Algebra II Lesson #4 Unit 9 Class Worksheet #4 For Worksheet #5

This lesson involves series.

This lesson involves <u>series</u>. Here is a definition.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

1. $a_n = 5n$

1.
$$a_n = 5n$$
 $S_6 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

1.
$$a_n = 5n$$
 $S_6 =$

S₆ represents the sum of the first 6 terms of the sequence.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

1. $a_n = 5n$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

 S_6 represents the sum of the first 6 terms of the sequence.

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1)$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2)$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3)$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4)$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5)$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

1. $a_n = 5n$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 =$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = \frac{5(1)}{5} + \frac{5(2)}{5} + \frac{5(3)}{5} + \frac{5(5)}{5} + \frac{5(6)}{5}$
 $S_6 = \frac{5}{5}$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + \frac{5(3)}{5(4)} + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + \frac{15}{5(4)}$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + \frac{5(5)}{5(5)} + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + \frac{25}{5}$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + \frac{5(6)}{5(6)}$
 $S_6 = 5 + 10 + 15 + 20 + 25 + \frac{30}{5}$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 =$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

1.
$$a_n = 5n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 =$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 =$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9 + 27$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9 + 27 + 81$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9 + 27 + 81 + 243$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9 + 27 + 81 + 243 + 729$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9 + 27 + 81 + 243 + 729$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9 + 27 + 81 + 243 + 729$
 $S_6 =$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9 + 27 + 81 + 243 + 729$
 $S_6 = 1,092$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9 + 27 + 81 + 243 + 729$
 $S_6 = 1,092$

1.
$$a_n = 5n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 5(1) + 5(2) + 5(3) + 5(4) + 5(5) + 5(6)$
 $S_6 = 5 + 10 + 15 + 20 + 25 + 30$
 $S_6 = 105$

2.
$$a_n = 3^n$$

 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6$
 $S_6 = 3 + 9 + 27 + 81 + 243 + 729$
 $S_6 = 1,092$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$

4.
$$a_n = 3(2)^{n-1}$$

This lesson involves series. Here is a definition.A series is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence.Find S_6 for each sequence described below.

3. $a_n = 4n - 3$

4.
$$a_n = 3(2)^{n-1}$$

This lesson involves series. Here is a definition.A series is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence.Find S_6 for each sequence described below.

3. $a_n = 4n - 3$

3.
$$a_n = 4n - 3$$
 $S_6 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3]$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3]$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3]$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3]$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3]$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$ $S_6 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$ $S_6 = 1$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$ $S_6 = 1 + 5$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$ $S_6 = 1 + 5 + 9$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3. $a_n = 4n - 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$ $S_6 = 1 + 5 + 9 + 13$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 =$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4. $a_n = 3(2)^{n-1}$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0]$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1]$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2]$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3]$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4]$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 =$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3 + 6$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3 + 6 + 12$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3 + 6 + 12 + 24$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3 + 6 + 12 + 24 + 48$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3 + 6 + 12 + 24 + 48 + 96$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3 + 6 + 12 + 24 + 48 + 96$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3 + 6 + 12 + 24 + 48 + 96$
 $S_6 =$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3 + 6 + 12 + 24 + 48 + 96$
 $S_6 = 189$

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4.
$$a_n = 3(2)^{n-1}$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$
 $S_6 = 3 + 6 + 12 + 24 + 48 + 96$
 $S_6 = 189$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

3.
$$a_n = 4n - 3$$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = [4(1) - 3] + [4(2) - 3] + [4(3) - 3] + [4(4) - 3] + [4(5) - 3] + [4(6) - 3]$
 $S_6 = 1 + 5 + 9 + 13 + 17 + 21$
 $S_6 = 66$

4. $a_n = 3(2)^{n-1}$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$ $S_6 = [3(2)^0] + [3(2)^1] + [3(2)^2] + [3(2)^3] + [3(2)^4] + [3(2)^5]$ $S_6 = 3 + 6 + 12 + 24 + 48 + 96$ $S_6 = 189$

5.
$$a_{n+1} = a_n + 3; a_1 = 3$$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$

5.
$$a_{n+1} = a_n + 3; a_1 = 3$$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$

