Algebra II Lesson #3 Unit 9 Class Worksheet #3 For Worksheets #3 & #4

1. Find 4 arithmetic means between 7 and 22.

1. Find 4 arithmetic means between 7 and 22.

1. Find 4 arithmetic means between 7 and 22.

What does this mean?

1. Find 4 arithmetic means between 7 and 22.

What does this mean?

Consider an arithmetic sequence containing the numbers 7 and 22 with four numbers in between them.

1. Find 4 arithmetic means between 7 and 22.

7, ____, ____, ____, 22

What does this mean?

Consider an arithmetic sequence containing the numbers 7 and 22 with four numbers in between them.

1. Find 4 arithmetic means between 7 and 22.

<mark>7, ____, ____, ____, ____, 22</mark>

What does this mean?

Consider an arithmetic sequence containing the numbers 7 and 22 with four numbers in between them. These numbers are called <u>the 4 arithmetic means between 7 and 22</u>.

1. Find 4 arithmetic means between 7 and 22.

$$7, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, 22$$

 a_1 a

What does this mean?

Consider an arithmetic sequence containing the numbers 7 and 22 with four numbers in between them. These numbers are called <u>the 4 arithmetic means between 7 and 22</u>.

Let $a_1 = 7$ and $a_6 = 22$.

1. Find 4 arithmetic means between 7 and 22.

$$7, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, 22$$

 a_1

What does this mean?

Consider an arithmetic sequence containing the numbers 7 and 22 with four numbers in between them. These numbers are called <u>the 4 arithmetic means between 7 and 22</u>.

Let $a_1 = 7$ and $a_6 = 22$. The challenge is to find d, the common difference between the terms.

1. Find 4 arithmetic means between 7 and 22.

$$7, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, 22$$

 a_1

What does this mean?

Consider an arithmetic sequence containing the numbers 7 and 22 with four numbers in between them. These numbers are called <u>the 4 arithmetic means between 7 and 22</u>.

Let $a_1 = 7$ and $a_6 = 22$. The challenge is to find d, the common difference between the terms. Then, we can find the terms we are looking for.

1. Find 4 arithmetic means between 7 and 22.

$$a_1$$
, a_2 , a_3 , a_4 , a_5 , 22
 a_6

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1 a_6

1. Find 4 arithmetic means between 7 and 22.

$$7, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, 22$$

 a_1 a_6

We have learned that in any arithmetic sequence,

 $a_n =$

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1 a_6

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} + (\mathbf{n} - 1)\mathbf{d}$$

1. Find 4 arithmetic means between 7 and 22.

$$7, \frac{a_2}{a_2}, \frac{a_3}{a_3}, \frac{a_4}{a_5}, \frac{a_5}{a_6}, 22$$

 a_1

We have learned that in any arithmetic sequence,

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} + (\mathbf{n} - 1)\mathbf{d}$$

Therefore,

1. Find 4 arithmetic means between 7 and 22.

$$7, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, 22$$

 a_1 a_6

We have learned that in any arithmetic sequence,

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} + (\mathbf{n} - 1)\mathbf{d}$$

Therefore,

$$a_6 =$$

1. Find 4 arithmetic means between 7 and 22.

$$7, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, 22$$

 a_1 a_6

We have learned that in any arithmetic sequence,

$$a_n = a_1 + (n - 1)a_0$$

Therefore, $a_6 = a_1 + 5d_0$

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1 a_6

We have learned that in any arithmetic sequence,

	$a_n = a_1 + (n - 1)d$
Therefore,	$a_6 = a_1 + 5d$

Substituting, we get

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1 a_6

	$a_n = a_1 + (n-1)c_1$
Therefore,	$a_6 = a_1 + 5d$
Substituting, we get	22

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1 a_6

We have learned that in any arithmetic sequence,

	$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_1 + (\mathbf{n} - 1)\mathbf{a}_1$
Therefore,	$a_6 = a_1 + 5d$
Substituting, we get	22 =

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1 a_6

	$a_n = a_1 + (n-1)c_1$
Therefore,	$a_6 = a_1 + 5d$
Substituting, we get	22 = 7

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1 a_6

	$a_n = a_1 + (n-1)c_1$
Therefore,	$a_6 = a_1 + 5d$
Substituting, we get	22 = 7 + 5d

1. Find 4 arithmetic means between 7 and 22.

7,
$$\frac{a_2}{a_1}$$
, $\frac{a_3}{a_3}$, $\frac{a_4}{a_5}$, $\frac{a_5}{a_6}$, 22
 a_6

We have learned that in any arithmetic sequence,

 $a_n = a_1 + (n - 1)d$ Therefore, $a_6 = a_1 + 5d$ Substituting, we get 22 = 7 + 5dNow, solve for d.

