac{10}{1-0.2}=\underline{10}
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{l}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280
\end{array} \quad S_{n}=\frac{a_{1}-r a_{n}}{1-r}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& \begin{array}{l}
a_{1}=10 \\
r=0.2
\end{array} \quad \begin{array}{l}
\text { This is an infinite } \\
\text { geometric series. }
\end{array} \longrightarrow \text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r} . \\
& \qquad S=\frac{10}{1-0.2}=\frac{10}{0.8}
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5--2(1280)}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& \begin{array}{l}
a_{1}=10 \\
r=0.2
\end{array} \begin{array}{l}
\text { This is an infinite } \\
\text { geometric series. }
\end{array} \quad \text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r} . \\
& \qquad S=\frac{10}{1-0.2}=\frac{10}{0.8} \Rightarrow S=
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5--2(1280)}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& \begin{array}{l}
a_{1}=10 \\
r=0.2
\end{array} \quad \begin{array}{l}
\text { This is an infinite } \\
\text { geometric series. }
\end{array} \longrightarrow \text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r} . \\
& \qquad S=\frac{10}{1-0.2}=\frac{10}{0.8} \Rightarrow S=12.5
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r=-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1--2 & =\frac{5--2(1280)}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& \mathbf{a}_{1}=10 \\
& r=0.2
\end{aligned} \begin{aligned}
& \text { This is an infinite } \\
& \text { geometric series. }
\end{aligned} \quad \text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r} .
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
5. Evaluate the series $5-10+20-40+\ldots+1280$.

$$
\begin{array}{ll}
\begin{array}{ll}
a_{1}=5 \\
r & =-2
\end{array} & \text { The series is geometric. } \longrightarrow \\
a_{n}=1280 & S_{n}=\frac{a_{1}-r a_{n}}{1-r} \\
1-2(1280) \\
& =\frac{2565}{3} \Rightarrow S_{n}=855
\end{array}
$$

6. Evaluate the infinite series $\mathbf{1 0}+\mathbf{2}+\mathbf{0 . 4}+\mathbf{0 . 0 8}+\ldots$

$$
\begin{aligned}
& \begin{array}{l}
a_{1}=10 \\
r=0.2
\end{array} \quad \begin{array}{l}
\text { This is an infinite } \\
\text { geometric series. }
\end{array} \quad \text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r} . \\
& \qquad S=\frac{10}{1-0.2}=\frac{10}{0.8} \Rightarrow S=12.5
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{\mathbf{2}}{\mathbf{3}}\right)^{i-1}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

For any geometric sequence,

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

For any geometric sequence, $\mathbf{a}_{\mathrm{n}}=$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

For any geometric sequence, $a_{n}=a_{1}(r)^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10} \underset{(-3)(-2)^{i-1}}{ }$

For any geometric sequence, $a_{n}=\stackrel{\downarrow}{a_{1}}(r)^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$\substack{a_{1}=-3}$
$i=1$
$(-3)(-2)^{i-1}$

For any geometric sequence, $a_{n}=\stackrel{\downarrow}{a_{1}}(r)^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$\substack{a_{1}=-3}$
$i=1$
$i 0$
$i=3)(-2)^{i-1}$

For any geometric sequence, $a_{n}=a_{1}(r)^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$\substack{a_{1}=-3}$
$i=1$
$i 0$
$(-3)(-2)^{i-1}$
$r=-2$
For any geometric sequence, $a_{n}=a_{1}(r)^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
r=-2
$$

For any geometric sequence, $a_{n}=a_{1}(r)^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
r=-2
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$\sum_{i=1}^{10}(-3)(-2)^{i-1}$
The series is geometric.
$r=-2$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$\sum_{i=1}^{10}(-3)(-2)^{i-1}$
The series is geometric.
$r=-2$
$\mathrm{n}=10$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{\substack{a_{1}=-3}}^{10}(-3)(-2)^{i-1}$
$r=-2$

$$
\mathrm{n}=10
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{\substack{a_{1}=-3}}^{10}(-3)(-2)^{i-1}$
$r=-2$
$\mathrm{n}=10$
$S_{10}=$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$ $a_{1}=-3 \quad{ }^{1=1}$ The series is geometric. $\Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned}
$$

$$
S_{10}=\underline{-3[}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
r=-2
$$

$$
S_{10}=\underline{-3\left[1-(-2)^{10}\right]}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
r=-2
$$

$$
n=10
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\underline{3069}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$ $a_{1}=-3 \quad i=1$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{aligned}
r & =-2 \\
n & =10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$ $a_{1}=-3 \quad i=1$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{aligned}
r & =-2 \\
n & =10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$ $a_{1}=-3 \quad i=1$