5.
$$a_{n+1} = a_n + 3; a_1 = 3$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5. $a_{n+1} = a_n + 3$; $a_1 = 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = \frac{a_1}{a_1} + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = \frac{3}{a_1}$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3$

The first term is 3.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + \frac{a_2}{a_2} + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + \frac{6}{1}$
The first term is 3.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + \frac{a_3}{a_3} + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9$
The first term is 3.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12$
The first term is 3.
Now, to find the next term, add 3 recursively.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15$
The first term is 3.
Now, to find the part term, add 3 requiringly

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
The first term is 3.
Now, to find the next term, add 3 recursively.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 =$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6. $a_{n+1} = 0.25a_n$; $a_1 = 64$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64$

This lesson involves series. Here is a definition.A series is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence.Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64$

The first term is 64. Now, to find the next term, multiply by 0.25 recursively.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16$
The first term is 64.

Now, to find the next term, multiply by 0.25 recursively.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16 + 4$
The first term is 64.

Now, to find the next term, multiply by 0.25 recursively.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16 + 4 + 1$
The first term is 64.
Now, to find the next term, multiply by 0.25 recursively.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16 + 4 + 1 + 0.25$
The first term is 64.
Now, to find the next term, multiply by 0.25 recursively.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16 + 4 + 1 + 0.25 + 0.0625$
The first term is 64.
Now, to find the next term, multiply by 0.25 recursively.

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16 + 4 + 1 + 0.25 + 0.0625$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16 + 4 + 1 + 0.25 + 0.0625$
 $S_6 =$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16 + 4 + 1 + 0.25 + 0.0625$
 $S_6 = 85.3125$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16 + 4 + 1 + 0.25 + 0.0625$
 $S_6 = 85.3125$

5.
$$a_{n+1} = a_n + 3$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + 6 + 9 + 12 + 15 + 18$
 $S_6 = 63$

6.
$$a_{n+1} = 0.25a_n$$
; $a_1 = 64$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 64 + 16 + 4 + 1 + 0.25 + 0.0625$
 $S_6 = 85.3125$

7.
$$a_{n+1} = -2a_n; a_1 = 3$$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$

7.
$$a_{n+1} = -2a_n; a_1 = 3$$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = \frac{a_1}{a_1} + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = \frac{3}{a_1}$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3$

The first term is 3.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6$
The first term is 3.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + \frac{a_3}{a_3} + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + \frac{12}{4}$
The first term is 3.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24$
The first term is 3.
Now, to find the part term, multiply by 2 requiringly

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48$
The first term is 3.
Now, to find the next term, multiply by -2 recursively.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
The first term is 3.
Now, to find the next term, multiply by -2 recursively.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8. $a_{n+1} = 0.5a_n + 4$; $a_1 = 24$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8. $a_{n+1} = 0.5a_n + 4$; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

This lesson involves series. Here is a definition.A series is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence.Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24$

The first term is 24. Now, to find the next term, multiply by 0.5 and add 4 recursively.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24 + 16$
The first term is 24.

Now, to find the next term, multiply by 0.5 and add 4 recursively.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + \frac{a_3}{a_3} + a_4 + a_5 + a_6$
 $S_6 = 24 + 16 + \frac{12}{4}$
The first term is 24.

Now, to find the next term, multiply by 0.5 and add 4 recursively.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24 + 16 + 12 + 10$
The first term is 24.
Now, to find the next term, multiply by 0.5 and add 4 recursively.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24 + 16 + 12 + 10 + 9$
The first term is 24.
Now, to find the next term, multiply by 0.5 and add 4 recursively

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24 + 16 + 12 + 10 + 9 + 8.5$
The first term is 24.
Now, to find the next term, multiply by 0.5 and add 4 recursively

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24 + 16 + 12 + 10 + 9 + 8.5$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24 + 16 + 12 + 10 + 9 + 8.5$
 $S_6 =$

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24 + 16 + 12 + 10 + 9 + 8.5$
 $S_6 = 79.5$

This lesson involves series. Here is a definition.A series is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence.Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24 + 16 + 12 + 10 + 9 + 8.5$
 $S_6 = 79.5$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. S_n represents the sum of the first n terms of a sequence. Find S_6 for each sequence described below.