1. Find 4 arithmetic means between 7 and 22.

$$7, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, 22$$

 a_1 a_6

	$a_n = a_1 + (n - 1)c_1$
Therefore,	$a_6 = a_1 + 5d$
Substituting, we get	22 = 7 + 5d
Now, solve for d.	5d =

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1 a_6

	$a_n = a_1 + (n - 1)c_1$
Therefore,	$a_6 = a_1 + 5d$
Substituting, we get	22 = 7 + 5d
Now, solve for d.	5d = 15

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1 a_6

	$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} + (\mathbf{n} - 1)\mathbf{d}$
Therefore,	$a_6 = a_1 + 5d$
Substituting, we get	22 = 7 + 5d
Now, solve for d.	5d = 15
	d =

1. Find 4 arithmetic means between 7 and 22.

$$7, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, 22$$

 a_1 a_6

	$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} + (\mathbf{n} - 1)\mathbf{d}$
Therefore,	$a_6 = a_1 + 5d$
Substituting, we get	22 = 7 + 5d
Now, solve for d.	5d = 15
	d = 3

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

1. Find 4 arithmetic means between 7 and 22.

7, a₂, a₃, a₄, a₅, 22
a₁

$$a_6 = a_1 + 5d$$

 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

Now, starting with the first term,

1. Find 4 arithmetic means between 7 and 22.

7,
$$a_2$$
, a_3 , a_4 , a_5 , 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

Now, starting with the first term,

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

Now, starting with the first term, we can add d recursively to find the missing terms.

Add 3 recursively.

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

Now, starting with the first term, we can add d recursively to find the missing terms.

Add 3 recursively.

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$
1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

Now, starting with the first term, we can add d recursively to find the missing terms.

Add 3 recursively.

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$

Now, starting with the first term, we can add d recursively to find the missing terms.

Add 3 recursively. (It is correct.)

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$
7, 10, 13, 16, 19, 22

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$
7, 10, 13, 16, 19, 22

The 4 arithmetic means between 7 and 22 are 10, 13, 16 and 19.

1. Find 4 arithmetic means between 7 and 22.

7,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, 22
 a_1
 $a_6 = a_1 + 5d$
 $22 = 7 + 5d$
 $5d = 15$
 $d = 3$
7, 10, 13, 16, 19, 22

The 4 arithmetic means between 7 and 22 are 10, 13, 16 and 19.

$$\begin{array}{c} 10, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, \underline{a_6}, 25 \\ a_1 \end{array}$$

$$\begin{array}{c} 10, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, \underline{a_6}, 25 \\ a_1 \end{array}$$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} + (\mathbf{n} - 1)\mathbf{d}$$

$$\begin{array}{c}
\mathbf{10,} \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, \underline{a_6}, \mathbf{25} \\
\mathbf{a_1} \\
\mathbf{a_7} = \mathbf{a_1} + \mathbf{6d}
\end{array}$$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_1 + (\mathbf{n} - 1)\mathbf{d}$$

$$\begin{array}{c} 10, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}, \underline{a_6}, 25 \\ a_1 \\ a_7 = a_1 + 6d \\ 25 = 10 + 6d \\ 6d \end{array}$$

10,
$$\frac{a_2}{a_2}$$
, $\frac{a_3}{a_3}$, $\frac{a_4}{a_4}$, $\frac{a_5}{a_5}$, $\frac{a_6}{a_6}$, 25
 a_1
 $a_7 = a_1 + 6d$
 $25 = 10 + 6d$
 $6d =$

10,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, $\underline{a_5}$, $\underline{a_6}$, 25
 a_1
 $a_7 = a_1 + 6d$
 $25 = 10 + 6d$
 $6d = 15$

5

10, 12.5, 15, 17.5, ___, 25
$$a_7 = a_1 + 6d$$

 $25 = 10 + 6d$
 $6d = 15$
 $d = 2.5$
Add 2.5 recursively.

10, 12.5, 15, 17.5, 20, 25
$$a_7 = a_1 + 6d$$

 $25 = 10 + 6d$
 $6d = 15$
 $d = 2.5$
Add 2.5 recursively.

