Algebra II

Lesson \#5 Unit 9

Class Worksheet \#5
For Worksheet \#6

Algebra 2 Class Worksheet \#5 Unit 9

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\mathbf{a}_{\mathrm{n}}=3 \mathrm{n}+1 .
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\mathbf{a}_{\mathrm{n}}=3 \mathrm{n}+1
$$

$$
S_{30}=
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30}
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30}
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30}
\end{gathered}
$$

$S_{30}=$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30}
\end{gathered}
$$

$$
S_{30}=[3(1)+1]
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30}
\end{gathered}
$$

$$
S_{30}=[3(1)+1]+[3(2)+1]
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30}
\end{gathered}
$$

$$
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1]
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1]
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

We will pair up the terms to help calculate the sum.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

We will pair up the terms to help calculate the sum.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

We will pair up the terms to help calculate the sum.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

We will pair up the terms to help calculate the sum.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

The sum of the terms in each pair is 95 .

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

Since there are 15 pairs,

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91
\end{gathered}
$$

Since there are 15 pairs, each with a sum of 95 ,

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=
\end{gathered}
$$

Since there are 15 pairs, each with a sum of 95 , the total is

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)
\end{gathered}
$$

Since there are 15 pairs, each with a sum of 95 , the total is

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

Since there are 15 pairs, each with a sum of 95 , the total is

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

For any arithmetic series,

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

For any arithmetic series, $\mathrm{S}_{\mathbf{n}}=$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}$ (
The number of pairs.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

For any arithmetic series, $\quad S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
The number of pairs.
The sum of the terms in each pair.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

For any arithmetic series, $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

For any arithmetic series, $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

What if \mathbf{n} is odd????

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

Find the sum of the first 30 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{30}=a_{1}+a_{2}+a_{3}+\ldots+a_{28}+a_{29}+a_{30} \\
S_{30}=[3(1)+1]+[3(2)+1]+[3(3)+1]+\ldots+[3(28)+1]+[3(29)+1]+[3(30)+1] \\
S_{30}=4+7+10+\ldots+85+88+91=(15)(95)=1425
\end{gathered}
$$

For any arithmetic series, $S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(a_{1}+a_{n}\right)$
What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $S_{n}=\frac{\mathbf{n}}{2}\left(a_{1}+a_{n}\right)$
What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $S_{n}=\frac{\mathbf{n}}{2}\left(a_{1}+a_{n}\right)$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathrm{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\mathbf{a}_{\mathrm{n}}=3 \mathrm{n}+1
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
S_{7}=\quad a_{n}=3 n+1 .
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathrm{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}
\end{gathered}
$$

$\mathrm{S}_{7}=$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathrm{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}
\end{gathered}
$$

$\mathrm{S}_{7}=$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}
\end{gathered}
$$

$S_{7}=[3(1)+1]$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}
\end{gathered}
$$

$$
S_{7}=[3(1)+1]+[3(2)+1]
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}
\end{gathered}
$$

$$
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}
\end{gathered}
$$

$$
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
\mathbf{a}_{\mathbf{n}}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
\mathbf{a}_{\mathbf{n}}=3 \mathrm{n}+1 . \\
\mathrm{S}_{7}=\mathbf{a}_{1}+\mathbf{a}_{2}+\mathrm{a}_{3}+\mathbf{a}_{4}+\mathrm{a}_{5}+\mathrm{a}_{6}+\mathrm{a}_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1]
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1]
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1]
\end{gathered}
$$

$$
S_{7}=4
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19
\end{gathered}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{aligned}
& \mathbf{a}_{\mathrm{n}}=3 \mathrm{n}+1 . \\
& S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
& S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
& S_{7}=4+7+10+13+16+19+22
\end{aligned}
$$

What if \mathbf{n} is odd???? Let's see.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=\mathbf{4}+\mathbf{7}+\mathbf{1 0}+\mathbf{1 3}+16+19+\mathbf{2 2}
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=\mathbf{4}+\mathbf{7}+10+13+16+19+\mathbf{2 2}
\end{gathered}
$$

Once again, we will pair up the terms.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22 \\
\text { Once again, we will pair up the terms. }
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+\underset{4}{4}+10+13+16+19+22 \\
\text { Once again, we will pair up the terms. }
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22 \\
\text { Once again, we will pair up the terms. }
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+\underset{4}{4}+\underset{4}{\mathbf{1 0}+13+16}+19+\mathbf{2 2}
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{aligned}
& \mathbf{a}_{\mathrm{n}}=3 \mathrm{n}+1 . \\
& S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
& S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
& S_{7}=4+\underset{\sim}{7}+\underset{\sim}{10}+13+16+\underset{\sim}{19}+22 \\
& \text { we get } 3 \text { pairs, }
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=\underset{4}{4}+\underset{\sim}{7}+10+13+16+19+22 \\
\text { we get } 3 \text { pairs, each adding up to } 26 .
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+\underset{4}{4}+\underset{4}{\mathbf{1 0}+13+16}+19+\mathbf{2 2}
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+\underset{7}{4}+10+13+16+19+22
\end{gathered} \quad .
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+\underset{4}{4}+\underset{4}{10}+13+16+19+22
\end{gathered}
$$

Notice that the 'odd' term, the middle term,

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+\underset{4}{4}+\underset{4}{10}+13+16+19+22
\end{gathered}
$$

Notice that the 'odd' term, the middle term, is half of 26 !

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+\underset{4}{4}+\underset{4}{\mathbf{1 0}}+13+16+19+\mathbf{2 2}
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+\underset{4}{\mathbf{7}}+\underset{4}{10}+13+16+19+22
\end{gathered}
$$

Therefore, we have $3 ½$ groups of 26.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22
\end{gathered}
$$

Therefore, we have $\mathbf{3}^{1 ⁄ 2}$ groups of 26 .