7.
$$a_{n+1} = -2a_n$$
; $a_1 = 3$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 3 + -6 + 12 + -24 + 48 + -96$
 $S_6 = -63$

8.
$$a_{n+1} = 0.5a_n + 4$$
; $a_1 = 24$ $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $S_6 = 24 + 16 + 12 + 10 + 9 + 8.5$
 $S_6 = 79.5$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. A series can also be defined using what is called sigma notation. This symbol, \sum , is the greek letter sigma.

This lesson involves <u>series</u>. Here is a definition.
A <u>series</u> is an indicated sum of the terms of a sequence.
A series can also be defined using what is called sigma notation.
This symbol, ∑, is the greek letter sigma. Below

$$\sum_{i=1}^{4} (3i+2) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation. This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$\sum_{i=1}^{4} (3i+2) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation. This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation). The variable, i, is called the index variable (index of summation).

$$\sum_{i=1}^{4} (3i+2) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation. This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u>

$$\sum_{i=1}^{4} (3i+2) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example,

$$\frac{4}{1}(3i+2) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$\sum_{i=1}^{4} (3i+2) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example.

$$\sum_{i=1}^{4} (3i+2) =$$

One way to read this is 'the sum of 3i + 2 as i goes from 1 to 4'.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$\sum_{i=1}^{4} (3i+2) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example.

$$\sum_{i=1}^{4} (3i+2) =$$

Other variables can be used as the index variable.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example.

$$\sum_{i=1}^{4} (3i+2) = \sum_{j=1}^{4} (3j+2)$$

Other variables can be used as the index variable. These two expressions are equivalent.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$\sum_{i=1}^{4} (3i+2) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$\sum_{i=1}^{4} (3i+2) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$\sum_{i=1}^{4} (3i+2) =$$

=

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$\sum_{i=1}^{4} (3i+2) =$$

$$= [3(1) + 2]$$

i = 1

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$\sum_{i=1}^{4} (3i+2) =$$

$$= [3(1)+2] + [3(2)+2]$$

$$i=2$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$\sum_{i=1}^{4} (3i+2) =$$

$$= [3(1)+2] + [3(2)+2] + [3(3)+2]$$

$$i = 3$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$\sum_{i=1}^{4} (3i+2) =$$

= [3(1) + 2] + [3(2) + 2] + [3(3) + 2] + [3(4) + 2]i = 4

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$\sum_{i=1}^{4} (3i+2) =$$

= [3(1) + 2] + [3(2) + 2] + [3(3) + 2] + [3(4) + 2] =

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$\sum_{i=1}^{4} (3i+2) =$$

= [3(1) + 2] + [3(2) + 2] + [3(3) + 2] + [3(4) + 2] =

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

$$\sum_{i=1}^{4} (3i+2) =$$

$$= [3(1)+2] + [3(2)+2] + [3(3)+2] + [3(4)+2] =$$

$$= 5$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

=

$$\begin{aligned} & & \sum_{i=1}^{4} (3i+2) = \\ & & i = 1 \end{aligned} \\ & = [3(1)+2] + [3(2)+2] + [3(3)+2] + [3(4)+2] \\ & = 5 + 8 \end{aligned}$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$\sum_{i=1}^{4} (3i+2) =$$

$$= [3(1)+2] + [3(2)+2] + [3(3)+2] + [3(4)+2]$$

$$= 5 + 8 + 11$$

This lesson involves series. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, **4 in this example.** Let's expand this example and find its value.

+ 2]

$$\begin{aligned}
& \sum_{i=1}^{4} (3i+2) = \\
& i = 1
\end{aligned}$$

$$\begin{bmatrix}
3(1)+2 \end{bmatrix} + \begin{bmatrix}
3(2)+2 \end{bmatrix} + \begin{bmatrix}
3(3)+2 \end{bmatrix} + \begin{bmatrix}
3(4)\\
5 + 8 + 11 + 5
\end{bmatrix}$$

+

+

=

5

+

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$\sum_{i=1}^{4} (3i+2) =$$

= [3(1) + 2] + [3(2) + 2] + [3(3) + 2] + [3(4) + 2] == 5 + 8 + 11 + 14 =

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence.