The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
\begin{aligned}
r & =-2 \\
n & =10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$
$a_{1}=-3 \quad i=1 \quad$ The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
$\begin{aligned} & r=-2 \\ & n=10\end{aligned} \quad S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$
$a_{1}=-3 \quad i=1 \quad$ The series is geometric. $\quad S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
$\begin{aligned} & \mathrm{r}=-2 \\ & \mathrm{n}=10\end{aligned} \quad \mathrm{~S}_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow \mathrm{~S}_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned} \quad S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

For any geometric sequence, $a_{n}=a_{1}(r)^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\begin{aligned} & \sum_{i=1}^{10}(-3)(-2)^{i-1} \\ & a_{1}=-3\end{aligned}$
$r=-2$
$n=10$
The series is geometric. $\Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

For any geometric sequence, $a_{n}=\stackrel{\downarrow}{\mathbf{a}_{1}(r)^{n-1}}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned} \quad S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate:
$a_{i=1}=1 / 2$

For any geometric sequence, $a_{n}=\stackrel{\downarrow}{\mathbf{a}_{1}(r)^{n-1}}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned} \quad S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$
$a_{1}=1 / 2$
$a_{1}=1 / 2$

For any geometric sequence, $a_{n}=a_{1}(\mathbf{r})^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned} \quad S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate:
$a_{i=1}^{\infty}=1 / 2$
$r=2 / 3$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
\begin{aligned}
& \mathrm{r}=-2 \\
& \mathrm{n}=10
\end{aligned} \quad \mathrm{~S}_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow \mathrm{~S}_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
\begin{aligned}
& a_{1}=1 / 2 \\
& \mathrm{r}=2 / 3
\end{aligned}
$$

For any geometric sequence, $a_{n}=a_{1}(r)^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}(-3)(-2)^{i-1}$
$r=-2$
$\mathrm{n}=10$
$S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
\begin{aligned}
& a_{1}=1 / 2 \\
& r=2 / 3
\end{aligned}
$$

This is an infinite geometric series.

For any geometric sequence, $a_{n}=a_{1}(r)^{n-1}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned} \quad S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
\begin{aligned}
& a_{1}=1 / 2 \\
& \mathrm{r}=2 / 3
\end{aligned}
$$

This is an infinite geometric series.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned} \quad S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
\begin{aligned}
& a_{1}=1 / 2 \\
& r=2 / 3
\end{aligned}
$$

This is an infinite

$$
\Longrightarrow \text { If }|\mathbf{r}|<1,
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
a_{1}=1 / 2
$$

$r=2 / 3$
This is an infinite geometric series. If $|r|<1$, then $S=\frac{a_{1}}{1-r}$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$
$r=-2$
$\mathrm{n}=10$
$S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
\begin{aligned}
& a_{1}=1 / 2 \\
& r=2 / 3
\end{aligned}
$$

This is an infinite

$$
\Longrightarrow \text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r} .
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned} \quad S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
\begin{aligned}
& a_{1}=1 / 2 \\
& r=2 / 3
\end{aligned}
$$

This is an infinite geometric series.

$$
\text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

$$
\mathbf{S}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$
$r=-2$
$\mathrm{n}=10$
$S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
a_{1}=1 / 2
$$

$r=2 / 3$
This is an infinite

$$
\Longrightarrow \text { If }|r|<1, \text { then } S=\frac{a_{1}}{1-r}
$$

$$
S=\frac{1 / 2}{}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$
$r=-2$
$\mathrm{n}=10$
$S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
a_{1}=1 / 2
$$

$r=2 / 3$
This is an infinite \square

$$
S=\frac{1 / 2}{1-2 / 3}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$
$r=-2$
$\mathrm{n}=10$
$S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{\mathbf{2}}{\mathbf{3}}\right)^{i-1}$ $a_{1}=1 / 2$

$$
r=2 / 3
$$

This is an infinite geometric series.