10, 12.5, 15, 17.5, 20, 22.5, 25
$$a_7 = a_1 + 6d$$

 $25 = 10 + 6d$
 $6d = 15$
 $d = 2.5$
Add 2.5 recursively.

10, 12.5, 15, 17.5, 20, 22.5, 25
$$a_7 = a_1 + 6d$$

 $25 = 10 + 6d$
 $6d = 15$
 $d = 2.5$
Add 2.5 recursively.

0, 12.5, 15, 17.5, 20, 22.5, 25
$$a_7 = a_1 + 6d$$

 $25 = 10 + 6d$
 $6d = 15$
 $d = 2.5$
Add 2.5 recursively. It is correct.

2. Find 5 arithmetic means between 10 and 25.

10, <u>12.5</u>, <u>15</u>, <u>17.5</u>, <u>20</u>, <u>22.5</u>, <u>25</u> $a_7 = a_1 + 6d$ 25 = 10 + 6d6d = 15d = 2.5

2. Find 5 arithmetic means between 10 and 25.

10, <u>12.5</u>, <u>15</u>, <u>17.5</u>, <u>20</u>, <u>22.5</u>, <u>25</u>

 $a_7 = a_1 + 6d$ 25 = 10 + 6d 6d = 15d = 2.5

The 5 arithmetic means between 10 and 25 are 12.5, 15, 17.5, 20 and 22.5.

2. Find 5 arithmetic means between 10 and 25.

10, <u>12.5</u>, <u>15</u>, <u>17.5</u>, <u>20</u>, <u>22.5</u>, 25 $a_7 = a_1 + 6d$ 25 = 10 + 6d6d = 15d = 2.5

The 5 arithmetic means between 10 and 25 are 12.5, 15, 17.5, 20 and 22.5.

3. Find the arithmetic mean of 12 and 20.

3. Find the arithmetic mean of 12 and 20.

3. Find the arithmetic mean of 12 and 20.
3. Find the arithmetic mean of 12 and 20.

This time, we are only looking for one number.

, 20

3. Find the arithmetic mean of 12 and 20.

12,

$$12, \underline{a_2}, 20$$

 a_1 a_3

$$12, \underline{a_2}, 20$$

 a_1 a_3

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} + (\mathbf{n} - \mathbf{1})\mathbf{d}$$

$$12, \underline{a_2}, 20$$

 a_1 a_3
 $a_3 = a_1 + 2d$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} + (\mathbf{n} - \mathbf{1})\mathbf{d}$$

$$12, \underline{a_2}, 20$$

 a_1 a_3
 $a_3 = a_1 + 2d$

$$\begin{array}{c}
12, \underline{a_2}, 20 \\
a_1 & a_3 \\
a_3 = a_1 + 2d \\
20 =
\end{array}$$

$$\begin{array}{c}
12, \underline{a_2}, 20 \\
a_1 & a_3 \\
a_3 = a_1 + 2d \\
20 = 12
\end{array}$$

$$\begin{array}{c}
12, \underline{a_2}, 20 \\
a_1 & a_3 \\
a_3 = a_1 + 2d \\
20 = 12 + 2d
\end{array}$$

$$\begin{array}{c}
12, \underline{a_2}, 20\\
a_1 & a_3\\
a_3 = a_1 + 2d\\
20 = 12 + 2d\\
2d
\end{array}$$

$$\begin{array}{c}
12, \underline{a_2}, 20\\
a_1 & a_3\\
a_3 = a_1 + 2d\\
20 = 12 + 2d\\
2d =
\end{array}$$

$$\begin{array}{c}
12, \underline{a_2}, 20\\
a_1 & a_3\\
a_3 = a_1 + 2d\\
20 = 12 + 2d\\
2d = 8
\end{array}$$

$$\begin{array}{c}
12, \underline{a_2}, 20 \\
a_1 & a_3 \\
a_3 = a_1 + 2d \\
20 = 12 + 2d \\
2d = 8 \\
d =
\end{array}$$

$$\begin{array}{c}
12, \underline{a_2}, 20 \\
a_1 & a_3 \\
a_3 = a_1 + 2d \\
20 = 12 + 2d \\
2d = 8 \\
d = 4
\end{array}$$

3. Find the arithmetic mean of 12 and 20.

12, ____, 20

 $a_3 = a_1 + 2d$ 20 = 12 + 2d 2d = 8d = 4

3. Find the arithmetic mean of 12 and 20.

12, ____, 20

 $a_3 = a_1 + 2d$ 20 = 12 + 2d 2d = 8d = 4

Add 4 recursively.

