Algebra II
 Lesson \#4 Unit 9
 Class Worksheet \#4
 For Worksheet \#5

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series.

Algebra 2 Class Worksheet \#4 Unit 9
 This lesson involves series. Here is a definition.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence. S_{n} represents the sum of the first n terms of a sequence.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n \quad S_{6}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
S_{6}=
$$

S_{6} represents the sum of the first 6 terms of the sequence.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$
S_{6} represents the sum of the first 6 terms of the sequence.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6)
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6)
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$
$S_{6}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find \mathbf{S}_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find \mathbf{S}_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6}
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6}
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9+27
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9+27+81
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9+27+81+243
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9+27+81+243+729
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9+27+81+243+729
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9+27+81+243+729 \\
& S_{6}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9+27+81+243+729 \\
& S_{6}=1,092
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9+27+81+243+729 \\
& S_{6}=1,092
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

1. $a_{n}=5 n$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=5(1)+5(2)+5(3)+5(4)+5(5)+5(6) \\
& S_{6}=5+10+15+20+25+30 \\
& S_{6}=105
\end{aligned}
$$

2. $a_{n}=3^{n}$

$$
\begin{aligned}
& S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=3^{1}+3^{2}+3^{3}+3^{4}+3^{5}+3^{6} \\
& S_{6}=3+9+27+81+243+729 \\
& S_{6}=1,092
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence. S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3$
4. $a_{n}=3(2)^{n-1}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3$
4. $a_{n}=3(2)^{n-1}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $\mathbf{a}_{\mathrm{n}}=4 \mathrm{n}-3 \quad \mathrm{~S}_{6}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence. S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence. S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=[4(1)-3]
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence. S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=[4(1)-3]+[4(2)-3]
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence. S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence. S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$
$S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence. S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3]
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3]
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$
$S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3]$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$
$S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3]$ $S_{6}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$
$S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3]$ $S_{6}=1$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3]
$$

$$
S_{6}=1+5
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\begin{gathered}
\text { 3. } \quad a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\begin{gathered}
\text { 3. } \quad a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\begin{gathered}
\text { 3. } \quad a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\begin{gathered}
\text { 3. } \quad a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\begin{gathered}
\text { 3. } \quad a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4.

$$
a_{n}=3(2)^{n-1}
$$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4.

$$
\begin{aligned}
& a_{n}=3(2)^{n-1} \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4.

$$
\begin{aligned}
& a_{n}=3(2)^{n-1} \\
& S_{6}=\left[3(2)^{0}\right]
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4.

$$
\begin{aligned}
& a_{n}=3(2)^{n-1} \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4.

$$
\begin{aligned}
& a_{n}=3(2)^{n-1} \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4.

$$
\begin{aligned}
& a_{n}=3(2)^{n-1} \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4.

$$
\begin{gathered}
a_{n}=3(2)^{n-1} \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4.

$$
\begin{aligned}
& a_{n}=3(2)^{n-1} \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$ $S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=3
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=3+6
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=3+6+12
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=3+6+12+24
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=3+6+12+24+48
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=3+6+12+24+48+96
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=3+6+12+24+48+96
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
\begin{gathered}
S_{6}=3+6+12+24+48+96 \\
S_{6}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
\begin{gathered}
S_{6}=3+6+12+24+48+96 \\
S_{6}=189
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=3+6+12+24+48+96
$$

$$
S_{6}=189
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
3. $a_{n}=4 n-3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=[4(1)-3]+[4(2)-3]+[4(3)-3]+[4(4)-3]+[4(5)-3]+[4(6)-3] \\
S_{6}=1+5+9+13+17+21 \\
S_{6}=66
\end{gathered}
$$