$$
S=\frac{1 / 2}{1-2 / 3}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$
$r=-2$
$\mathrm{n}=10$
$S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{\mathbf{2}}{\mathbf{3}}\right)^{i-1}$ $a_{1}=1 / 2$

$$
r=2 / 3
$$

This is an infinite geometric series.

$$
S=\frac{1 / 2}{1-2 / 3}=1 / 2
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$
$r=-2$
$\mathrm{n}=10$
$S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$ $a_{1}=1 / 2$

$$
r=2 / 3
$$

This is an infinite geometric series.

$$
S=\frac{1 / 2}{1-2 / 3}=\frac{1 / 2}{1 / 3}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{a_{1}=-3} \boldsymbol{(- 3) (- 2) ^ { i - 1 }} \begin{aligned} & \text { The series }\end{aligned}$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$ $a_{1}=1 / 2$

$$
r=2 / 3
$$

This is an infinite geometric series.

$$
S=\frac{1 / 2}{1-2 / 3}=\frac{1 / 2}{1 / 3} \Rightarrow S=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate: $\sum_{i=1}^{a_{1}=-3} \boldsymbol{(- 3) (- 2) ^ { i - 1 }} \begin{aligned} & \text { The series }\end{aligned}$

$$
\text { The series is geometric. } \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$ $a_{1}=1 / 2$

$$
r=2 / 3
$$

This is an infinite geometric series.

$$
S=\frac{1 / 2}{1-2 / 3}=\frac{1 / 2}{1 / 3} \Rightarrow S=1.5
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}\left(\begin{array}{l}(-3)(-2)^{i-1} \\ \text { The series }\end{array}\right.$
$r=-2$
$\mathrm{n}=10$
$S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023$
8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$ $a_{1}=1 / 2$

$$
r=2 / 3
$$

This is an infinite geometric series.

$$
S=\frac{1 / 2}{1-2 / 3}=\frac{1 / 2}{1 / 3} \Rightarrow S=1.5
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
7. Evaluate:
$a_{1}=-3$$\sum_{i=1}^{10}(-3)(-2)^{i-1}$

$$
\begin{aligned}
& r=-2 \\
& n=10
\end{aligned}
$$

$$
S_{10}=\frac{-3\left[1-(-2)^{10}\right]}{1--2}=\frac{3069}{3} \Rightarrow S_{10}=1023
$$

8. Evaluate: $\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{i-1}$

$$
a_{1}=1 / 2
$$

$$
r=2 / 3
$$

This is an infinite \Longrightarrow If $|r|<1$, then $S=\frac{a_{1}}{1-r}$.

$$
S=\frac{1 / 2}{1-2 / 3}=\frac{1 / 2}{1 / 3} \Rightarrow S=1.5
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3\% per year. Find the total salary for the first ten years.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of $\mathbf{3 \%}$ per year. Find the total salary for the first ten years.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years. Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of $\mathbf{3 \%}$ per year. Find the total salary for the first ten years.

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.
$a_{1}=38,000$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let $\mathbf{a}_{\mathbf{n}}$ represent the salary, in dollars, for the $\mathbf{n}^{\text {th }}$ year.
$a_{1}=38,000$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let $\mathbf{a}_{\mathbf{n}}$ represent the salary, in dollars, for the $\mathbf{n}^{\text {th }}$ year.

$$
\mathbf{a}_{1}=38,000
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let $\mathbf{a}_{\mathbf{n}}$ represent the salary, in dollars, for the $n^{\text {th }}$ year.
$a_{1}=38,000 \quad$ The series is geometric.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let $\mathbf{a}_{\mathbf{n}}$ represent the salary, in dollars, for the $\mathbf{n}^{\text {th }}$ year.
$a_{1}=38,000 \quad$ The series is geometric.

$$
r=1.03
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.
$a_{1}=38,000 \quad$ The series is geometric.