3. Find the arithmetic mean of 12 and 20.

Add 4 recursively.

3. Find the arithmetic mean of 12 and 20.

Add 4 recursively. It is correct.

3. Find the arithmetic mean of 12 and 20.

12, <u>16</u>, 20

 $a_3 = a_1 + 2d$ 20 = 12 + 2d 2d = 8d = 4

3. Find the arithmetic mean of 12 and 20.

12, <u>16</u>, 20

 $a_3 = a_1 + 2d$ 20 = 12 + 2d 2d = 8d = 4

The arithmetic mean of 12 and 20 is 16.

12, <u>16</u>, 20 $a_3 = a_1 + 2d$ 20 = 12 + 2d 2d = 8 d = 4

The arithmetic mean of 12 and 20 is 16.

4. Find 2 geometric means between 6 and 750.

4. Find 2 geometric means between 6 and 750.

4. Find 2 geometric means between 6 and 750.

4. Find 2 geometric means between 6 and 750.

6, ____, ____, 750

4. Find 2 geometric means between 6 and 750.

4. Find 2 geometric means between 6 and 750.

$$a_1$$
 a_2 a_3 750 a_4

$$a_n =$$

4. Find 2 geometric means between 6 and 750.

$$a_1$$
 a_2 a_3 750 a_4

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

4. Find 2 geometric means between 6 and 750.

$$a_1$$
 a_2 , a_3 , 750 a_4 $a_4 =$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

4. Find 2 geometric means between 6 and 750.

$$\begin{array}{c} 6, \underline{a_2}, \underline{a_3}, 750 \\ a_1 \\ a_4 = a_1 r^3 \end{array}$$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

4. Find 2 geometric means between 6 and 750.

$$\begin{array}{c} \mathbf{a_{1}} & \mathbf{a_{2}} & \mathbf{a_{3}} & \mathbf{750} \\ \mathbf{a_{1}} & \mathbf{a_{4}} = \mathbf{a_{1}}\mathbf{r^{3}} \\ \mathbf{750} \end{array}$$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_1 \mathbf{r}^{(\mathbf{n}-1)}$$

4. Find 2 geometric means between 6 and 750.

6,
$$\frac{a_2}{a_2}$$
, $\frac{a_3}{a_3}$, **750**
a₄
a₄ = **a**₁**r**³
750 =

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_1 \mathbf{r}^{(\mathbf{n}-1)}$$

4. Find 2 geometric means between 6 and 750.

6,
$$\frac{a_2}{a_4}$$
, $\frac{a_3}{a_4}$, 750
 $a_4 = a_1 r^3$
 $750 = 6r^3$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$
6,
$$\frac{a_2}{a_1}$$
, $\frac{a_3}{a_4}$, 750
 $a_4 = a_1 r^3$
 $750 = 6r^3$

4. Find 2 geometric means between 6 and 750.

6,
$$\frac{a_2}{a_1}$$
, $\frac{a_3}{a_4}$, 750
 $a_4 = a_1 r^3$
 $750 = 6r^3$

4. Find 2 geometric means between 6 and 750.

$$\begin{array}{c} \mathbf{a_{1}} & \mathbf{a_{2}} & \mathbf{a_{3}} & \mathbf{750} \\ \mathbf{a_{1}} & \mathbf{a_{4}} = \mathbf{a_{1}}\mathbf{r^{3}} \\ \mathbf{a_{4}} = \mathbf{a_{1}}\mathbf{r^{3}} \\ \mathbf{750} = \mathbf{6r^{3}} \\ \mathbf{r^{3}} \end{array}$$

4. Find 2 geometric means between 6 and 750.

$$\begin{array}{c} \mathbf{a_{1}} & \mathbf{a_{2}} & \mathbf{a_{3}} & \mathbf{750} \\ \mathbf{a_{1}} & \mathbf{a_{4}} = \mathbf{a_{1}}\mathbf{r^{3}} \\ \mathbf{a_{4}} = \mathbf{a_{1}}\mathbf{r^{3}} \\ \mathbf{750} = \mathbf{6r^{3}} \\ \mathbf{r^{3}} = \end{array}$$