A series can also be defined using what is called sigma notation.

This symbol, Σ , is the greek letter sigma. Below is an example of a series defined using 'sigma notation' (or summation notation).

The variable, i, is called the index variable (index of summation). The index variable takes on <u>all integer values</u> starting with the initial value, 1 in this example, and ending with the final value, 4 in this example. Let's expand this example and find its value.

$$\sum_{i=1}^{4} (3i+2) = 38$$

= [3(1) + 2] + [3(2) + 2] + [3(3) + 2] + [3(4) + 2] == 5 + 8 + 11 + 14 =

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9. $\sum_{i=1}^{3} 5i =$ i = 110. $\sum_{i=1}^{4} 3^{i} =$ 11. $\sum_{i=1}^{6} \frac{i}{4} =$

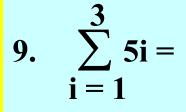
This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

10. $\sum_{i=1}^{4} 3^{i} =$

9. $\sum_{i=1}^{3} 5i =$

11.
$$\sum_{i=1}^{6} \frac{i}{4} =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.



This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

'the sum of 5i as i goes from 1 to 3'

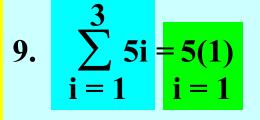
<u>3</u>

i = 1

9.

 $\sum 5i =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.



'the sum of 5i as i goes from 1 to 3'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2)$$

i = 2

'the sum of 5i as i goes from 1 to 3'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + \frac{5(3)}{i=3}$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) =$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + \frac{5(3)}{5(3)} = 5 + 10 + 15$$

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1}$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2}$$
$$i = 2$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3}$$
$$i = 3$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4}$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} =$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + \frac{3^{4}}{3} = 3 + 9 + 27 + 81$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} =$$

1

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} = \frac{1}{4}$$

1

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} = \frac{1}{4} + \frac{2}{4}$$

1

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{0} \frac{i}{4} = \frac{1}{4} + \frac{2}{4} + \frac{3}{4}$$

1

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4}$$

1

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4} + \frac{5}{4}_{i=5}$$

1

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

1

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4} + \frac{5}{4} + \frac{6}{4}$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4} + \frac{5}{4} + \frac{6}{4} = \frac{1}{4}$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4} + \frac{5}{4} + \frac{6}{4} = \frac{21}{4}$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

9.
$$\sum_{i=1}^{5} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4} + \frac{5}{4} + \frac{6}{4} = \frac{21}{4}$$

9.
$$\sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 5 + 10 + 15 = 30$$

10.
$$\sum_{i=1}^{4} 3^{i} = 3^{1} + 3^{2} + 3^{3} + 3^{4} = 3 + 9 + 27 + 81 = 120$$

11.
$$\sum_{i=1}^{6} \frac{i}{4} = \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{4}{4} + \frac{5}{4} + \frac{6}{4} = \frac{21}{4}$$

12.
$$\sum_{k=2}^{5} (3k-5) =$$

13.
$$\sum_{k=1}^{5} k^{3} =$$

12.
$$\sum_{k=2}^{5} (3k-5) =$$

13.
$$\sum_{k=1}^{5} k^{3} =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) =$$

'the sum of 3k – 5 as k goes from 2 to 5'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5]$$

k = 2

'the sum of 3k – 5 as k goes from 2 to 5'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5]$$

k = 3

'the sum of 3k – 5 as k goes from 2 to 5'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{3} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5]$$

k = 4

'the sum of 3k – 5 as k goes from 2 to 5'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{3} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5]$$

k = 5

'the sum of 3k – 5 as k goes from 2 to 5'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12. $\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12. $\sum_{k=2}^{5} (3k-5) = \frac{[3(2)-5]}{[3(2)-5]} + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12. $\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1+4$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12. $\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12. $\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12. $\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12. $\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} =$$