$$
r=1.03
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.
$a_{1}=38,000 \quad$ The series is geometric.
$r=1.03$
$\mathrm{n}=10$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let $\mathbf{a}_{\mathbf{n}}$ represent the salary, in dollars, for the $n^{\text {th }}$ year.
$a_{1}=38,000$ The series is geometric. $\square S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$ $r=1.03$
$\mathrm{n}=10$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

$$
a_{1}=38,000 \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
r=1.03
$$

$$
\mathrm{n}=10
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

$$
a_{1}=38,000 \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
r=1.03
$$

$$
\mathrm{n}=10 \quad \mathrm{~S}_{10}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

$$
a_{1}=38,000 \quad \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
r=1.03
$$

$$
n=10
$$

$$
S_{10}=38,000(
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let $\mathbf{a}_{\mathbf{n}}$ represent the salary, in dollars, for the $n^{\text {th }}$ year.

$$
a_{1}=38,000 \quad \text { The series is geometric. } \quad \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
r=1.03
$$

$$
n=10
$$

$$
S_{10}=\underline{38,000\left(1-1.03{ }^{10}\right)}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let $\mathbf{a}_{\mathbf{n}}$ represent the salary, in dollars, for the $n^{\text {th }}$ year.

$$
a_{1}=38,000 \quad \text { The series is geometric. } \quad \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
r=1.03
$$

$$
\mathrm{n}=10
$$

$$
S_{10}=\frac{38,000\left(1-1.03^{10}\right)}{1-1.03}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $\mathrm{n}^{\text {th }}$ year.

$$
\begin{array}{cc}
\begin{array}{c}
a_{1}=38,000 \\
r=1.03
\end{array} & \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
\begin{array}{l}
n=10
\end{array} & S_{10}=\frac{38,000\left(1-1.03{ }^{10}\right)}{1-1.03} \approx
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $\mathrm{n}^{\text {th }}$ year.

$$
\begin{array}{cc}
\begin{array}{c}
a_{1}=38,000 \\
r=1.03
\end{array} & \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
\begin{array}{l}
n=10
\end{array} & S_{10}=\frac{38,000\left(1-1.03^{10}\right)}{1-1.03} \approx \underline{-13,069}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $\mathrm{n}^{\text {th }}$ year.

$$
\begin{array}{cc}
\begin{array}{c}
a_{1}=38,000 \\
r=1.03
\end{array} & \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
\begin{array}{l}
n=10
\end{array} & S_{10}=\frac{38,000\left(1-1.03{ }^{10}\right)}{1-1.03} \approx \frac{-13,069}{-0.03}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $\mathrm{n}^{\text {th }}$ year.

$$
\begin{array}{cc}
\begin{array}{c}
a_{1}=38,000 \\
r=1.03
\end{array} & \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
\begin{array}{c}
n=10
\end{array} & S_{10}=\frac{38,000\left(1-1.03{ }^{10}\right)}{1-1.03} \approx \frac{-13,069}{-0.03} \\
S_{10} \approx
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3\% per year. Find the total salary for the first ten years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $\mathrm{n}^{\text {th }}$ year.

$$
\begin{array}{cc}
\begin{array}{c}
a_{1}=38,000 \\
r=1.03
\end{array} & \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
\begin{array}{c}
n=10
\end{array} & S_{10}=\frac{38,000\left(1-1.03{ }^{10}\right)}{1-1.03} \approx \frac{\mathbf{- 1 3 , 0 6 9}}{-0.03} \\
S_{10} \approx 435,627
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3\% per year. Find the total salary for the first ten years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

$$
\begin{array}{cc}
\begin{array}{c}
a_{1}=38,000 \\
r=1.03
\end{array} & \text { The series is geometric. } \Longleftrightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
\begin{array}{c}
n=10
\end{array} & S_{10}=\frac{38,000\left(1-1.03{ }^{10}\right)}{1-1.03} \approx \frac{-13,069}{-0.03} \\
S_{10} \approx 435,627
\end{array}
$$

The total salary is about $\$ 435,627$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

$$
\begin{array}{cc}
\begin{array}{c}
a_{1}=38,000 \\
r=1.03
\end{array} & \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
\begin{array}{c}
n=10
\end{array} & S_{10}=\frac{38,000\left(1-1.03{ }^{10}\right)}{1-1.03} \approx \frac{-13,069}{-0.03} \\
S_{10} \approx 435,627
\end{array}
$$

The total salary is about $\$ 435,627$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
9. A job has a starting salary of $\$ 38,000$ with a guaranteed increase of 3% per year. Find the total salary for the first ten years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $\mathrm{n}^{\text {th }}$ year.