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22=
\end{gathered}
$$

Therefore, we have $31 / 2$ groups of 26.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathrm{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22=\frac{7}{2}(
\end{gathered}
$$

Therefore, we have $31 / 2$ groups of 26.

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(a_{1}+a_{n}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22=\frac{7}{2}(4+22)
\end{gathered}
$$

Therefore, we have $\mathbf{3}^{1 ⁄ 2}$ groups of 26 .

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(a_{1}+a_{n}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22=\frac{7}{2}(4+22)=
\end{gathered}
$$

Therefore, we have $31 / 2$ groups of 26 .

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(a_{1}+a_{n}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22=\frac{7}{2}(4+22)=91
\end{gathered}
$$

Therefore, we have $31 / 2$ groups of 26 .

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $S_{n}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{n}}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22=\frac{7}{2}(4+22)=91
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

This lesson involves arithmetic series. Here is the definition. An arithmetic series is an indicated sum of the terms of an arithmetic sequence. Here is an example.

For any arithmetic series, $\quad S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
Find the sum of the first 7 terms of a sequence defined by

$$
\begin{gathered}
a_{n}=3 n+1 . \\
S_{7}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
S_{7}=[3(1)+1]+[3(2)+1]+[3(3)+1]+[3(4)+1]+[3(5)+1]+[3(6)+1]+[3(7)+1] \\
S_{7}=4+7+10+13+16+19+22=\frac{7}{2}(4+\mathbf{2 2})=91
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.
2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.
2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
$\mathbf{a}_{1}=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2=17
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2=17
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2=17
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2=17
$$

This sequence starts at 7.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2=17
$$

This sequence starts at 7.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2=17
$$

This sequence starts at 7.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2=17
$$

This sequence starts at 7 and adds 5 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2=17
$$

This sequence starts at 7 and adds 5 recursively.
The sequence is arithmetic

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic.

$$
a_{1}=5(1)+2=7 \quad a_{2}=5(2)+2=12 \quad a_{3}=5(3)+2=17
$$

This sequence starts at 7 and adds 5 recursively.
The sequence is arithmetic

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$. The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathrm{n}=60
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\mathrm{n}=60$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\mathrm{n}=60$
$\mathbf{a}_{1}=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\mathrm{n}=60$
$a_{1}=5(1)+2$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\mathrm{n}=60$
$a_{1}=5(1)+2=7$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathrm{n}=60
$$

$a_{1}=5(1)+2=7$
$\mathrm{a}_{60}=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathrm{n}=60
$$

$a_{1}=5(1)+2=7$
$a_{60}=5(60)+2$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$. The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathrm{n}=60
$$

$$
a_{1}=5(1)+2=7
$$

$$
a_{60}=5(60)+2=
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathrm{n}=60
$$

$a_{1}=5(1)+2=7$
$\mathrm{a}_{60}=5(60)+2=302$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$. The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathrm{n}=60
$$

$$
\begin{aligned}
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$. The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathrm{n}=60
$$

$$
\begin{aligned}
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$. The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60
$$

$$
a_{1}=5(1)+2=7
$$

$$
S_{60}=
$$

$$
a_{60}=5(60)+2=302
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

$$
\text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
\begin{array}{ll}
\quad n=60 \\
a_{1}=5(1)+2=7 \\
a_{60}=5(60)+2=302 & S_{60}=\frac{60}{2}(
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$. The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathrm{n}=\mathbf{6 0}
$$

$$
\begin{aligned}
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
S_{60}=\frac{60}{2}(7
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$. The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60
$$

$$
a_{1}=5(1)+2=7
$$

$$
S_{60}=\frac{60}{2}(7+302)
$$

$a_{60}=5(60)+2=302$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
S_{60}=\frac{60}{2}(7+302)=
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
S_{60}=\frac{60}{2}(7+302)=(30)(
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
S_{60}=\frac{60}{2}(7+302)=(30)(309)
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{aligned}
S_{60}= & \frac{60}{2}(7+302)=(30)(309) \\
& S_{60}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{aligned}
S_{60}= & \frac{60}{2}(7+302)=(30)(309) \\
& S_{60}=9,270
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{gathered}
S_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\\
S_{60}=9,270
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\begin{array}{l}
\mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 \\
\mathbf{a}_{60}=5(60)+2=302
\end{array} & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
& \mathrm{S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{gathered}
S_{60}=\frac{60}{2}(7+302)=(30)(309) \\
S_{60}=9,270
\end{gathered}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\begin{array}{l}
\mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 \\
\mathbf{a}_{60}=5(60)+2=302
\end{array} & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
& \mathrm{S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

The series is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{gathered}
S_{60}=\frac{60}{2}(7+302)=(30)(309) \\
S_{60}=9,270
\end{gathered}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\begin{array}{l}
\mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 \\
\mathbf{a}_{60}=5(60)+2=302
\end{array} & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
& \mathrm{S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\begin{array}{l}
\mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 \\
\mathbf{a}_{60}=5(60)+2=302
\end{array} & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
& \mathrm{S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 & \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=\mathbf{9 , 2 7 0}
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
n=40
$$

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 & \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=\mathbf{9 , 2 7 0}
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
n=40
$$