4. Find 2 geometric means between 6 and 750.

6,
$$a_2$$
, a_3 , 750
 a_1
 $a_4 = a_1 r^3$
 $750 = 6r^3$
 $r^3 = 125$

4. Find 2 geometric means between 6 and 750.

6,
$$a_2$$
, a_3 , 750
 a_1
 $a_4 = a_1 r^3$
 $750 = 6r^3$
 $r^3 = 125$
 $r =$

4. Find 2 geometric means between 6 and 750.

6,
$$a_2$$
, a_3 , 750
 a_1
 $a_4 = a_1 r^3$
 $750 = 6r^3$
 $r^3 = 125$
 $r = 5$

4. Find 2 geometric means between 6 and 750.

6, ____, ___, 750 $a_4 = a_1 r^3$ $750 = 6r^3$ $r^3 = 125$ r = 5

4. Find 2 geometric means between 6 and 750.

6, ____, ___, 750 $a_4 = a_1 r^3$ $750 = 6r^3$ $r^3 = 125$ r = 5

4. Find 2 geometric means between 6 and 750.

6, 30, 750
$$a_4 = a_1 r^3$$

 $750 = 6r^3$
 $r^3 = 125$
 $r = 5$

4. Find 2 geometric means between 6 and 750.

6, 30, 150, 750
$$a_4 = a_1 r^3$$

750 = 6r³
 $r^3 = 125$
 $r = 5$

4. Find 2 geometric means between 6 and 750.

6, 30, 150, 750
$$a_4 = a_1 r^3$$

750 = 6r³
 $r^3 = 125$
 $r = 5$

4. Find 2 geometric means between 6 and 750.

6, 30, 150, 750
$$a_4 = a_1 r^3$$

750 = 6r³
 $r^3 = 125$
 $r = 5$

Multiply by 5 recursively. It is correct.

4. Find 2 geometric means between 6 and 750.

6, <u>30</u>, <u>150</u>, 750 $a_4 = a_1 r^3$ 750 = 6r³ $r^3 = 125$ r = 5

4. Find 2 geometric means between 6 and 750.

6, <u>30</u>, <u>150</u>, 750 $a_4 = a_1 r^3$ 750 = 6r³ $r^3 = 125$ r = 5

The 2 geometric means between 6 and 750 are 30 and 150.

4. Find 2 geometric means between 6 and 750.

6, <u>30</u>, <u>150</u>, 750

$$a_4 = a_1 r^3$$

750 = 6r³
r³ = 125
r = 5

The 2 geometric means between 6 and 750 are 30 and 150.

$$a_1$$
 5, a_2 , a_3 , a_4 , 80
 a_5

5. Find 3 geometric means between 5 and 80.

$$a_1$$
 5, a_2 , a_3 , a_4 , 80
 a_5

5. Find 3 geometric means between 5 and 80.

$$a_1$$
 5, a_2 , a_3 , a_4 , 80
 a_5

$$a_n =$$

5. Find 3 geometric means between 5 and 80.

$$a_1$$
 5, a_2 , a_3 , a_4 , 80
 a_5

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

5. Find 3 geometric means between 5 and 80.

$$a_1$$
 a_2 a_3 a_4 a_5 a_5

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

5. Find 3 geometric means between 5 and 80.

$$a_1$$
 a_2 , a_3 , a_4 , 80
 $a_5 = a_1 r^4$ a_5

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

5. Find 3 geometric means between 5 and 80.

5,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, 80
 a_1
 $a_5 = a_1 r^4$
 a_5

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_1 \mathbf{r}^{(\mathbf{n}-1)}$$

5. Find 3 geometric means between 5 and 80.

5,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, 80
 a_1
 $a_5 = a_1 r^4$
 $80 = 5r^4$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

5. Find 3 geometric means between 5 and 80.

5,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, 80
 a_1
 $a_5 = a_1 r^4$
 $80 = 5r^4$
 r^4

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

5. Find 3 geometric means between 5 and 80.

5,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, 80
 a_1
 $a_5 = a_1 r^4$
 $80 = 5r^4$
 $r^4 = 16$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

5. Find 3 geometric means between 5 and 80.

5,
$$a_2$$
, a_3 , a_4 , 80
 a_1
 $a_5 = a_1 r^4$
 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

5. Find 3 geometric means between 5 and 80.

5,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, 80
 a_1
 $a_5 = a_1 r^4$
 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

5. Find 3 geometric means between 5 and 80.

5,
$$\underline{a_2}$$
, $\underline{a_3}$, $\underline{a_4}$, 80
 a_1
 $a_5 = a_1 r^4$
 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_1 \mathbf{r}^{(\mathbf{n}-1)}$$

5, ____, ____, 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

5. Find 3 geometric means between 5 and 80.

This time, there are two sets of solutions.

5. Find 3 geometric means between 5 and 80.

This time, there are two sets of solutions.