4. $a_{n}=3(2)^{n-1}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=\left[3(2)^{0}\right]+\left[3(2)^{1}\right]+\left[3(2)^{2}\right]+\left[3(2)^{3}\right]+\left[3(2)^{4}\right]+\left[3(2)^{5}\right]
$$

$$
S_{6}=3+6+12+24+48+96
$$

$$
S_{6}=189
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$
6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathrm{a}_{\mathrm{n}}+3 ; \mathrm{a}_{1}=\mathbf{3}$
6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=
$$

The first term is 3.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3
$$

The first term is 3.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3
$$

The first term is 3.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3
$$

The first term is 3.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3
$$

The first term is 3.
Now, to find the next term, add 3 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6
$$

The first term is 3.
Now, to find the next term, add 3 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9
$$

The first term is 3.
Now, to find the next term, add 3 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12
$$

The first term is 3.
Now, to find the next term, add 3 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12+15
$$

The first term is 3.
Now, to find the next term, add 3 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12+15+18
$$

The first term is 3.
Now, to find the next term, add $\mathbf{3}$ recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12+15+18
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=3+6+9+12+15+18 \\
S_{6}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=3+6+9+12+15+18 \\
S_{6}=63
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $a_{n+1}=a_{n}+3 ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$ $S_{6}=3+6+9+12+15+18$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$ $S_{6}=3+6+9+12+15+18$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$ $S_{6}=3+6+9+12+15+18$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=
$$

The first term is 64.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$ $S_{6}=3+6+9+12+15+18$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=64
$$

The first term is 64.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$ $S_{6}=3+6+9+12+15+18$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=64
$$

The first term is 64.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$ $S_{6}=3+6+9+12+15+18$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=64
$$

The first term is 64.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=64
$$

The first term is 64.
Now, to find the next term, multiply by 0.25 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=64+16
$$

The first term is 64.
Now, to find the next term, multiply by 0.25 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=64+16+4
$$

The first term is 64.
Now, to find the next term, multiply by 0.25 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=64+16+4+1
$$

The first term is 64.
Now, to find the next term, multiply by 0.25 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=\mathbf{3}$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=64+16+4+1+0.25
$$

The first term is 64.
Now, to find the next term, multiply by 0.25 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=64+16+4+1+0.25+0.0625
$$

The first term is 64.
Now, to find the next term, multiply by 0.25 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=64+16+4+1+0.25+0.0625
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
\begin{gathered}
S_{6}=64+16+4+1+0.25+0.0625 \\
S_{6}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
\begin{gathered}
S_{6}=64+16+4+1+0.25+0.0625 \\
S_{6}=85.3125
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$ $S_{6}=3+6+9+12+15+18$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$ $S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=64+16+4+1+0.25+0.0625 \\
S_{6}=85.3125
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.

S_{n} represents the sum of the first n terms of a sequence.

Find S_{6} for each sequence described below.
5. $\mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+3 ; \mathbf{a}_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+6+9+12+15+18
$$

$$
S_{6}=63
$$

6. $a_{n+1}=0.25 a_{n} ; a_{1}=64$ $S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=64+16+4+1+0.25+0.0625 \\
S_{6}=85.3125
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$
8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$
8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\text { 7. } a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\text { 7. } \begin{gathered}
a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\text { 7. } a_{a_{n+1}}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\text { 7. } \begin{gathered}
a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=
\end{gathered}
$$

The first term is 3.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\text { 7. } \begin{gathered}
a_{n+1}=-2 a_{n} ; a_{1}=3 \\
S_{6}=3
\end{gathered} \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

The first term is 3.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\text { 7. } \begin{array}{cc}
a_{n+1}=-2 a_{n} ; a_{1}=3 & S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=3 &
\end{array}
$$

The first term is 3.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\text { 7. } \begin{array}{cc}
a_{n+1}=-2 a_{n} ; a_{1}=3 & S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=3 &
\end{array}
$$

The first term is 3 .