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\mathrm{n}=60 & \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\begin{array}{l}
\mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 \\
\mathbf{a}_{60}=5(60)+2=302
\end{array} & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
& \mathrm{S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 & \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 & \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 & \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 & \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5)
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \quad \text { The series is arithmetic. } \square S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Rightarrow
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \quad \text { The series is arithmetic. } \square S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Rightarrow a_{40}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Rightarrow a_{40}=198
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \quad \text { The series is arithmetic. } \square S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Rightarrow a_{40}=198
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \quad \text { The series is arithmetic. } \square S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Longrightarrow a_{40}=198
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{gathered}
S_{60}=\frac{60}{2}(7+302)=(30)(309) \\
S_{60}=9,270
\end{gathered}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Rightarrow a_{40}=198
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{gathered}
S_{60}=\frac{60}{2}(7+302)=(30)(309) \\
S_{60}=9,270
\end{gathered}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Longrightarrow a_{40}=198
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{gathered}
S_{60}=\frac{60}{2}(7+302)=(30)(309) \\
S_{60}=9,270
\end{gathered}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Longrightarrow a_{40}=198
\end{aligned} \quad S_{40}=\frac{40}{2}(3+198)
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Rightarrow a_{40}=198
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\mathrm{n}=60 & \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathrm{a}_{60}=5(60)+2=302 & \\
\mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \quad \text { The series is arithmetic. } \square S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Longrightarrow a_{40}=198
\end{aligned} \quad S_{40}=\frac{40}{2}(3+198)=(20)\left(\begin{array}{l}
\text { (}
\end{array}\right.
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Longrightarrow a_{40}=198
\end{aligned} \quad S_{40}=\frac{40}{2}(3+198)=(20)(201) \text { The series is arithmetic. } \square S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{lr}
\quad \mathrm{n}=60 \\
\mathrm{a}_{1}=5(1)+2=7 & \mathrm{~S}_{60}=\frac{60}{2}(7+302)=(30)(309) \\
\mathbf{a}_{60}=5(60)+2=302 & \mathrm{~S}_{60}=9,270
\end{array}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Longrightarrow a_{40}=198
\end{aligned} \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{gathered}
S_{60}=\frac{60}{2}(7+302)=(30)(309) \\
S_{60}=9,270
\end{gathered}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Longrightarrow a_{40}=198
\end{aligned} \quad \begin{aligned}
& \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& \frac{40}{2}(3+198)=(20)(201) \\
& S_{40}=4,020
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined
by $a_{n}=5 n+2$.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{gathered}
S_{60}=\frac{60}{2}(7+302)=(30)(309) \\
S_{60}=9,270
\end{gathered}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Longrightarrow a_{40}=198
\end{aligned} \quad \begin{aligned}
& S_{40}=\frac{40}{2}(3+198)=(20)(201) \\
& S_{40}=4,020
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

1. Find the sum of the first 60 terms of the sequence defined by $a_{n}=5 n+2$. The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& n=60 \\
& a_{1}=5(1)+2=7 \\
& a_{60}=5(60)+2=302
\end{aligned}
$$

$$
\begin{gathered}
S_{60}=\frac{60}{2}(7+302)=(30)(309) \\
S_{60}=9,270
\end{gathered}
$$

2. Find the sum of the first 40 terms of an arithmetic sequence in which $a_{1}=3$ and $d=5$.

$$
\begin{aligned}
& n=40 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{40}=3+39(5) \Longrightarrow a_{40}=198
\end{aligned} \quad \begin{aligned}
& \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& \frac{40}{2}(3+198)=(20)(201) \\
& S_{40}=4,020
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
4. Find the sum of the first 60 terms of the sequence 1, 1.3, 1.6, 1.9, ...

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The first term is $\mathbf{1 0}$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The first term is $\mathbf{1 0}$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The first term is $\mathbf{1 0}$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The first term is 10 . Then add 4 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The first term is 10 . Then add 4 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The first term is 10 . Then add 4 recursively.
\square The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The series is arithmetic.

The first term is 10 . Then add 4 recursively.
\Rightarrow The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The series is arithmetic. \Rightarrow

The first term is 10 . Then add 4 recursively.
\square The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
The first term is 10 . Then add 4 recursively.
\square The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
The first term is 10 . Then add 4 recursively.
\square The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4$
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
The first term is 10 . Then add 4 recursively.
\Rightarrow The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4$
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4$
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=\quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
\mathbf{a}_{35}

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\mathbf{a}_{35}=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathbf{a}_{35}=\mathbf{a}_{1}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$
$a_{35}=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$
$\mathbf{a}_{35}=10$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$
$a_{35}=10+$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$
$a_{35}=10+34(4)=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$
$a_{35}=10+34(4)=146$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$
$a_{35}=10+34(4)=146$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$
$S_{35}=$
$a_{35}=10+34(4)=146$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$

$$
S_{35}=\frac{35}{2}(
$$

$a_{35}=10+34(4)=146$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$

$$
S_{35}=\frac{35}{2}(10
$$

$\mathrm{a}_{35}=10+34(4)=146$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{35}=a_{1}+34 d
$$

$$
S_{35}=\frac{35}{2}(10+146)
$$

$$
a_{35}=10+34(4)=146
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$

$$
S_{35}=\frac{35}{2}(10+146)=
$$

$a_{35}=10+34(4)=146$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+\mathbf{3 4 d} \\
& \left.a_{35}=10+\mathbf{3 4 (4)}\right)=\mathbf{1 4 6}
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{35}=a_{1}+34 d$

$$
S_{35}=\frac{35}{2}(10+146)=(17.5)(156)
$$

$a_{35}=10+34(4)=146$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{\mathbf{3 5}}{\mathbf{2}}(10+146)=(17.5)(156) \\
& \mathbf{S}_{\mathbf{3 5}}=\mathbf{2 , 7 3 0}
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

The first term is 1.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1
$$

The first term is 1.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1
$$

The first term is $\mathbf{1}$. Add 0.3 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& \begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146 \\
S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
S_{35}=2,730
\end{array}
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence

$$
\underset{\substack{1,1.3 \\ a_{1}=1}}{1,1.6,1.9, \ldots}
$$

The first term is 1 . Add 0.3 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{\mathbf{3 5}}{\mathbf{2}}(10+146)=(17.5)(156) \\
& \mathrm{S}_{35}=\mathbf{2 , 7 3 0}
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence

$$
\begin{aligned}
& 1,1.3,1.6,1.9, \ldots \\
& a_{1}=1
\end{aligned}
$$

The first term is $\mathbf{1}$. Add 0.3 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{\mathbf{3 5}}{\mathbf{2}}(10+146)=(17.5)(156) \\
& \mathrm{S}_{35}=\mathbf{2 , 7 3 0}
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
\mathbf{a}_{1}=1
$$