5. Find 3 geometric means between 5 and 80.

This time, there are two sets of solutions. First, multiply by 2 recursively.
5. Find 3 geometric means between 5 and 80.

5, 10, , , 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

5. Find 3 geometric means between 5 and 80.

5, 10, 20, , 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

5. Find 3 geometric means between 5 and 80.

5, 10, 20, 40, 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

5. Find 3 geometric means between 5 and 80.

5, 10, 20, 40, 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

5. Find 3 geometric means between 5 and 80.

5, 10, 20, 40, 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

5. Find 3 geometric means between 5 and 80.

5, <u>10</u>, <u>20</u>, <u>40</u>, 80 $a_5 = a_1 r^4$ $80 = 5r^4$ $r^4 = 16$ r = 2 or r = -2

This time, there are two sets of solutions.

5. Find 3 geometric means between 5 and 80.

5, <u>10</u>, <u>20</u>, <u>40</u>, 80 $a_5 = a_1 r^4$ $80 = 5r^4$ $r^4 = 16$ r = 2 or r = -2

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40.

5. Find 3 geometric means between 5 and 80.

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40.

5. Find 3 geometric means between 5 and 80.

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40.

5. Find 3 geometric means between 5 and 80.

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40.

5. Find 3 geometric means between 5 and 80.

5, -10, , , 80
$$a_5 = a_1 r^4$$

 $80 = 5 r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40.

5. Find 3 geometric means between 5 and 80.

5, -10, 20, , 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40.

5. Find 3 geometric means between 5 and 80.

5, -10, 20, -40, 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40.

5. Find 3 geometric means between 5 and 80.

5, -10, 20, -40, 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40.

5. Find 3 geometric means between 5 and 80.

5, -10, 20, -40, 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40.

Now, multiply by -2 recursively. It is correct.

5. Find 3 geometric means between 5 and 80.

5, -10, 20, -40, 80
$$a_5 = a_1 r^4$$

 $80 = 5r^4$
 $r^4 = 16$
 $r = 2$ or $r = -2$

This time, there are two sets of solutions. The 3 geometric means between 5 and 80 are 10, 20, and 40, or they are -10, 20, and -40. Now, multiply by -2 recursively. It is correct. 5. Find 3 geometric means between 5 and 80.

5, ± 10 , 20, ± 40 , 80 $a_5 = a_1 r^4$ $80 = 5r^4$ $r^4 = 16$ r = 2 or r = -2

The 3 geometric means between 5 and 80 are 10, 20, and 40, or they are -10, 20, and -40.

6. Find the geometric mean of 7 and 700.

This time, we are only looking for one number.

6. Find the geometric mean of 7 and 700.

This time, we are only looking for one number.

6. Find the geometric mean of 7 and 700.

This time, we are only looking for one number.

6. Find the geometric mean of 7 and 700.

We are dealing with a geometric sequence.

6. Find the geometric mean of 7 and 700.

We are dealing with a geometric sequence.

$$\mathbf{a}_{n} = \mathbf{a}_{1} \mathbf{r}^{(n-1)}$$

6. Find the geometric mean of 7 and 700.

$$a_1$$
 a_2 , 700
 $a_3 = a_1 r^2$ a_3

We are dealing with a geometric sequence.

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{1} \mathbf{r}^{(\mathbf{n}-1)}$$

$$a_1$$
 a_2 , 700
 $a_3 = a_1 r^2$ a_3

$$\begin{array}{c}
7, \underline{a_2}, 700 \\
a_1 \\
a_3 = a_1 r^2 \\
700
\end{array}$$

$$a_1$$
 a_2 , 700
 $a_3 = a_1 r^2$ a_3
700 =

$$\begin{array}{c} 7, \underline{a_2}, 700 \\ a_1 \\ a_3 = a_1 r^2 \\ 700 = 7r^2 \end{array}$$

$$\begin{array}{c}
 7, \underline{a_2}, 700 \\
 a_1 \\
 a_3 = a_1 r^2 \\
 700 = 7r^2 \\
 r^2
\end{array}$$

$$\begin{array}{c}
 7, \underline{a_2}, 700 \\
 a_1 \\
 a_3 = a_1 r^2 \\
 700 = 7 r^2 \\
 r^2 =
\end{array}$$

$$\begin{array}{c} 7, \underline{a_2}, 700 \\ a_1 \\ a_3 = a_1 r^2 \\ 700 = 7r^2 \\ r^2 = 100 \end{array}$$

$$\begin{array}{c}
7, \underline{a_2}, 700 \\
a_1 \\
a_3 = a_1 r^2 \\
700 = 7r^2 \\
r^2 = 100 \\
r = 10
\end{array}$$