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3
$$

The first term is 3.
Now, to find the next term, multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+-6
$$

The first term is 3.
Now, to find the next term, multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12
$$

The first term is 3.
Now, to find the next term, multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24
$$

The first term is 3 .
Now, to find the next term, multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48
$$

The first term is 3 .
Now, to find the next term, multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

The first term is 3 .
Now, to find the next term, multiply by $\mathbf{- 2}$ recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\text { 7. } \begin{gathered}
a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=3+-6+12+-24+48+-96
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\begin{gathered}
\text { 7. } a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=3+-6+12+-24+48+-96 \\
S_{6}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\begin{gathered}
\text { 7. } a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=3+-6+12+-24+48+-96 \\
S_{6}=-63
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.

$$
\begin{gathered}
\text { 7. } a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=3+-6+12+-24+48+-96
\end{gathered}
$$

$$
S_{6}=-63
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$
$S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$ $S_{6}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=
$$

The first term is 24.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=24
$$

The first term is $\mathbf{2 4 .}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=24
$$

The first term is 24.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=24
$$

The first term is 24.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=24
$$

The first term is 24.
Now, to find the next term, multiply by 0.5 and add 4 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=24+16
$$

The first term is 24.
Now, to find the next term, multiply by 0.5 and add 4 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=24+16+12
$$

The first term is 24.
Now, to find the next term, multiply by 0.5 and add 4 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8.

$$
\begin{gathered}
a_{n+1}=0.5 a_{n}+4 ; a_{1}=24 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
S_{6}=24+16+12+10
\end{gathered}
$$

The first term is 24.
Now, to find the next term, multiply by 0.5 and add 4 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=24+16+12+10+9
$$

The first term is 24.
Now, to find the next term, multiply by 0.5 and add 4 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8.

$$
\begin{aligned}
& a_{n+1}=0.5 a_{n}+4 ; a_{1}=24 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& S_{6}=24+16+12+10+9+\underbrace{8.5}
\end{aligned}
$$

The first term is 24.
Now, to find the next term, multiply by 0.5 and add 4 recursively.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$ $S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=24+16+12+10+9+8.5
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$ $S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=24+16+12+10+9+8.5 \\
S_{6}=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$ $S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
\begin{gathered}
S_{6}=24+16+12+10+9+8.5 \\
S_{6}=79.5
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$ $S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=24+16+12+10+9+8.5
$$

$$
S_{6}=79.5
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
S_{n} represents the sum of the first n terms of a sequence.
Find S_{6} for each sequence described below.
7. $a_{n+1}=-2 a_{n} ; a_{1}=3 \quad S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

$$
S_{6}=3+-6+12+-24+48+-96
$$

$$
S_{6}=-63
$$

8. $a_{n+1}=0.5 a_{n}+4 ; a_{1}=24$

$$
S_{6}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
S_{6}=24+16+12+10+9+8.5
$$

$$
S_{6}=79.5
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation).

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example,

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example.

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example.

$$
\sum_{i=1}^{4}(3 i+2)=
$$

One way to read this is 'the sum of $3 i+2$ as i goes from 1 to 4 '.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example.

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example.

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Other variables can be used as the index variable.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example.

$$
\sum_{i=1}^{4}(3 i+2)=\quad \sum_{j=1}^{4}(3 j+2)
$$

Other variables can be used as the index variable.
These two expressions are equivalent.

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example.