The first term is $\mathbf{1}$. Add 0.3 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
\mathbf{a}_{1}=1
$$

The first term is $\mathbf{1}$. Add 0.3 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1 \quad d=0.3
$$

The first term is $\mathbf{1}$. Add 0.3 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1 \quad d=0.3
$$

The first term is 1 . Add 0.3 recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1 \quad d=0.3
$$

The first term is $\mathbf{1}$. Add 0.3 recursively.
\square The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$
$a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic.
The first term is 1 . Add 0.3 recursively.
\Rightarrow The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{\mathbf{3 5}}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$
$a_{1}=1 \mathrm{~d}=0.3 \quad$ The series is arithmetic. \Rightarrow
The first term is $\mathbf{1}$. Add 0.3 recursively.
\square The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& \begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

The first term is 1 . Add 0.3 recursively.
\Rightarrow The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+\mathbf{3 4 d} \\
& \mathbf{a}_{35}=10+\mathbf{3 4 (4)}=\mathbf{1 4 6} \\
& S_{35}=\frac{\mathbf{3 5}}{2}(10+146)=(\mathbf{1 7 . 5})(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$
$a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$
$a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$
$a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\mathrm{n}=\mathbf{6 0}$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+\mathbf{3 4 d} \\
& \mathbf{a}_{35}=10+\mathbf{3 4 (4)}=\mathbf{1 4 6} \\
& S_{35}=\frac{\mathbf{3 5}}{2}(10+146)=(\mathbf{1 7 . 5})(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$ $\mathrm{n}=\mathbf{6 0}$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$
$a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$n=60 \quad a_{n}=a_{1}+(n-1) d$
\mathbf{a}_{60}

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence

$$
1,1.3,1.6,1.9, \ldots
$$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d
$$

$$
\mathbf{a}_{60}=
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$
$a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$n=60 \quad a_{n}=a_{1}+(n-1) d$
$a_{60}=1$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence

$$
1,1.3,1.6,1.9, \ldots
$$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d
$$

$$
\mathbf{a}_{60}=1+
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d
$$

$$
a_{60}=1+59(
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence

$$
1,1.3,1.6,1.9, \ldots
$$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d
$$

$$
a_{60}=1+59(0.3)
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
4. Find the sum of the first 60 terms of the sequence

$$
1,1.3,1.6,1.9, \ldots
$$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d
$$

$$
a_{60}=1+59(0.3)
$$

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{\mathbf{3 5}}{\mathbf{2}}(\mathbf{1 0}+\mathbf{1 4 6})=(\mathbf{1 7 . 5})(\mathbf{1 5 6}) \\
& \mathrm{S}_{35}=\mathbf{2 , 7 3 0}
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first $\mathbf{3 5}$ terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence

$$
1,1.3,1.6,1.9, \ldots
$$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d
$$

$$
a_{60}=1+59(0.3) \longmapsto
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence

$$
1,1.3,1.6,1.9, \ldots
$$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d
$$

$$
a_{60}=1+59(0.3) \longmapsto a_{60}=
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$
$a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$n=60 \quad a_{n}=a_{1}+(n-1) d$
$a_{60}=1+59(0.3) \Rightarrow a_{60}=18.7$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence

$$
1,1.3,1.6,1.9, \ldots
$$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d
$$

$$
a_{60}=1+59(0.3) \Longrightarrow a_{60}=18.7
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=
$$

$$
a_{60}=1+59(0.3) \Longrightarrow a_{60}=18.7
$$

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{\mathbf{3 5}}{\mathbf{2}}(\mathbf{1 0}+\mathbf{1 4 6})=(\mathbf{1 7 . 5})(\mathbf{1 5 6}) \\
& \mathrm{S}_{\mathbf{3 5}}=\mathbf{2 , 7 3 0}
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(
$$

$$
a_{60}=1+59(0.3) \Longrightarrow a_{60}=18.7
$$

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{\mathbf{3 5}}{\mathbf{2}}(\mathbf{1 0}+\mathbf{1 4 6})=(\mathbf{1 7 . 5})(\mathbf{1 5 6}) \\
& \mathrm{S}_{\mathbf{3 5}}=\mathbf{2 , 7 3 0}
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(1
$$

$$
a_{60}=1+59(0.3) \Longleftrightarrow a_{60}=18.7
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$

$$
a_{1}=1 \quad d=0.3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(1+18.7)
$$

$$
a_{60}=1+59(0.3) \Rightarrow a_{60}=18.7
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\begin{aligned}
& d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146 \\
& S_{35}=\frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$ $n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(1+18.7)=$ $a_{60}=1+59(0.3) \Rightarrow a_{60}=18.7$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(1+18.7)=(30)(
$$

$$
a_{60}=1+59(0.3) \Longrightarrow a_{60}=18.7
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(1+18.7)=(30)(19.7)
$$

$$
a_{60}=1+59(0.3) \Longleftrightarrow a_{60}=18.7
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(1+18.7)=(30)(19.7)
$$

$$
a_{60}=1+59(0.3) \Longleftrightarrow a_{60}=18.7
$$

$$
S_{60}=
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(1+18.7)=(30)(19.7)
$$

$$
a_{60}=1+59(0.3) \Longleftrightarrow a_{60}=18.7
$$

$$
S_{60}=591
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.

