Algebra II Lesson \#1 Unit 9 Class Worksheet \#1 For Worksheets \#1-\#4

Algebra 2 Class Worksheet \#1 Unit 9

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:

5,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
5, 10,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
5, 10, 15,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
5, 10, 15, 20,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
5,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
5, 7, 9,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
5, 7, 9, 11,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
2,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
2, 4,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
2, 4, 8, 16,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
2, 4, 8, 16, 32, 64,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32,64,128$,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
2, 4, 8, 16, 32, 64, 128, 256,

Algebra 2 Class Worksheet \#1 Unit 9

Sequence

Examples of sequences:

$$
5,10,15,20,25,30,35,40,45, \ldots
$$

$$
5,7,9,11,13,15,17,19,21,23,25, \ldots
$$

$$
2,4,8,16,32,64,128,256,512, \ldots
$$

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) :

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32,64,128,256,512, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.
Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32,64,128,256,512, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.
Examples of sequences:

$$
\begin{aligned}
& 5,10,15,20,25,30,35,40,45, \ldots \\
& 5,7,9,11,13,15,17,19,21,23,25, \ldots \\
& 2,4,8,16,32,64,128,256,512, \ldots
\end{aligned}
$$

Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.
Examples of sequences:
Notation

$$
\begin{aligned}
& 5,10,15,20,25,30,35,40,45, \ldots \\
& 5,7,9,11,13,15,17,19,21,23,25, \ldots \\
& 2,4,8,16,32,64,128,256,512, \ldots
\end{aligned}
$$

Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.
Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32,64,128,256,512, \ldots$
Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.
Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
First Term: \mathbf{a}_{1}
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32,64,128,256,512, \ldots$
Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.
Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32,64,128,256,512, \ldots$
Each number is called a term of the sequence. a_{1} is read ' a sub 1 '. The 1 is the subscript.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.
Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
First Term: \mathbf{a}_{1}
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32,64,128,256,512, \ldots$
Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32,64,128,256,512, \ldots$

Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.

Examples of sequences:
$5,10,15,20,25,30,35,40,45, \ldots$
$5,7,9,11,13,15,17,19,21,23,25, \ldots$
$2,4,8,16,32,64,128,256,512, \ldots$

Notation
First Term: \mathbf{a}_{1}
Second Term: \mathbf{a}_{2}

Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.

Examples of sequences:

$$
\begin{aligned}
& 5,10,15,20,25,30,35,40,45, \ldots \\
& 5,7,9,11,13,15,17,19,21,23,25, \ldots
\end{aligned}
$$

$$
2,4,8,16,32,64,128,256,512, \ldots
$$

Notation
First Term: \mathbf{a}_{1}

Second Term: \mathbf{a}_{2}

Third Term:

Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.

Examples of sequences:

$$
\begin{aligned}
& 5,10,15,20,25,30,35,40,45, \ldots \\
& 5,7,9,11,13,15,17,19,21,23,25, \ldots
\end{aligned}
$$

$$
2,4,8,16,32,64,128,256,512, \ldots
$$

Notation
First Term: \mathbf{a}_{1}
Second Term: \mathbf{a}_{2}
Third Term: \mathbf{a}_{3}

Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.
Examples of sequences:

$$
\begin{aligned}
& 5,10,15,20,25,30,35,40,45, \ldots \\
& 5,7,9,11,13,15,17,19,21,23,25, \ldots \\
& 2,4,8,16,32,64,128,256,512, \ldots
\end{aligned}
$$

First Term: \mathbf{a}_{1}
Second Term: \mathbf{a}_{2}
Third Term: \mathbf{a}_{3}
The $n^{\text {th }}$ Term:

Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Sequence (informal definition) : A list of numbers in a specific order.
Examples of sequences:

$$
\begin{aligned}
& 5,10,15,20,25,30,35,40,45, \ldots \\
& 5,7,9,11,13,15,17,19,21,23,25, \ldots \\
& 2,4,8,16,32,64,128,256,512, \ldots
\end{aligned}
$$

First Term: \mathbf{a}_{1}
Second Term: \mathbf{a}_{2}
Third Term: \mathbf{a}_{3}
The $\mathbf{n}^{\text {th }}$ Term: \mathbf{a}_{n}

Each number is called a term of the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
a. $\quad a_{n}=5 n$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
a. $\quad a_{n}=5 n$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
a. $\quad a_{n}=5 n$

$$
\mathbf{a}_{1}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
a. $\quad a_{n}=5 n$

$$
\mathbf{a}_{1}=
$$

(the first term)

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$

$$
a_{1}=5(1)
$$

(the first term)

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad a_{n}=5 n$

$$
a_{1}=5(1)
$$

(the first term)

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $a_{n}=5 n \quad 5$,

$$
a_{1}=5(1)
$$

(the first term)