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\sum_{i=1}^{4}(3 i+2)=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{aligned}
& \qquad \sum_{i=1}^{4}(3 i+2)= \\
& =[3(1)+2] \\
& i=1
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{gathered}
\sum_{i=1}^{4}(3 i+2)= \\
=[3(1)+2]+[3(2)+2] \\
i=2
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{gathered}
\sum_{i=1}^{4}(3 i+2)= \\
=[3(1)+2]+[3(2)+2]+[3(3)+2] \\
i=3
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{gathered}
\sum_{i=1}^{4}(3 i+2)= \\
=[3(1)+2]+[3(2)+2]+[3(3)+2]+[3(4)+2] \\
i=4
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{gathered}
\sum_{i=1}^{4}(3 i+2)= \\
=[3(1)+2]+[3(2)+2]+[3(3)+2]+[3(4)+2]=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{aligned}
& \sum_{i=1}^{4}(3 i+2)= \\
& =[3(1)+2]+[3(2)+2]+[3(3)+2]+[3(4)+2]= \\
& =
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{aligned}
& \sum_{i=1}^{4}(3 i+2)= \\
& =[3(1)+2]+[3(2)+2]+[3(3)+2]+[3(4)+2]= \\
& =5
\end{aligned}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{gathered}
\sum_{i=1}^{4}(3 i+2)= \\
=[3(1)+2]+[3(2)+2]+[3(3)+2]+[3(4)+2]= \\
=8+8
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{gathered}
\sum_{i=1}^{4}(3 i+2)= \\
=[3(1)+2]+[3(2)+2]+[3(3)+2]+[3(4)+2]= \\
=5+11+8+5
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{gathered}
\sum_{i=1}^{4}(3 i+2)= \\
=[3(1)+2]+[3(2)+2]+[3(3)+2]+[3(4)+2]= \\
=5+11+14+8+1
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{gathered}
\sum_{i=1}^{4}(3 i+2)= \\
=[3(1)+2]+[3(2)+2]+[3(3)+2]+[3(4)+2]= \\
=5+11+14=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation. This symbol, Σ, is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on all integer values starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$
\begin{gathered}
\sum_{i=1}^{4}(3 i+2)=38 \\
=[3(1)+2]+[3(2)+2]+[3(3)+2]+[3(4)+2]= \\
=5+11+14=
\end{gathered}
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=$
10. $\sum_{i=1}^{4} 3^{i}=$
11. $\sum_{i=1}^{6} \frac{i}{4}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=$
10. $\sum_{i=1}^{4} 3^{i}=$
11. $\sum_{i=1}^{6} \frac{i}{4}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=$
'the sum of 5i as igoes from 1 to 3 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)$
'the sum of 5i as i goes from 1 to 3 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)$
'the sum of 5i as i goes from 1 to 3 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)$
'the sum of 5i as i goes from 1 to 3 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=$
'the sum of $3^{\mathbf{i}}$ as igoes from 1 to 4^{\prime}

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}=1$
'the sum of $3^{\mathbf{i}}$ as igoes from 1 to 4^{\prime}

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$

$$
\text { 10. } \sum_{i=1}^{4} 3^{i}=3^{1}+\underset{i=2}{3^{2}}
$$

'the sum of 3^{i} as igoes from 1 to 4^{\prime}

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3_{i=3}^{3}$
'the sum of $3^{\mathbf{i}}$ as i goes from 1 to 4^{\prime}

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+\underset{i=4}{3^{4}}$
'the sum of 3^{i} as igoes from 1 to 4^{\prime}

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=$
'the sum of $i / 4$ as i goes from 1 to 6 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{i=1}$
'the sum of $i / 4$ as i goes from 1 to 6 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{4}+\frac{2}{\frac{4}{i=2}}$
'the sum of $i / 4$ as i goes from 1 to 6 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{4}+\frac{2}{4}+\frac{3}{i=3}$
'the sum of $i / 4$ as i goes from 1 to 6 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{i=4}$
'the sum of $i / 4$ as i goes from 1 to 6 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{4}+\frac{5}{i=5}$
'the sum of $i / 4$ as i goes from 1 to 6 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{4}+\frac{5}{4}+\frac{6}{i=6}$
'the sum of $i / 4$ as i goes from 1 to 6 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{4}+\frac{5}{4}+\frac{6}{4}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{4}+\frac{5}{4}+\frac{6}{4}=\frac{21}{4}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{4}+\frac{5}{4}+\frac{6}{4}=\frac{21}{4}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
9. $\sum_{i=1}^{3} 5 i=5(1)+5(2)+5(3)=5+10+15=30$
10. $\sum_{i=1}^{4} 3^{i}=3^{1}+3^{2}+3^{3}+3^{4}=3+9+27+81=120$
11. $\sum_{i=1}^{6} \frac{i}{4}=\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{4}+\frac{5}{4}+\frac{6}{4}=\frac{21}{4}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=$
13. $\sum_{k=1}^{5} \mathbf{k}^{3}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=$
13. $\sum_{k=1}^{5} \mathbf{k}^{3}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=$
'the sum of $3 k-5$ as k goes from 2 to 5 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=\underset{\substack{[3(2)-5] \\ k=2}}{[}$
'the sum of $3 \mathrm{k}-5$ as k goes from 2 to 5^{\prime}