$$
\left.\begin{array}{l}
d=4 \quad n=35 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{35}=a_{1}+34 d \\
a_{35}=10+34(4)=146
\end{array} S_{35}=\frac{35}{2}(10+146)=(17.5)(156)\right)
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(1+18.7)=(30)(19.7)
$$

$$
a_{60}=1+59(0.3) \Longrightarrow a_{60}=18.7
$$

$$
S_{60}=591
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
3. Find the sum of the first 35 terms of the sequence defined by $a_{n+1}=a_{n}+4$ where $a_{1}=10$.
$d=4 \quad n=35 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
& a_{35}=a_{1}+34 d \\
& a_{35}=10+34(4)=146
\end{aligned}
$$

$$
\begin{aligned}
S_{35}= & \frac{35}{2}(10+146)=(17.5)(156) \\
& S_{35}=2,730
\end{aligned}
$$

4. Find the sum of the first 60 terms of the sequence $1,1.3,1.6,1.9, \ldots$ $a_{1}=1 \quad d=0.3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
n=60 \quad a_{n}=a_{1}+(n-1) d \quad S_{60}=\frac{60}{2}(1+18.7)=(30)(19.7)
$$

$$
a_{60}=1+59(0.3) \Longleftrightarrow a_{60}=18.7
$$

$$
S_{60}=591
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
6. Evaluate: $\sum_{i=1}^{60}(3 i+7)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
6. Evaluate: $\sum_{i=1}^{60}(3 i+7)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

The first term is 5 .

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
$a_{1}=5$
The first term is 5.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
$a_{1}=5$
The first term is 5 . The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $\underset{\sim}{5+8}+11+14+\ldots+200$.
$a_{1}=5$
The first term is 5 . The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+\underset{\sim}{8}+11+14+\ldots+200$. $a_{1}=5$

The first term is 5 . The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+\underset{\sim}{11+14}+\ldots+200$. $a_{1}=5$

The first term is 5 . The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
$a_{1}=5$
The first term is 5 . The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
$a_{1}=5 \quad$ The series is arithmetic.
The first term is 5 . The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
$a_{1}=5 \quad$ The series is arithmetic. \Rightarrow
The first term is 5. The number $\mathbf{3}$ is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
$a_{1}=5 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
The first term is 5 . The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
$a_{1}=5 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
The first term is 5 . The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
$a_{1}=5 \quad d=3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
The first term is 5 . The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
\mathbf{a}_{\mathbf{n}}=
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3
$$

$$
a_{n}=a_{1}
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3
$$

$$
\mathbf{a}_{\mathbf{n}}=\mathbf{a}_{\mathbf{1}}+
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{n}=a_{1}+(n-1) d
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
$a_{1}=5 \quad d=3 \quad$ The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{n}=a_{1}+(n-1) d$
We need the value of n.
200

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=$
We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+(n-1)
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+(n-1) 3
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=$
We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5$
We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+$
We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+$
We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+(n-1) 3=5+3 n
$$

We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-$
We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-3$
We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-3$
We need the value of n.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-3$
We need the value of n.
200

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-3$
We need the value of n.
$200=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+(n-1) 3=5+3 n-3
$$

We need the value of n.
$200=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+(n-1) 3=5+3 n-3
$$

We need the value of n.
$200=3 n$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+(n-1) 3=5+3 n-3
$$

We need the value of n.
$200=3 n+2$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+(n-1) 3=5+3 n-3
$$

We need the value of n.
$200=3 n+2$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+(n-1) 3=5+3 n-3
$$

We need the value of n.
$200=3 n+2 \Rightarrow$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
200=5+(n-1) 3=5+3 n-3
$$

We need the value of n.
$200=3 n+2 \Rightarrow 3 n$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-3$
We need the value of n.
$200=3 n+2 \Rightarrow 3 n=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-3$
We need the value of n.
$200=3 n+2 \Rightarrow 3 n=198$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-3$
We need the value of n.
$200=3 n+2 \Rightarrow 3 n=198 \Rightarrow$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-3$
We need the value of n.
$200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$a_{n}=a_{1}+(n-1) d$
$200=5+(n-1) 3=5+3 n-3$
We need the value of n.
$200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& \begin{array}{l}
a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{n}=a_{1}+(n-1) d \\
200=5+(n-1) 3=5+3 n-3 \\
200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{array}
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \quad S_{66}=\frac{66}{2}(5 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \quad S_{66}=\frac{66}{2}(5+ \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \quad S_{66}=\frac{66}{2}(5+200) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \quad S_{66}=\frac{66}{2}(5+200)= \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \quad S_{66}=\frac{66}{2}(5+200)=(33)(\\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \quad S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \quad S_{66}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& S_{66}=6,765
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=\mathbf{6 , 7 6 5}
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)$

There are 60 terms.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)$

$$
n=60
$$

There are 60 terms.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)$

$$
n=60
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)$

$$
n=60
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=$

$$
n=60
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=\mathbf{6 , 7 6 5}
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=\mathbf{i}=\mathbf{1}$

$$
n=60
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=\mathbf{6 , 7 6 5}
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=\mathbf{i}=\mathbf{1}$

$$
\begin{aligned}
\mathrm{n} & =60 \\
a_{1} & =10
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=\mathbf{6 , 7 6 5}
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13$

$$
\begin{aligned}
\mathrm{n} & =60 \\
a_{1} & =10
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16$

$$
\begin{aligned}
\mathrm{n} & =60 \\
a_{1} & =10
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots$

$$
\begin{aligned}
\mathrm{n} & =60 \\
a_{1} & =10
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{aligned}
\mathrm{n} & =60 \\
a_{1} & =10
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned} \quad S_{66}=\frac{66}{2}(5+200)=(33)(205)
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{gathered}
n=60 \\
a_{1}=10 \\
a_{60}=187
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{gathered}
n=60 \\
a_{1}=10 \\
a_{60}=187
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{gathered}
n=60 \\
a_{1}=10 \\
a_{60}=187
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=\mathbf{6 , 7 6 5}
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{gathered}
n=60 \\
a_{1}=10 \\
a_{60}=187
\end{gathered}
$$