$$
\begin{array}{cc}
\begin{array}{c}
a_{1}=38,000 \\
r=1.03
\end{array} & \text { The series is geometric. } \longmapsto S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
\begin{array}{c}
n=10
\end{array} & S_{10}=\frac{38,000\left(1-1.03{ }^{10}\right)}{1-1.03} \approx \frac{-13,069}{-0.03} \\
S_{10} \approx 435,627
\end{array}
$$

The total salary is about $\$ 435,627$.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion Upward Motion

$$
a_{1}=108 \text { (inches) }
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to 75% of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion Upward Motion

$$
a_{1}=108 \text { (inches) }
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to 75% of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

Upward Motion
$a_{1}=81$ (inches)

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to 75% of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

Upward Motion

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to 75% of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

Upward Motion
$a_{1}=81$ (inches) (75\% of 108)

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to 75% of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

$$
\mathbf{r}=75 \%
$$

> Upward Motion
> $a_{1}=81$ (inches) $(75 \%$ of 108$)$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to 75% of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

Upward Motion
$\mathrm{r}=\mathbf{7 5 \%}=\mathbf{0 . 7 5}$

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to 75% of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

$$
r=75 \%=0.75
$$

Upward Motion

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to 75% of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75
\end{aligned}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
r=0.75
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75
\end{aligned}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
r=0.75
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75
\end{aligned}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
r=0.75
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75
\end{aligned}
$$

Upward Motion
$a_{1}=81$ (inches) (75\% of 108)
$r=0.75$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75 \\
& n=8
\end{aligned}
$$

Upward Motion

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

$$
r=0.75
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75 \\
& n=8
\end{aligned}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
r=0.75
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75 \\
& n=8
\end{aligned}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
\quad r=0.75 \\
n=7
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75 \\
& \quad n=8
\end{aligned}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
\quad r=0.75 \\
n=7
\end{gathered}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75 \\
& n=8
\end{aligned}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
\quad r=0.75 \\
n=7
\end{gathered}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete
floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has
traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
\begin{aligned}
& a_{1}=108 \text { (inches) } \\
& r=75 \%=0.75 \\
& n=8
\end{aligned}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
\quad r=0.75 \\
n=7
\end{gathered}
$$

$\mathrm{S}_{8}=$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete
floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has
traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{array}{c|c}
\hline \text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) (75\% of 108) } \\
\mathbf{r}=75 \%=0.75 & \mathbf{r}=0.75 \\
n=8 & n=7
\end{array}
$$

$$
S_{8}=108(
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) } \\
\mathbf{(7 5 \%} \text { of 108) } \\
\mathbf{r}=\mathbf{7 5 \%}=\mathbf{0 . 7 5} & \mathbf{r}=0.75 \\
\mathrm{n}=8 & \mathrm{n}=7
\end{array}
$$

$$
S_{8}=\underline{108\left(1-0.75^{8}\right)}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

$$
r=75 \%=0.75
$$

$$
\mathrm{n}=\mathbf{8}
$$

$$
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
\quad r=0.75 \\
n=7
\end{gathered}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

$$
r=75 \%=0.75
$$

$$
\mathrm{n}=\mathbf{8}
$$

$$
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)}
$$

Upward Motion

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
\quad r=0.75 \\
n=7
\end{gathered}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

$$
r=75 \%=0.75
$$

$$
\mathrm{n}=\mathbf{8}
$$

$$
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)}
$$

$$
\mathbf{S}_{7}=
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{gathered}
a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
\quad r=0.75 \\
n=7
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion $a_{1}=108$ (inches)

$$
r=75 \%=0.75
$$

$$
\mathbf{n}=\mathbf{8}
$$

$$
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{aligned}
& \mathrm{a}_{1}=81 \text { (inches) }(\mathbf{7 5 \%} \text { of } 108) \\
& \quad \mathrm{r}=0.75 \\
& \mathrm{n}=7
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion $a_{1}=108$ (inches)

$$
r=75 \%=0.75
$$

$$
\mathrm{n}=\mathbf{8}
$$

$$
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

$$
\mathbf{r}=0.75
$$

$$
\mathrm{n}=7
$$

$$
S_{7}=\frac{81\left(1-0.75^{7}\right)}{}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion $a_{1}=108$ (inches)