5

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = \frac{1^{3}}{k=1}$$

5

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + \frac{2^{3}}{k=2}$$

5

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + \frac{3^{3}}{k=3}$$

5

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] =$$

= 1 + 4 + 7 + 10 = 22

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + 3^{3} + \frac{4^{3}}{k=4}$$

5

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} \frac{k^3}{k^3} = 1^3 + 2^3 + 3^3 + 4^3 + \frac{5^3}{k=5}$$

5

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] =$$

= 1 + 4 + 7 + 10 = 22

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} = 1$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} = 1 + 8$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + \frac{3^{3}}{4^{3}} + 4^{3} + 5^{3} = 1 + 8 + 27$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} = 1 + 8 + 27 + 64$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + 3^{3} + 4^{3} + \frac{5^{3}}{5^{3}} = 1 + 8 + 27 + 64 + 125$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 64 + 125 = 1 + 8 + 27 + 125 = 1 + 125 =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 1 + 8 + 27 + 64 + 125 = 225$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} = 1 + 8 + 27 + 64 + 125 = 225$$

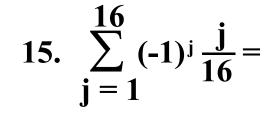
This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

12.
$$\sum_{k=2}^{5} (3k-5) = [3(2)-5] + [3(3)-5] + [3(4)-5] + [3(5)-5] = 1 + 4 + 7 + 10 = 22$$

13.
$$\sum_{k=1}^{5} k^{3} = 1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} = 1 + 8 + 27 + 64 + 125 = 225$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14. $\sum_{j=1}^{50} j =$



This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14. $\sum_{j=1}^{50} j =$

15.
$$\sum_{j=1}^{16} (-1)^{j} \frac{j}{16} =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

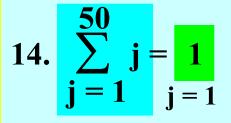
14. $\sum_{j=1}^{50} j =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14. $\sum_{j=1}^{50} j =$

'the sum of j as j goes from 1 to 50'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.



'the sum of j as j goes from 1 to 50'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14.
$$\sum_{j=1}^{50} j = 1 + 2$$

 $j = 2$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14.
$$\sum_{j=1}^{50} j = 1 + 2 + 3$$

 $j = 3$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14.
$$\sum_{j=1}^{50} j = 1 + 2 + 3 + \dots$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14.
$$\sum_{j=1}^{50} j = 1 + 2 + 3 + \dots + \frac{48}{j = 48}$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14.
$$\sum_{j=1}^{50} j = 1 + 2 + 3 + \dots + 48 + \frac{49}{j = 49}$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14.
$$\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + \frac{50}{j = 50}$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + \dots + 48 + 49 + 50 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

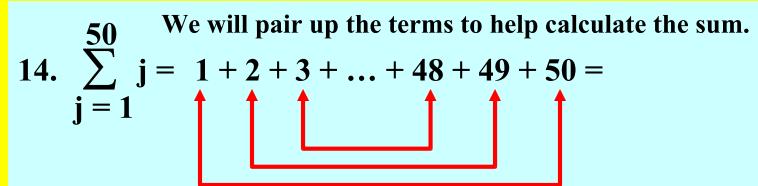
14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + \dots + 48 + 49 + 50 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

We will pair up the terms to help calculate the sum. 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + \dots + 48 + 49 + 50 =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + \dots + 48 + 49 + 50 =$

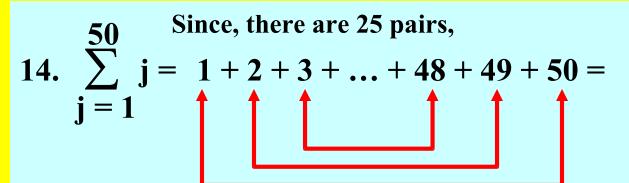


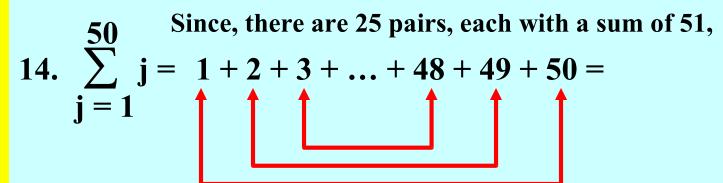
14.
$$\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 =$$