The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned} S_{66}=\frac{66}{2}(5+200)=(33)(205)
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\mathrm{n}=60 \quad \text { The series is arithmetic. }
$$

$$
a_{1}=10
$$

$$
a_{60}=187
$$

The number 3 is added recursively.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{gathered}
n=60 \\
a_{1}=10 \\
\mathbf{a}_{60}=187
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{gathered}
n=60 \\
a_{1}=10 \\
a_{60}=187
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{aligned}
n & =60 \\
a_{1} & =10 \\
a_{60} & =187
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{aligned}
n & =60 \\
a_{1} & =10 \\
a_{60} & =187
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \quad S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \quad S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{ll}
n=60 & \text { The series is arithmetic. } \square S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1}=10 & \\
a_{60}=187 & S_{60}= \\
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \quad S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \quad S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{lr}
\mathrm{n}=60 & \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1}=10 & S_{60}=\frac{60}{2}(
\end{array}
$$

$$
a_{60}=187
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \quad S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned} S_{66}=6,765 .
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
n=60 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
\begin{aligned}
& a_{1}=10 \\
& a_{60}=187
\end{aligned}
$$

$$
S_{60}=\frac{60}{2}(10
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned} S_{66}=\frac{66}{2}(5+200)=(33)(205)
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{lr}
\mathrm{n}=60 & \text { The series is arithmetic. } \square S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1}=10 & \\
a_{60}=187 & S_{60}=\frac{60}{2}(10+ \\
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned} S_{66}=\frac{66}{2}(5+200)=(33)(205) \text { S } \quad S_{66}=6,765 .
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{aligned}
\mathrm{n} & =60 & \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1} & =10 & S_{60}=\frac{60}{2}(10+187)
\end{aligned}
$$

$$
a_{60}=187
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{lr}
n=60 & \text { The series is arithmetic. } \square S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1}=10 & S_{60}=\frac{60}{2}(10+187)= \\
a_{60}=187 &
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{lr}
\mathrm{n}=60 & \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1}=10 & S_{60}=\frac{60}{2}(10+187)=(30)(\\
a_{60}=187 &
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.
6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{rlrl}
n & =60 & \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1} & =10 & S_{60}=\frac{60}{2}(10+187) & =(30)(197)
\end{array}
$$

$$
a_{60}=187
$$

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned} S_{66}=\frac{66}{2}(5+200)=(33)(205) \text { S } \quad S_{66}=6,765 .
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{cc}
n=60 & \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{1}{2}\left(a_{1}+a_{n}\right) \\
a_{1}=10 & S_{60}=\frac{60}{2}(10+187)=(30)(197) \\
a_{60}=187 & S_{60}=
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned} S_{66}=\frac{66}{2}(5+200)=(33)(205) \text { S } \quad S_{66}=6,765 .
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{cc}
n=60 & \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{1}{2}\left(a_{1}+a_{n}\right) \\
a_{1}=10 & S_{60}=\frac{60}{2}(10+187)=(30)(197) \\
a_{60}=187 & S_{60}=5,910
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& S_{66}=\frac{66}{2}(5+200)=(33)(205) \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66 \\
& S_{66}=6,765
\end{aligned}
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{lr}
\mathrm{n}=60 & \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1}=10 & S_{60}=\frac{60}{2}(10+187)=(\mathbf{3 0})(197) \\
a_{60}=187 & S_{60}=5,910
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
5. Evaluate the series $5+8+11+14+\ldots+200$.

$$
\begin{aligned}
& a_{1}=5 \quad d=3 \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+(n-1) d \\
& 200=5+(n-1) 3=5+3 n-3 \\
& 200=3 n+2 \Rightarrow 3 n=198 \Rightarrow n=66
\end{aligned} \quad S_{66}=\frac{66}{2}(5+200)=(33)(205)
$$

6. Evaluate: $\sum_{i=1}^{60}(3 i+7)=10+13+16+\ldots+187$

$$
\begin{array}{lr}
\mathrm{n}=60 & \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{1}=10 & S_{60}=\frac{60}{2}(10+187)=(\mathbf{3 0})(197) \\
a_{60}=187 & S_{60}=5,910
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the $\rightarrow \mathbf{a}_{1}$ object travels during the $n^{\text {th }}$ second.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the $\rightarrow \mathbf{a}_{1}$ object travels during the $n^{\text {th }}$ second. 2

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the $\rightarrow a_{1}$ object travels during the $n^{\text {th }}$ second. 2

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the $\longrightarrow \mathbf{a}_{1}, a_{2}$ object travels during the $n^{\text {th }}$ second.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.
a_{1}, a_{2}, a_{3}
2,5

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.
$\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$
2,5,8

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let $\mathbf{a}_{\mathbf{n}}$ represent the distance the $\rightarrow \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ object travels during the $n^{\text {th }}$ second.
$2,5,8$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.
$\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$
2,5,8

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.
$a_{1}, a_{2}, a_{3}, \ldots$
$2,5,8$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.
$a_{1}, a_{2}, a_{3}, \ldots$
$\mathbf{2}, \mathbf{5}, \mathbf{8}, \ldots$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.
$a_{1}, a_{2}, a_{3}, \ldots$
$\mathbf{2}, \mathbf{5}, \mathbf{8}, \ldots$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

$$
\begin{aligned}
& \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots \\
& 2,5,8, \ldots
\end{aligned}
$$

The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

$$
\begin{aligned}
& \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots \\
& 2,5,8, \ldots
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=2$ and