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $a_{n}=5 n \quad 5$,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $a_{n}=5 n \quad 5$,

$$
\mathbf{a}_{2}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $a_{n}=5 n \quad 5$,

$$
\mathbf{a}_{2}=
$$

(the second term)

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $a_{n}=5 n \quad 5$,

$$
a_{2}=5(2)
$$

(the second term)

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n} \quad 5,10$,

$$
a_{2}=5(2)
$$

(the second term)

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n} \quad 5,10$,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n} \quad 5,10$,

$$
\mathbf{a}_{3}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\mathbf{a}_{\mathrm{n}}=5 \mathrm{n} \quad 5,10$,

$$
a_{3}=5(3)
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $a_{n}=5 n \quad 5,10,15$,

$$
a_{3}=5(3)
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $a_{n}=5 n \quad 5,10,15$,

$$
\mathbf{a}_{4}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $a_{n}=5 n \quad 5,10,15$,

$$
a_{4}=5(4)
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $a_{n}=5 n \quad 5,10,15,20$,

$$
a_{4}=5(4)
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad a_{n}=5 n$
5, 10, 15, 20,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $a_{n}=5 n \quad 5,10,15,20$,

$$
a_{5}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $a_{n}=5 n \quad 5,10,15,20$,

$$
a_{5}=5(5)
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $a_{n}=5 n \quad 5,10,15,20,25$,

$$
a_{5}=5(5)
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad a_{n}=5 n$
5, 10, 15, 20, 25,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $a_{n}=5 n \quad 5,10,15,20,25$,

$$
a_{6}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $a_{n}=5 n \quad 5,10,15,20,25$,

$$
a_{6}=5(6)
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $a_{n}=5 n \quad 5,10,15,20,25,30$,

$$
a_{6}=5(6)
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...
b. $\quad a_{n}=2 n+3$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
$\begin{array}{ll}\text { a. } & a_{n}=5 n \\ \text { b. } & a_{n}=2 n+3\end{array} \quad 5,10,15,20,25,30, \ldots$

$$
\mathbf{a}_{1}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $a_{n}=5 n \quad 5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

$$
a_{1}=2(1)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5,

$$
a_{1}=2(1)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...
b. $\quad a_{n}=2 n+3$
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5,

$$
\mathbf{a}_{2}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5,

$$
a_{2}=2(2)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7,

$$
a_{2}=2(2)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...
b. $\quad a_{n}=2 n+3$
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7,

$$
\mathbf{a}_{3}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7,

$$
a_{3}=2(3)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9,

$$
a_{3}=2(3)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9,

$$
\mathbf{a}_{4}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...
b. $\quad a_{n}=2 n+3$
5, 7, 9,

$$
a_{4}=2(4)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11,

$$
a_{4}=2(4)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11,

$$
\mathbf{a}_{5}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11,

$$
a_{5}=2(5)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13,

$$
a_{5}=2(5)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13,

$$
\mathbf{a}_{6}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13,

$$
a_{6}=2(6)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15,

$$
a_{6}=2(6)+3
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
$5,7,9,11,13,15, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad a_{n}=5 n$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

$$
\mathbf{a}_{1}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad a_{n}=5 n \quad 5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3 \quad 5,7,9,11,13,15, \ldots$
c. $\quad a_{n}=2^{n}$

$$
a_{1}=2^{1}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2,

$$
a_{1}=2^{1}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
2,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2,

$$
\mathbf{a}_{2}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2,

$$
a_{2}=2^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4,

$$
a_{2}=2^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
2, 4,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4,

$$
\mathbf{a}_{3}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4,

$$
a_{3}=2^{3}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8,

$$
a_{3}=2^{3}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
2, 4, 8,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8,

$$
\mathbf{a}_{4}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad a_{n}=5 n \quad 5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8,

$$
a_{4}=2^{4}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad a_{n}=5 n \quad 5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8, 16,

$$
a_{4}=2^{4}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
2, 4, 8, 16,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8, 16,

$$
a_{5}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8, 16,

$$
a_{5}=2^{5}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8, 16, 32,

$$
a_{5}=2^{5}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
2, 4, 8, 16, 32,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8, 16, 32,

$$
\mathbf{a}_{6}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8, 16, 32,

$$
a_{6}=2^{6}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$

5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$

2, 4, 8, 16, 32, 64,

$$
a_{6}=2^{6}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
2, 4, 8, 16, 32, 64, ...

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
2, 4, 8, 16, 32, 64, ...