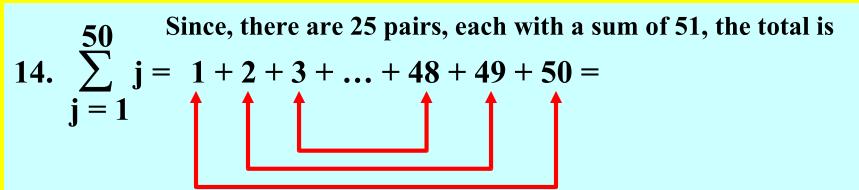
This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

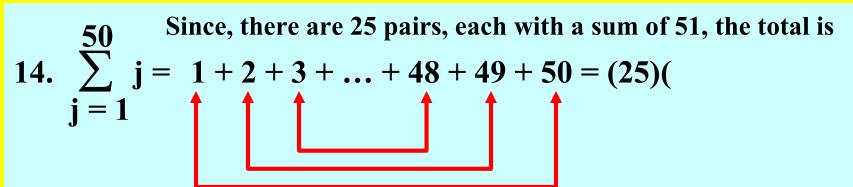
The sum of the terms in each pair is 51. 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 =$

14.
$$\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 =$$









This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] =$$

'the sum of $(-1)^{j}$ [j/16] as j goes from 1 to 16'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16}$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16}$$
$$j = 2$$

'the sum of $(-1)^{j}$ [j/16] as j goes from 1 to 16'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} = \frac{-1}{16} = \frac{-1}{16} + \frac{-3}{16} = \frac{-1}{16} = \frac{-1}{1$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \frac{4}{16} + \frac{16}{16} + \frac{16}{16$$

'the sum of $(-1)^{j}$ [j/16] as j goes from 1 to 16'

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

15.
$$\frac{16}{j=1}(-1)^{j}[j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \dots + \frac{1}{16} + \frac$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

$$15. \sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16}$$

$$j = 15$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

$$15. \sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16}$$
$$j = 16$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} =$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

We will pair up the terms to help calculate the sum. 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} =$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

We will pair up the terms to help calculate the sum. 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} +$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

We will pair up the terms to help calculate the sum. 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} +$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

We will pair up the terms to help calculate the sum. 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} +$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{-1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{-1}{16} + \frac{1}{16} + \frac{1$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

The sum of the terms in each pair is 1/16.

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{-1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

15.
$$\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{-1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{-1}{16} + \frac{1}{16} + \frac{1$$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

Since, there are 8 pairs, 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{-1}{16} + \frac{-1}{16} +$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

Since, there are 8 pairs, each with a sum of 1/16, 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{-1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{-1}{16} + \frac{1}{16} +$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

Since, there are 8 pairs, each with a sum of 1/16, the total is 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{1}{16} + \frac{1}{16} +$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

Since, there are 8 pairs, each with a sum of 1/16, the total is 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} +$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

Since, there are 8 pairs, each with a sum of 1/16, the total is 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{1}{16} + \frac{1}{16} \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{16} + \frac{1}{16} +$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

Since, there are 8 pairs, each with a sum of 1/16, the total is 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{1}{16} + \frac{1}{16} = \frac{1}{2}$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

Since, there are 8 pairs, each with a sum of 1/16, the total is 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{1}{16} + \frac{1}{16} = 8(\frac{1}{16}) = \frac{1}{2}$

This lesson involves <u>series</u>. Here is a definition. A <u>series</u> is an indicated sum of the terms of a sequence. Evaluate each of the following sums.

Since, there are 25 pairs, each with a sum of 51, the total is 14. $\sum_{j=1}^{50} j = 1 + 2 + 3 + ... + 48 + 49 + 50 = (25)(51) = 1,275$

Since, there are 8 pairs, each with a sum of 1/16, the total is 15. $\sum_{j=1}^{16} (-1)^{j} [j/16] = \frac{-1}{16} + \frac{2}{16} + \frac{-3}{16} + \frac{4}{16} + \dots + \frac{-15}{16} + \frac{16}{16} = \frac{1}{16} = 8(\frac{1}{16}) = \frac{1}{2}$