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=[3(2)-5]+\begin{gathered}{[3(3)-5]} \\ k=3\end{gathered}$
'the sum of $3 k-5$ as k goes from 2 to 5 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+\begin{gathered}{[3(4)-5]} \\ k=4\end{gathered}$
'the sum of $3 k-5$ as k goes from 2 to 5 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+\begin{gathered}{[3(5)-5]} \\ k=5\end{gathered}$
'the sum of $3 \mathrm{k}-5$ as k goes from 2 to 5 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\begin{aligned} \sum_{k=2}^{5}(3 k-5) & =[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]= \\ & =1\end{aligned}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$ $=1+4$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$ $=1+4+7$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\begin{aligned} \sum_{k=2}^{5}(3 k-5) & =[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]= \\ & =1+4+7+10\end{aligned}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$ $=1+4+7+10=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} \mathbf{k}^{3}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} \mathbf{k}^{3}=$
'the sum of $k^{\mathbf{3}}$ as k goes from 1 to 5 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum_{k=2}^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} k^{3}=1_{k=1}^{3}$
'the sum of $k^{\mathbf{3}}$ as k goes from 1 to 5 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} k^{3}=1^{3}+2^{2^{3}=2}$
'the sum of $k^{\mathbf{3}}$ as k goes from 1 to 5 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+\underset{k=3}{3^{3}}$
'the sum of $k^{\mathbf{3}}$ as k goes from 1 to 5^{\prime}

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+\underset{k=4}{4^{3}}$
'the sum of $k^{\mathbf{3}}$ as k goes from 1 to 5^{\prime}

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5_{k=5}^{3}$
'the sum of $k^{\mathbf{3}}$ as k goes from 1 to 5^{\prime}

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{\mathrm{k}=1}^{5} \mathrm{k}^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\begin{aligned} \sum_{k=1}^{5} \mathrm{k}^{3} & =1^{3}+2^{3}+3^{3}+4^{3}+5^{3}= \\ & =1\end{aligned}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$ $\mathrm{k}=\mathbf{2}$

$$
=1+4+7+10=22
$$

13. $\begin{aligned} \sum_{k=1}^{5} k^{3} & =1^{3}+2^{3}+3^{3}+4^{3}+5^{3}= \\ & =1+8\end{aligned}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} \mathbf{k}^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=$

$$
=1+8+27
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} \mathbf{k}^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=$

$$
=1+8+27+64
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=$

$$
=1+8+27+64+125
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} \mathbf{k}^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=$

$$
=1+8+27+64+125=
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\sum_{k=1}^{5} \mathrm{k}^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=$

$$
=1+8+27+64+125=225
$$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\begin{aligned} \sum_{k=1}^{5} k^{3} & =1^{3}+2^{3}+3^{3}+4^{3}+5^{3}= \\ & =1+8+27+64+125=225\end{aligned}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
12. $\sum^{5}(3 k-5)=[3(2)-5]+[3(3)-5]+[3(4)-5]+[3(5)-5]=$