7,
$$\underline{a_2}$$
, 700
 a_1 $a_3 = a_1 r^2$ a_3
 $700 = 7r^2$
 $r^2 = 100$
 $r = 10$ or
Algebra 2Class Worksheet #3Unit 9

6. Find the geometric mean of 7 and 700.

$$\begin{array}{c}
 7, \underline{a_2}, 700 \\
 a_1 \\
 a_3 = a_1 r^2 \\
 700 = 7r^2 \\
 r^2 = 100 \\
 r = 10 \text{ or } r = -10
\end{array}$$

Algebra 2Class Worksheet #3Unit 9

6. Find the geometric mean of 7 and 700.

7,
$$\underline{a_2}$$
, 700
 a_1 , $a_3 = a_1 r^2$, a_3
 $a_3 = a_1 r^2$, a_3
 $700 = 7 r^2$
 $r^2 = 100$
 $r = 10$ or $r = -10$

If r = 10,

Algebra 2 Class Worksheet #3 Unit 9

6. Find the geometric mean of 7 and 700.

7,
$$\underline{a_2}$$
, 700
 a_1
 $a_3 = a_1 r^2$
 $700 = 7r^2$
 $r^2 = 100$
 $r = 10$ or $r = -10$

If r = 10, then $a_2 = 70$.

Algebra 2 Class Worksheet #3 Unit 9

6. Find the geometric mean of 7 and 700.

7,
$$\underline{a_2}$$
, 700
 a_1 , $a_3 = a_1 r^2$, a_3
 $a_3 = a_1 r^2$, $700 = 7r^2$
 $r^2 = 100$
 $r = 10$ or $r = -10$
If $r = 10$, then $a_2 = 70$. If $r = -10$,

Algebra 2Class Worksheet #3Unit 9

6. Find the geometric mean of 7 and 700.

7, a₂, 700

$$a_1$$
 $a_3 = a_1 r^2$ a_3
 $700 = 7r^2$
 $r^2 = 100$
 $r = 10$ or $r = -10$

If r = 10, then $a_2 = 70$. If r = -10, then $a_2 = -70$.

Algebra 2 Class Worksheet #3 Unit 9

6. Find the geometric mean of 7 and 700.

7,
$$\underline{a_2}$$
, 700
 a_1 $a_3 = a_1 r^2$ a_3
 $700 = 7r^2$
 $r^2 = 100$
 $r = 10$ or $r = -10$

If r = 10, then $a_2 = 70$. If r = -10, then $a_2 = -70$.

The geometric mean of 7 and 700 is 70 or -70.

6. Find the geometric mean of 7 and 700.

7,
$$\underline{a_2}$$
, 700
 a_1
 $a_3 = a_1 r^2$
 a_3
 $700 = 7r^2$
 $r^2 = 100$
 $r = 10$ or $r = -10$
If $r = 10$, then $a_2 = 70$. If $r = -10$, then $a_2 = -70$.
The geometric mean of 7 and 700 is 70 or -70.

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

The sequence is arithmetic

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 \implies a₁ = 38,000

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 =$$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

The sequence is arithmetic and d = 1,200.

 $a_6 = a_1 + 5d$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 = a_1 + 5d$$

$$a_6 =$$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 = a_1 + 5d$$

 $a_6 = 38,000$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 = a_1 + 5d$$

 $a_6 = 38,000 + 38,0000 + 38,0000 + 38,0000 + 38,0000 + 38,0000 + 38,0000 +$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 = a_1 + 5d$$

 $a_6 = 38,000 + 5(1,200)$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 = a_1 + 5d$$

 $a_6 = 38,000 + 5(1,200)$
 $a_6 =$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 = a_1 + 5d$$

 $a_6 = 38,000 + 5(1,200)$
 $a_6 = 44,000$

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

The sequence is arithmetic and d = 1,200.

$$a_6 = a_1 + 5d$$

 $a_6 = 38,000 + 5(1,200)$
 $a_6 = 44,000$

The salary for the 6th year will be \$44,000.

7. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of \$1,200 per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

The sequence is arithmetic and d = 1,200.

$$a_6 = a_1 + 5d$$

 $a_6 = 38,000 + 5(1,200)$
 $a_6 = 44,000$

The salary for the 6th year will be \$44,000.