Upward Motion

$$
r=75 \%=0.75
$$

$$
\mathrm{n}=\mathbf{8}
$$

$$
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)}
$$

$$
\begin{aligned}
& a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
& \quad r=0.75 \\
& n=7 \\
& S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)}
\end{aligned}
$$

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) (75\% of 108) } \\
r=75 \%=0.75 & r=0.75 \\
n=8 & n=7 \\
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} & S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{gathered}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) } \\
r=75 \%=0.75 \\
n=8 \\
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)}
\end{gathered}
$$

Upward Motion

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

$$
\begin{gathered}
\mathrm{r}=0.75 \\
\mathrm{n}=7 \\
\mathrm{~S}_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)}
\end{gathered}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{array}{c|c}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(\mathbf{7 5 \%} \text { of 108) } \\
r=75 \%=0.75 & r=0.75 \\
n=8 & n=7 \\
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx & S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{array}{c|c}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(75 \% \text { of 108) } \\
r=75 \%=0.75 & r=0.75 \\
n=8 & n=7 \\
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \underline{97.19} & S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{array}{c|c}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(75 \% \text { of 108) } \\
r=75 \%=0.75 & r=0.75 \\
n=8 & n=7 \\
S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25} & S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)}
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

\[

\]

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{aligned}
& \text { Downward Motion Upward Motion } \\
& \mathrm{a}_{1}=108 \text { (inches) } \\
& r=75 \%=0.75 \\
& \mathrm{n}=8 \\
& S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25} \\
& \mathrm{~S}_{8} \approx 388.75 \text { (inches) } \\
& a_{1}=81 \text { (inches) }(\mathbf{7 5 \%} \text { of 108) } \\
& \mathrm{r}=0.75 \\
& \mathrm{n}=7 \\
& S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)}
\end{aligned}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion $a_{1}=108$ (inches)
$r=75 \%=0.75$
$\mathrm{n}=8$
$S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25}$
$\mathrm{S}_{8} \approx 388.75$ (inches)

Upward Motion

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

$$
r=0.75
$$

$$
\mathrm{n}=7
$$

$$
S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion Upward Motion $a_{1}=108$ (inches)
$\mathrm{r}=75 \%=0.75$
$\mathrm{n}=8$
$S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25}$
$\mathrm{S}_{8} \approx 388.75$ (inches)

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

$$
r=0.75
$$

$$
\mathrm{n}=7
$$

$$
S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)} \approx
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion $a_{1}=108$ (inches)
$r=75 \%=0.75$
$\mathrm{n}=8$
$S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25}$
$\mathrm{S}_{8} \approx 388.75$ (inches)

Upward Motion

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

$$
r=0.75
$$

$$
\mathrm{n}=7
$$

$$
S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)} \approx \underline{70.19}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion $a_{1}=108$ (inches)
$r=75 \%=0.75$
$\mathrm{n}=8$
$S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25}$
$\mathrm{S}_{8} \approx 388.75$ (inches)

Upward Motion

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

$$
r=0.75
$$

$$
\mathrm{n}=7
$$

$$
S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)} \approx \frac{70.19}{0.25}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion $a_{1}=108$ (inches)
$r=75 \%=0.75$
$\mathrm{n}=8$
$S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25}$
$\mathrm{S}_{8} \approx 388.75$ (inches)

Upward Motion

$$
a_{1}=81 \text { (inches) }(75 \% \text { of } 108)
$$

$$
r=0.75
$$

$$
\mathrm{n}=7
$$

$$
S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)} \approx \frac{70.19}{0.25}
$$

$$
\mathrm{S}_{7} \approx
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

Downward Motion $a_{1}=108$ (inches)
$r=75 \%=0.75$
$\mathrm{n}=8$
$S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25}$
$\mathrm{S}_{8} \approx 388.75$ (inches)

Upward Motion
$a_{1}=81$ (inches) (75\% of 108)
$r=0.75$
n $=7$
$S_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)} \approx \frac{70.19}{0.25}$
$\mathrm{S}_{7} \approx 280.75$ (inches)