$$
=1+4+7+10=22
$$

13. $\begin{aligned} \sum_{\mathrm{k}=\mathrm{k}}^{5} \mathrm{k}^{3} & =1^{3}+2^{3}+3^{3}+4^{3}+5^{3}= \\ & =1+8+27+64+125=225\end{aligned}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=$
15. $\sum_{j=1}^{16}(-1)^{j} \frac{j}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=$
15. $\sum_{j=1}^{16}(-1)^{j} \frac{j}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=$
'the sum of \mathbf{j} as \mathbf{j} goes from 1 to 50 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=1$
'the sum of \mathbf{j} as \mathbf{j} goes from 1 to 50 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=\underset{j=2}{1+2}$
'the sum of \mathbf{j} as \mathbf{j} goes from 1 to 50 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=1+2+3$
'the sum of \mathbf{j} as \mathbf{j} goes from 1 to 50 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=1+2+3+\ldots$
'the sum of \mathbf{j} as \mathbf{j} goes from 1 to 50 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=1+2+3+\ldots+\underset{j=48}{48}$
'the sum of \mathbf{j} as \mathbf{j} goes from 1 to 50 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=1+2+3+\ldots+48+\underset{j=49}{49}$
'the sum of \mathbf{j} as \mathbf{j} goes from 1 to 50 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=1+2+3+\ldots+48+49+50$
'the sum of \mathbf{j} as \mathbf{j} goes from 1 to 50 '

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=1+2+3+\ldots+48+49+50=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition. A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 We will pair up the terms to help calculate the sum.
14. $\sum j=1+2+3+\ldots+48+49+50=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 We will pair up the terms to help calculate the sum.
14. $\sum j=1+2+3+\ldots+48+49+50=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 We will pair up the terms to help calculate the sum.
14. $\sum j=1+2+3+\ldots+48+49+50=$ $j=1$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 We will pair up the terms to help calculate the sum.
14. $\sum \mathrm{j}=1+2+3+\ldots+48+49+50=$ $j=1$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=1+2+3+\ldots+48+49+50=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 The sum of the terms in each pair is 51 .
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} j=1+2+3+\ldots+48+49+50=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
14. $\sum_{j=1}^{50} \mathbf{j}=\underset{1}{\text { Since, there are } 25} \mathbf{~ p a i r s , ~}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51,
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51, the total is
14. $\sum_{j=1}^{50} \mathbf{j}=1+2+3+\ldots+48+49+50=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51, the total is
14. $\sum j=1+2+3+\ldots+48+49+50=(25)($
$j=1$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51, the total is
14. $\sum j=1+2+3+\ldots+48+49+50=(25)(51)$
$j=1$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=2+3+\ldots+48+49+50=(25)(51)=$ $j=1$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum \mathrm{j}=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1}^{50} j=2+3+\ldots+48+49+50=(25)(51)=1,275$
$\mathrm{j}=\mathbf{1}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

15. $\sum_{j=1}^{16}(-1)^{\mathrm{i}}[\mathrm{j} / 16]=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$
$\sum_{j=1}$

15. $\sum_{j=1}^{16}(-1)^{i}[j / 16]=$
'the sum of $(\mathbf{- 1})^{\mathrm{i}}[\mathrm{j} / 16]$ as j goes from 1 to $\mathbf{1 6}^{\prime}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$
$j=1$

$(-1)^{1}[1 / 16]$
15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}$
'the sum of $(\mathbf{- 1})^{j}[\mathrm{j} / 16]$ as j goes from 1 to $\mathbf{1 6}^{\text {' }}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$
$j=1$

15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{(-1)^{2}[2 / 16]}{j=2}$
'the sum of $(\mathbf{- 1})^{j}[\mathrm{j} / 16]$ as j goes from 1 to $\mathbf{1 6}^{\prime}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

$(-1)^{3}[3 / 16]$
15. $\sum_{j=1}^{16}(-1)^{i}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}$
'the sum of $(\mathbf{- 1})^{j}[j / 16]$ as j goes from 1 to $\mathbf{1 6}^{\prime}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