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, \mathbf{n} can be any positive integer.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence

a.	$a_{n}=5 n$	$5,10,15,20,25,30, \ldots$
b.	$a_{n}=2 n+3$	$5,7,9,11,13,15, \ldots$
c.	$a_{n}=2^{n}$	$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#1,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence

a.	$a_{n}=5 n$	$5,10,15,20,25,30, \ldots$
b.	$a_{n}=2 n+3$	$5,7,9,11,13,15, \ldots$
c.	$a_{n}=2^{n}$	$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#1, if $\mathbf{n}=\mathbf{1 0 0}$,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence

a.	$a_{n}=5 n$	$5,10,15,20,25,30, \ldots$
b.	$a_{n}=2 n+3$	$5,7,9,11,13,15, \ldots$
c.	$a_{n}=2^{n}$	$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#1, if $\mathbf{n}=\mathbf{1 0 0}$, then a_{100},

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence

a.	$a_{n}=5 n$	$5,10,15,20,25,30, \ldots$
b.	$a_{n}=2 n+3$	$5,7,9,11,13,15, \ldots$
c.	$a_{n}=2^{n}$	$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#1, if $\mathbf{n}=100$, then a_{100}, the $100^{\text {th }}$ term,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence

a.	$a_{n}=5 n$	$5,10,15,20,25,30, \ldots$
b.	$a_{n}=2 n+3$	$5,7,9,11,13,15, \ldots$
c.	$a_{n}=2^{n}$	$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#1, if $\mathbf{n}=\mathbf{1 0 0}$, then a_{100}, the $100^{\text {th }}$ term, is $5(100)$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of \mathbf{n}.
Examples of explicit formulas:

Definition
Sequence

a.	$a_{n}=5 n$	$5,10,15,20,25,30, \ldots$
b.	$a_{n}=2 n+3$	$5,7,9,11,13,15, \ldots$
c.	$a_{n}=2^{n}$	$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#1, if $\mathbf{n}=\mathbf{1 0 0}$, then a_{100}, the $\mathbf{1 0 0}{ }^{\text {th }}$ term, is $\mathbf{5 (1 0 0)}=\mathbf{5 0 0}$.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, \mathbf{n} can be any positive integer.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a.

$$
a_{n}=5 n
$$

$$
5,10,15,20,25,30, \ldots
$$

b. $\quad a_{n}=2 n+3$ 5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#2,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a.

$$
a_{n}=5 n
$$

$$
5,10,15,20,25,30, \ldots
$$

b. $\quad a_{n}=2 n+3$ $5,7,9,11,13,15, \ldots$
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#2, if $\mathbf{n}=\mathbf{1 0 0}$,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a.

$$
a_{n}=5 n
$$

$$
5,10,15,20,25,30, \ldots
$$

b. $\quad a_{n}=2 n+3$ $5,7,9,11,13,15, \ldots$
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#2, if $\mathbf{n}=100$, then $a_{100}=\mathbf{2 (1 0 0)}+\mathbf{3}$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a.

$$
a_{n}=5 n
$$

$$
5,10,15,20,25,30, \ldots
$$

b. $\quad a_{n}=2 n+3$ $5,7,9,11,13,15, \ldots$
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#2, if $\mathbf{n}=100$, then $a_{100}=2(100)+3=203$.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, \mathbf{n} can be any positive integer.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...
b. $\quad a_{n}=2 n+3$ 5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#3,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...
b. $\quad a_{n}=2 n+3$ 5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#3, if $\mathbf{n}=\mathbf{1 0 0}$,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...
b. $\quad a_{n}=2 n+3$ 5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#3, if $\mathbf{n}=\mathbf{1 0 0}$, then $a_{100}=\mathbf{2}^{100}$.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=\mathbf{5 n}$
5, 10, 15, 20, 25, 30, ...
b. $\quad a_{n}=2 n+3$ 5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
$2,4,8,16,32,64, \ldots$

Clearly, n can be any positive integer. For example, in sequence \#3, if $\mathbf{n}=100$, then $\mathrm{a}_{100}=\mathbf{2}^{100}$. (about $1.27 \times 10^{30}!$!)

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives \mathbf{a}_{n} as a function of \mathbf{n}.
Examples of explicit formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{\mathrm{n}}=5 \mathrm{n}$
$5,10,15,20,25,30, \ldots$
b. $\quad a_{n}=2 n+3$
5, 7, 9, 11, 13, 15, ...
c. $\quad a_{n}=2^{n}$
2, 4, 8, 16, 32, 64, ...