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
\mathbf{r}=75 \%=0.75 & \mathbf{r}=0.75 \\
\mathrm{n}=8 & \mathrm{n}=7 \\
\mathrm{~S}_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25} & \mathrm{~S}_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)} \approx \frac{70.19}{0.25} \\
\mathrm{~S}_{8} \approx \mathbf{3 8 8 . 7 5}(\text { inches }) & \mathrm{S}_{7} \approx 280.75 \text { (inches) }
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) }
\end{array} & \begin{array}{c}
\text { Upward Motion } \\
a_{1}=81 \\
\text { (inches) } \\
\mathbf{r}=75 \%=0.75
\end{array} \\
\mathrm{n}=8 & \mathrm{r}=0.75 \\
\mathrm{~S}_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25} & \mathrm{~S}_{7}=\frac{81\left(1-0.75^{7}\right)}{(1-0.75)} \\
\mathrm{S}_{8} \approx \mathbf{3 8 8 . 7 5} \text { (inches) } & \mathrm{S}_{7} \approx \mathbf{2 8 0 . 7 5}(\mathrm{inc}
\end{array}
$$

The total vertical distance is about 669.5 inches.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{aligned}
& \text { Downward Motion Upward Motion } \\
& \mathrm{a}_{1}=108 \text { (inches) } \\
& r=75 \%=0.75 \\
& \mathrm{n}=8 \\
& S_{8}=\frac{108\left(1-0.75^{8}\right)}{(1-0.75)} \approx \frac{97.19}{0.25} \\
& \mathrm{~S}_{8} \approx 388.75 \text { (inches) }
\end{aligned}
$$

The total vertical distance is about 669.5 inches.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
10. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball has traveled when it hits the floor for the eighth time?
We will use two geometric series for this problem. One for the downward motion of the ball, and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
\mathbf{a}_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(\mathbf{7 5 \%} \% \text { of } 108) \\
\mathbf{r}=75 \%=0.75 & \mathbf{r}=0.75 \\
\mathrm{n}=8 & \mathrm{n}=7 \\
\mathrm{~S}_{8}=\frac{108\left(1-0.5^{8}\right)}{(1-0.75)} \approx \frac{\mathbf{9 7 . 1 9}}{0.25} & \mathrm{~S}_{7}=\frac{\mathbf{8 1}\left(1-0.75^{7}\right)}{(1-0.75)} \approx \frac{70.19}{0.25} \\
\mathrm{~S}_{8} \approx \mathbf{3 8 8 . 7 5} \text { (inches) } & \mathrm{S}_{7} \approx 280.75 \text { (inches) }
\end{array}
$$

The total vertical distance is about 669.5 inches.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete
floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous
height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete
floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous
height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

Downward Motion

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete
floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous
height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

Downward Motion

$$
\mathbf{a}_{1}=
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete
floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous
height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to 75% of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

Downward Motion

$$
a_{1}=108 \text { (inches) }
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

> Downward Motion Upward Motion

$$
a_{1}=108 \text { (inches) }
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=\mathbf{8 1} \text { (inches) }
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(\mathbf{7 5 \%} \text { of } 108)
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(\mathbf{7 5 \%} \text { of } 108)
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) (75\% of 108) }
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{l|l}
\hline \text { Downward Motion } & \text { Upward Motion } \\
\begin{array}{c}
a_{1}=108 \text { (inches) }
\end{array} & a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
r= &
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

\[

\]

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

\[

\]

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(\mathbf{7 5 \%} \text { of 108) } \\
r=0.75 & r=
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(\mathbf{7 5 \%} \text { of 108) } \\
r=0.75 & r=0.75
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cr}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
r=0.75 & r=0.75
\end{array}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(75 \% \text { of 108) } \\
r=0.75 & r=0.75
\end{array}
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{c|c}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(75 \% \text { of 108) } \\
r=0.75 & r=0.75
\end{array}
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cr}
\text { Downward Motion } & \text { Upward Motion } \\
a_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) }(75 \% \text { of } 108) \\
r=0.75 & r=0.75
\end{array}
$$