15. $\sum_{j=1}^{16}(-1)^{i}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{(-1)^{4}[4 / 1}{16}$
'the sum of $(-1)^{j}[j / 16]$ as j goes from 1 to $\mathbf{1 6}^{\prime}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+$
'the sum of $(-1)^{i}[j / 16]$ as j goes from 1 to $\mathbf{1 6}^{\prime}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

15. $\sum_{j=1}^{16}(-1)^{i}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{(-1)^{15}[15 / 1}{-\frac{15}{16}}$
'the sum of $(\mathbf{- 1})^{j}[\mathrm{j} / 16]$ as j goes from 1 to $\mathbf{1 6}^{\prime}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15)^{16}[16 / 16}{16}+\frac{16}{16}$
'the sum of $(\mathbf{- 1})^{j}[j / 16]$ as j goes from 1 to $\mathbf{1 6}^{\prime}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1}^{50} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$
15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

We will pair up the terms to help calculate the sum.
15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

We will pair up the terms to help calculate the sum.
15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

We will pair up the terms to help calculate the sum.
15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

We will pair up the terms to help calculate the sum.
15. $\sum_{j=1}^{16}(-1)^{i}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1}^{50} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$
15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

The sum of the terms in each pair is $\mathbf{1 / 1 6}$.
15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1}^{50} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$
15. $\sum_{j=1}^{16}(-1)^{j}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

Since, there are 8 pairs,
15. $\sum_{j=1}^{16}(-1)^{\mathrm{j}}[\mathrm{j} / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

Since, there are 8 pairs, each with a sum of $1 / 16$,
15. $\sum_{j=1}^{16}(-1)^{i}[j / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

Since, there are 8 pairs, each with a sum of $1 / 16$, the total is
15. $\sum_{j=1}^{16}(-1)^{\mathrm{j}}[\mathrm{j} / 16]=\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}=$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

Since, there are 8 pairs, each with a sum of $1 / 16$, the total is
15. $\begin{aligned} \sum_{j=1}^{16}(-1)^{j}[j / 16] & =\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}= \\ & =8(\end{aligned}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

Since, there are 8 pairs, each with a sum of $1 / 16$, the total is
15. $\begin{aligned} \sum_{j=1}^{16}(-1)^{i}[j / 16] & =\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}= \\ & =8\left(\frac{1}{16}\right)\end{aligned}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

Since, there are 8 pairs, each with a sum of $1 / 16$, the total is
15. $\begin{aligned} \sum_{j=1}^{16}(-1)^{i}[j / 16] & =\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}= \\ & =8\left(\frac{1}{16}\right)=\frac{1}{2}\end{aligned}$

Algebra 2 Class Worksheet \#4 Unit 9

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$

Since, there are 8 pairs, each with a sum of $1 / 16$, the total is
15. $\begin{aligned} \sum_{j=1}^{16}(-1)^{j}[j / 16] & =\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}= \\ & =8\left(\frac{1}{16}\right)=\frac{1}{2}\end{aligned}$

This lesson involves series. Here is a definition.
A series is an indicated sum of the terms of a sequence.
Evaluate each of the following sums.
50 Since, there are 25 pairs, each with a sum of 51 , the total is
14. $\sum_{j=1} j=1+2+3+\ldots+48+49+50=(25)(51)=1,275$
$\mathrm{j}=1$

Since, there are 8 pairs, each with a sum of $1 / 16$, the total is
15. $\begin{aligned} \sum_{j=1}^{16}(-1)^{j}[j / 16] & =\frac{-1}{16}+\frac{2}{16}+\frac{-3}{16}+\frac{4}{16}+\ldots+\frac{-15}{16}+\frac{16}{16}= \\ & =8\left(\frac{1}{16}\right)=\frac{1}{2}\end{aligned}$