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

$$
\begin{aligned}
& \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots \\
& 2,5,8, \ldots
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the $\quad a_{1}, a_{2}, a_{3}, \ldots$ object travels during the $n^{\text {th }}$ second.
$\mathbf{2}, 5,8, \ldots$
The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the
$a_{1}, a_{2}, a_{3}, \ldots$ object travels during the $n^{\text {th }}$ second.
$\mathbf{2}, 5,8, \ldots$
The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the $\rightarrow a_{1}, a_{2}, a_{3}, \ldots$ object travels during the $n^{\text {th }}$ second. $\mathbf{2}, 5,8, \ldots$ The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the $\rightarrow a_{1}, a_{2}, a_{3}, \ldots$ object travels during the $n^{\text {th }}$ second.
$\mathbf{2}, 5,8, \ldots$
The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the $\rightarrow a_{1}, a_{2}, a_{3}, \ldots$ object travels during the $n^{\text {th }}$ second. $\mathbf{2}, 5,8, \ldots$

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. \Rightarrow

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.
$a_{1}, a_{2}, a_{3}, \ldots$
$\mathbf{2}, 5,8, \ldots$
The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
a_{30}=
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
a_{30}=a_{1}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\mathbf{a}_{30}=\mathbf{a}_{1}+
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
a_{30}=a_{1}+29 d
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
a_{30}=a_{1}+29 d=
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
a_{30}=a_{1}+29 d=2
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
a_{30}=a_{1}+29 d=2+
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
a_{30}=a_{1}+29 d=2+29(3)
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{gathered}
a_{30}=a_{1}+29 d=2+29(3) \\
a_{30}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{gathered}
a_{30}=a_{1}+29 d=2+29(3) \\
a_{30}=89
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{gathered}
a_{30}=a_{1}+29 d=2+29(3) \\
a_{30}=89
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\begin{aligned}
& \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{30}=a_{1}+29 d=2+29(3) \quad S_{30}= \\
& a_{30}=89
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\begin{aligned}
& \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{30}=a_{1}+29 d=2+29(3) \\
& a_{30}=89
\end{aligned} \quad S_{30}=\frac{30}{2}\left(\begin{array}{l}
\text { and }
\end{array}\right.
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

\[

\]

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\begin{aligned}
& \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{30}=a_{1}+29 d=2+29(3) \\
& S_{30}=\frac{\mathbf{3 0}}{\mathbf{2}} \mathbf{(2 +} \\
& a_{30}=89
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\begin{aligned}
& \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{30}=a_{1}+29 d=2+29(3) \\
& S_{30}=\frac{\mathbf{3 0}}{\mathbf{2}}(\mathbf{2}+89) \\
& a_{30}=89
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

\[

\]

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\begin{aligned}
& \quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{30}=a_{1}+29 d=2+29(3) \\
& a_{30}=89
\end{aligned} \quad S_{30}=\frac{30}{2}(2+89)=(15)()
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\left.\begin{array}{l}
\quad \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{30}=a_{1}+29 d=2+29(3) \\
a_{30}=89
\end{array} \quad S_{30}=\frac{30}{2}(2+89)=(15)(91)\right)
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\begin{gathered}
\text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{30}=a_{1}+29 d=2+29(3) \\
a_{30}=89
\end{gathered} \quad \begin{aligned}
& S_{30}=\frac{30}{2}(2+89)=(15)(91) \\
& S_{30}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels $\mathbf{2}$ feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\begin{gathered}
\text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{30}=a_{1}+29 d=2+29(3) \\
a_{30}=89
\end{gathered} \quad \begin{aligned}
& S_{30}=\frac{30}{2}(2+89)=(15)(91) \\
& S_{30}=1,365
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\left.\begin{array}{c}
\text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{30}=a_{1}+29 d=2+29(3) \\
a_{30}=89
\end{array} \quad S_{30}=\frac{30}{2}(2+89)=(15)(91)\right)
$$

The object will travel $\mathbf{1 , 3 6 5}$ feet during the first $\mathbf{3 0}$ seconds.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\begin{aligned}
& \text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{30}=a_{1}+29 d=2+29(3) \quad S_{30}=\frac{30}{2}(2+89)=(15)(91) \\
& a_{30}=89 \\
& S_{30}=\mathbf{1 , 3 6 5}
\end{aligned}
$$

The object will travel 1,365 feet during the first 30 seconds.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
7. An object accelerates in such a way that it travels 2 feet during the first second, 5 feet during the next second, and 8 feet during the third second. If this pattern continues, then how far will the object have moved during the first 30 seconds?
Let a_{n} represent the distance the object travels during the $n^{\text {th }}$ second.

$$
\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots
$$

$2,5,8, \ldots$
The sequence is arithmetic. $\quad a_{1}=2$ and $d=3$.
We need to find the sum of the first 30 terms of this sequence.

$$
\begin{gathered}
\text { The series is arithmetic. } \Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
a_{30}=a_{1}+29 d=2+29(3) \\
a_{30}=89
\end{gathered} \quad \begin{aligned}
& S_{30}=\frac{30}{2}(2+89)=(15)(91) \\
& S_{30}=1,365
\end{aligned}
$$

The object will travel 1,365 feet during the first 30 seconds.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ \mathbf{5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

Let \mathbf{a}_{n} represent the salary, in dollars, for the $\mathrm{n}^{\text {th }}$ year.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ \mathbf{5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\mathbf{a}_{1}=
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.