$S=$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

\[

\]

$$
S=-108
$$

$$
S=\frac{\mathbf{a}_{1}}{1-\mathbf{r}}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{l|r}
& \begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) }
\end{array} \\
r=0.75 & a_{1}=81 \text { (inches) }(75 \% \text { of 108) } \\
S=\frac{108}{(1-0.75)} & r=0.75 \\
\hline
\end{array}
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{c|c}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) }
\end{array} & a_{1}=81 \text { (inches) }(75 \% \text { of 108) } \\
r=0.75 & r=0.75 \\
S=\frac{108}{(1-0.75)}= &
\end{array}
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{c|c}
\text { Downward Motion } & \text { Upward Motion } \\
\mathbf{a}_{1}=108 \text { (inches) } & a_{1}=81 \text { (inches) (} 75 \% \text { of 108) } \\
\mathbf{r}=0.75 & \mathbf{r}=0.75
\end{array}
$$

$$
S=\frac{108}{(1-0.75)}=432 \text { inches }
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) }
\end{array} & \begin{array}{c}
\text { Upward Motion } \\
r=01 \\
\text { (inches) } \\
(75 \% \\
\text { of 108) }
\end{array} \\
S=\frac{108}{(1-0.75)}=432 \text { inches } & r=0.75
\end{array}
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\left.\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) } \\
r=0.75
\end{array} & \begin{array}{c}
\text { Upward Motion } \\
1
\end{array} \\
S=\frac{108}{(1-0.75)}=432 \text { inches } & r=0.75 \\
(75 \% \text { of 108) }
\end{array}\right)
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cr}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) } \\
r=0.75 \\
S= \\
(1-0.75)
\end{array} a_{1}=8 \\
& \\
\hline \mathbf{1 0 8} \\
\hline
\end{array}
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{c|c}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) } \\
r=0.75
\end{array} & a_{1}=81 \text { (inches) } \\
\mathbf{(7 5 \%} \text { of 108) } \\
S=\frac{108}{(1-0.75)}=432 \text { inches } & S=\frac{81}{}
\end{array}
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) } \\
r=0.75
\end{array} & \begin{array}{c}
\text { Upward Motion } \\
1
\end{array} \\
\mathbf{8 1} \text { (inches) (75\% of 108) } \\
\mathbf{r}=0.75 \\
(1-0.75) & 108 \\
432 \text { inches } & S=\frac{81}{(1-0.75)}
\end{array}
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\left.\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) } \\
r=0.75
\end{array} & a_{1}=81 \text { (inches) (75\% of 108) } \\
\mathbf{r}=0.75
\end{array}\right)
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\left.\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) } \\
r=0.75
\end{array} & \begin{array}{c}
\text { Upward Motion } \\
1
\end{array} \\
\mathbf{8 1} \text { (inches) (75\% of 108) } \\
\mathbf{r}=0.75
\end{array}\right)
$$

$$
S=\frac{a_{1}}{1-r}
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\left.\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) }
\end{array} & \begin{array}{c}
\text { Upward Motion } \\
r=0.75
\end{array} \\
S=\frac{108}{(1-0.75)}=432 \text { inches } & \mathrm{r}=0.75
\end{array}\right)
$$

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) }
\end{array} & \begin{array}{c}
\text { Upward Motion } \\
r=0.75
\end{array} \\
S=\frac{108}{(1-0.75)}=432 \text { inches } & \mathrm{r}=0.75 \\
S=\frac{81}{(1-0.75)}=324 \text { inches }
\end{array}
$$

The total vertical distance is 756 inches.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) }
\end{array} & \begin{array}{c}
\text { Upward Motion } \\
r=0.75
\end{array} \\
S=\frac{108}{(1-0.75)}=432 \text { inches } & \mathrm{r}=0.75 \\
S=\frac{81}{(1-0.75)}=324 \text { inches }
\end{array}
$$

The total vertical distance is 756 inches.

Algebra 2 Class Worksheet \#6 Unit 9

Solve each of the following problems.
11. A ball is dropped from a height of 108 inches onto a concrete floor. On each bounce the ball rebounds to $\mathbf{7 5 \%}$ of its previous height. What is the total vertical distance that the ball will travel before it comes to rest?
We will use two infinite geometric series for this problem. One for the downward motion and the other for the upward motion of the ball.

$$
\begin{array}{cc}
\begin{array}{c}
\text { Downward Motion } \\
a_{1}=108 \text { (inches) }
\end{array} & \begin{array}{c}
\text { Upward Motion } \\
r=0.75
\end{array} \\
S=\frac{108}{(1-0.75)}=432 \text { inches } & \mathrm{r}=0.75 \\
S=\frac{81}{(1-0.75)}=324 \text { inches }
\end{array}
$$

The total vertical distance is 756 inches.