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.
8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 \implies a₁ = 38,000

The sequence is geometric

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

 $\implies The sequence is geometric and r = 1.03.$

 $a_6 =$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

The sequence is geometric and r = 1.03.

$$a_6 = a_1 r^3$$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 = a_1 r$$

 $a_6 =$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 = a_1 r^5$$

 $a_6 = 38,000$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

 $\implies The sequence is geometric and r = 1.03.$

 $a_6 = a_1 r^5$ $a_6 = 38,000(1.03)^5$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

$$a_6 = a_1 r^5$$

 $a_6 = 38,000(1.03)^5$
 $a_6 \approx$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

 $a_1 = 38,000$

The sequence is geometric and r = 1.03.

$$a_6 = a_1 r^5$$

 $a_6 = 38,000(1.03)^5$
 $a_6 \approx 44,052$

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

⇒ $a_1 = 38,000$ → The sequence is geometric and r = 1.03. $a_6 = a_1 r^5$ $a_6 = 38,000(1.03)^5$ $a_6 \approx 44,052$

The salary for the 6th year will be about \$44,052.

8. A particular job has a starting salary of \$38,000 per year with a guaranteed raise of 3% per year. What will be the salary for the 6th year?

Consider the sequence of numbers representing the salary for the job over a number of years.

> ⇒ $a_1 = 38,000$ → The sequence is geometric and r = 1.03. $a_6 = a_1 r^5$ $a_6 = 38,000(1.03)^5$ $a_6 \approx 44,052$

The salary for the 6th year will be about \$44,052.

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

The sequence is geometric

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

 $\implies The sequence is geometric and r = 0.6.$

 \implies $a_1 =$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

 $\implies The sequence is geometric and r = 0.6.$

 \implies a₁ = 60% of 70 =

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

 $\implies The sequence is geometric and r = 0.6.$

 \implies a₁ = 60% of 70 = 0.6(70)

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

 $\implies The sequence is geometric and r = 0.6.$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

 $\implies The sequence is geometric and r = 0.6.$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

 $\implies The sequence is geometric and r = 0.6.$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

 $\implies The sequence is geometric and r = 0.6.$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

The sequence is geometric and
$$r = 0.6$$
.
 $a_1 = 60\%$ of $70 = 0.6(70)$ $a_1 = 42$
 $a_4 =$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

The sequence is geometric and
$$r = 0.6$$
.
 $a_1 = 60\%$ of $70 = 0.6(70)$ $a_1 = 42$
 $a_4 = a_1 r^3 =$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

The sequence is geometric and
$$r = 0.6$$
.
 $a_1 = 60\%$ of $70 = 0.6(70)$ $a_1 = 42$
 $a_4 = a_1 r^3 = (42)($

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

The sequence is geometric and
$$r = 0.6$$
.
 $a_1 = 60\%$ of $70 = 0.6(70)$ $a_1 = 42$
 $a_4 = a_1 r^3 = (42)(0.6)^3$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

The sequence is geometric and
$$r = 0.6$$
.
 $a_1 = 60\%$ of $70 = 0.6(70)$ $a_1 = 42$
 $a_4 = a_1 r^3 = (42)(0.6)^3$
 $a_4 \approx$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

The sequence is geometric and
$$r = 0.6$$
.
 $a_1 = 60\%$ of $70 = 0.6(70)$ $a_1 = 42$
 $a_4 = a_1 r^3 = (42)(0.6)^3$
 $a_4 \approx 9.1$

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

The sequence is geometric and
$$r = 0.6$$
.
 $a_1 = 60\%$ of $70 = 0.6(70)$ $a_1 = 42$
 $a_4 = a_1 r^3 = (42)(0.6)^3$
 $a_4 \approx 9.1$

The ball will bounce up about 9.1 inches above the floor after it hits the floor for the 4th time.

9. A ball is dropped onto a concrete floor from a height of 70 inches. On each bounce, the ball rebounds to 60% of its previous height. How high will the ball bounce after it hits the floor for the 4th time?

Let a_n represent the height reached by the ball (in inches) <u>after</u> <u>it hits the floor for the nth time</u>.

The sequence is geometric and
$$r = 0.6$$
.
 $a_1 = 60\%$ of $70 = 0.6(70)$ $a_1 = 42$
 $a_4 = a_1 r^3 = (42)(0.6)^3$
 $a_4 \approx 9.1$

The ball will bounce up about 9.1 inches above the floor after it hits the floor for the 4th time.