8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
a_{1}=29,000
$$

Let a_{n} represent the salary, in dollars, for the $\mathrm{n}^{\text {th }}$ year.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
a_{1}=29,000
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\mathbf{\$ 2 9 , 0 0 0}$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
a_{1}=29,000
$$

Let a_{n} represent the salary, in dollars, for the $\mathrm{n}^{\text {th }}$ year.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\mathbf{\$ 2 9 , 0 0 0}$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\mathbf{\$ 2 9 , 0 0 0}$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& a_{1}=29,000 \\
& a_{2}=29,500
\end{aligned}
$$

Let \mathbf{a}_{n} represent the salary, in dollars, for the $\mathbf{n}^{\text {th }}$ year.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\mathbf{\$ 2 9 , 0 0 0}$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& a_{1}=29,000 \\
& a_{2}=29,500 \\
& a_{3}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\mathbf{\$ 2 9 , 0 0 0}$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& a_{1}=29,000 \\
& a_{2}=29,500 \\
& a_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0}$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic.

$$
a_{1}=29,000 \text { and } d=500
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first 18 years.

$$
\begin{aligned}
& a_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let \mathbf{a}_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic.

$$
a_{1}=29,000 \text { and } d=500 .
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first 18 years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let \mathbf{a}_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0}$ and $\mathrm{d}=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0}$ and $\mathrm{d}=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. \Rightarrow

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0}$ and $\mathrm{d}=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0}$ and $\mathrm{d}=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\mathrm{a}_{18}=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\mathbf{a}_{18}=\mathbf{a}_{1}$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\mathrm{a}_{18}=\mathrm{a}_{1}+$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{18}=a_{1}+17 d$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{18}=a_{1}+17 d=$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{18}=a_{1}+\mathbf{1 7 d}=\mathbf{2 9 , 0 0 0}$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{18}=a_{1}+17 d=29,000+$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{18}=a_{1}+17 d=29,000+17($

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first 18 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$a_{18}=a_{1}+17 d=29,000+17(500)$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{gathered}
a_{18}=a_{1}+17 d=29,000+17(500) \\
a_{18}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{gathered}
a_{18}=a_{1}+17 d=29,000+17(500) \\
a_{18}=37,500
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{gathered}
a_{18}=a_{1}+17 d=29,000+17(500) \\
a_{18}=37,500
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{rlr}
a_{18}= & a_{1}+17 d=29,000+17(500) & S_{18}= \\
& a_{18}=37,500 &
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first 18 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
a_{18}= & a_{1}+17 d=29,000+17(500) \\
& a_{18}=37,500
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
a_{18}= & a_{1}+17 d=29,000+17(500) \\
& a_{18}=37,500
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0}$ and $\mathrm{d}=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{rlrl}
a_{18}= & a_{1}+17 d=29,000+17(500) & S_{18}=\frac{18}{2}(29,000+ \\
& a_{18}=37,500
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{rlrl}
a_{18}= & a_{1}+17 d=29,000+17(500) & S_{18}=\frac{18}{2}(29,000+37,500) \\
& a_{18}=37,500
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{aligned}
a_{18}= & a_{1}+17 d=29,000+17(500) \quad S_{18}=\frac{18}{2}(29,000+37,500) \\
& a_{18}=37,500
\end{aligned}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{gathered}
a_{18}=a_{1}+17 d=29,000+17(500) \quad S_{18}=\frac{18}{2}(29,000+37,500) \\
a_{18}=37,500 \quad S_{18}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{gathered}
a_{18}=a_{1}+17 d=29,000+17(500) \quad S_{18}=\frac{18}{2}(29,000+37,500) \\
a_{18}=37,500
\end{gathered} S_{18}=(9)\left(\begin{array}{l}
\text { (}
\end{array}\right.
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{cc}
a_{18}=a_{1}+17 d=29,000+17(500) & S_{18}=\frac{18}{2}(29,000+37,500) \\
a_{18}=37,500 & S_{18}=(9)(66,500)
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{cc}
a_{18}= & a_{1}+17 d=29,000+17(500) \\
a_{18}=37,500 & S_{18}=\frac{18}{2}(29,000+37,500) \\
S_{18}=(9)(66,500)=
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first 18 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{cc}
a_{18}= & a_{1}+17 d=29,000+17(500) \\
a_{18}=37,500 & S_{18}=\frac{18}{2}(29,000+37,500) \\
S_{18}=(9)(66,500)=\$ 598,500
\end{array}
$$

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=29,000 \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

Let a_{n} represent the salary, in dollars, for the $n^{\text {th }}$ year.

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first $\mathbf{1 8}$ terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{cc}
a_{18}=a_{1}+17 d=29,000+17(500) & S_{18}=\frac{18}{2}(29,000+37,500) \\
a_{18}=37,500 & S_{18}=(9)(66,500)=\$ 598,500
\end{array}
$$

The total salary for the first $\mathbf{1 8}$ years is $\mathbf{\$ 5 9 8 , 5 0 0}$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\$ 500$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=30,000
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first 18 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{gathered}
a_{18}=a_{1}+17 d=29,000+17(500) \quad S_{18}=\frac{18}{2}(29,000+37,500) \\
a_{18}=37,500 \\
S_{18}=(9)(66,500)=\$ 598,500
\end{gathered}
$$

The total salary for the first $\mathbf{1 8}$ years is $\mathbf{\$ 5 9 8 , 5 0 0}$.

Algebra 2 Class Worksheet \#5 Unit 9

Solve each of the following problems.
8. A job has a starting salary of $\$ 29,000$ with a guaranteed increase of $\mathbf{\$ 5 0 0}$ per year. Find the total salary for the first $\mathbf{1 8}$ years.

Let \mathbf{a}_{n} represent the salary,

$$
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2 9 , 0 0 0} \\
& \mathbf{a}_{2}=29,500 \\
& \mathbf{a}_{3}=\mathbf{3 0 , 0 0 0}
\end{aligned}
$$

The sequence is arithmetic. $\quad a_{1}=29,000$ and $d=500$.
We need to find the sum of the first 18 terms of this sequence.
The series is arithmetic. $\Rightarrow S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

$$
\begin{array}{cc}
a_{18}= & a_{1}+17 d=29,000+17(500) \\
a_{18}=37,500 & S_{18}=\frac{18}{2}(29,000+37,500) \\
S_{18}=(9)(66,500)=\$ 598,500
\end{array}
$$

The total salary for the first 18 years is $\$ 598,500$.