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $\mathbf{a}_{\mathbf{n}}$.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5 \quad 5$,

Sequence

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$

$$
\text { If } \mathbf{n}=\mathbf{1}
$$

Sequence
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
\downarrow
If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{\mathbf{2}}$

Sequence
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{\mathbf{2}}=$

Sequence
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{5}$

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{\mathbf{2}}=\mathbf{a}_{1}$

Sequence
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
Sequence
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

$$
\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5
$$

$$
5
$$

$$
\text { If } n=1 \text {, then } a_{2}=a_{1}+5
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

If $\mathbf{n}=1$, then $a_{2}=a_{1}+5=$

Sequence
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

If $\mathbf{n}=1$, then $a_{2}=a_{1}+5=5+5$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5 \quad 5$,

$$
\text { If } n=1 \text {, then } a_{2}=a_{1}+5=5+5=10
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition

$$
\text { a. } \quad a_{1}=5 ; a_{n+1}=a_{n}+5
$$

Sequence 5, 10,

$$
\text { If } n=1 \text {, then } a_{2}=a_{1}+5=5+5=10
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence
5, 10,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition

$$
\text { a. } \quad a_{1}=5 ; a_{n+1}=a_{n}+5
$$

Sequence
5, 10,

$$
\text { If } \mathbf{n}=\mathbf{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
\downarrow

$$
\text { If } \mathrm{n}=2 \text {, then } \mathrm{a}_{3}
$$

Sequence
5, 10,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition

$$
\text { a. } \quad a_{1}=5 ; a_{n+1}=a_{n}+5
$$

Sequence
5, 10,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{3}=\mathbf{a}_{\mathbf{2}}$

Sequence
5, 10,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition

$$
\text { a. } \quad a_{1}=5 ; a_{n+1}=a_{n}+5
$$

Sequence
5, 10,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition

$$
\text { a. } \quad a_{1}=5 ; a_{n+1}=a_{n}+5
$$

Sequence
5, 10,

$$
\text { If } \mathbf{n}=2 \text {, then } \mathbf{a}_{3}=\mathbf{a}_{2}+5=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

$$
\text { If } n=2 \text {, then } a_{3}=a_{2}+5=10
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

$$
\text { If } n=2 \text {, then } a_{3}=a_{2}+5=10+5
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$ 5, 10,

$$
\text { If } n=2 \text {, then } a_{3}=a_{2}+5=10+5=
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$ 5, 10,

$$
\text { If } n=2, \text { then } a_{3}=a_{2}+5=10+5=15
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence 5, 10, 15,

$$
\text { If } n=2, \text { then } a_{3}=a_{2}+5=10+5=15
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence
5, 10, 15,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence 5, 10, 15,

Notice that to get the 'next term' of the sequence,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence 5, 10, 15,

Notice that to get the 'next term' of the sequence, you add 5.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence 5, 10, 15,

Notice that to get the 'next term' of the sequence, you add 5. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence
5, 10, 15, 20,

Notice that to get the 'next term' of the sequence, you add 5. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence 5, 10, 15, 20, 25,

Notice that to get the 'next term' of the sequence, you add 5. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{5}$

Sequence 5, 10, 15, 20, 25, 30,

Notice that to get the 'next term' of the sequence, you add 5. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$

Sequence $5,10,15,20,25,30, \ldots$

Notice that to get the 'next term' of the sequence, you add 5. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$

Sequence
$5,10,15,20,25,30, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence
$5,10,15,20,25,30, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence
$5,10,15,20,25,30, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
$5,10,15,20,25,30, \ldots$
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
$5,10,15,20,25,30, \ldots$
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad \mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{5}$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

$$
\text { If } \mathbf{n}=\mathbf{1}
$$

Sequence
$5,10,15,20,25,30, \ldots$
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{\mathbf{2}}$

Sequence
$5,10,15,20,25,30, \ldots$
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad \mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{5}$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{\mathbf{2}}=$

Sequence
$5,10,15,20,25,30, \ldots$
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad \mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{5}$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ If $\mathbf{n}=1$, then $a_{2}=a_{1}$

Sequence
$5,10,15,20,25,30, \ldots$
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{2}=\mathbf{a}_{1}+\mathbf{2}$

Sequence
$5,10,15,20,25,30, \ldots$
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

If $\mathbf{n}=1$, then $\mathbf{a}_{2}=\mathbf{a}_{1}+2=$

Sequence
$5,10,15,20,25,30, \ldots$
5,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

If $\mathrm{n}=1$, then $\mathrm{a}_{2}=\mathrm{a}_{1}+2=5$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\quad a_{1}=5 ; a_{n+1}=\mathbf{a}_{n}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ 5,

$$
\text { If } n=1 \text {, then } a_{2}=a_{1}+2=5+2
$$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ $5,10,15,20,25,30, \ldots$

5,
If $\mathbf{n}=1$, then $a_{2}=a_{1}+2=5+2=7$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\quad \mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{5}$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ 5, 7,

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{2}=\mathrm{a}_{1}+\mathbf{2 = 5 + 2 = 7}$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad \mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{5}$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

$$
\text { If } \mathbf{n}=\mathbf{2}
$$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad \mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{5}$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ If $\mathbf{n}=\mathbf{2}$, then \mathbf{a}_{3}

Sequence
$5,10,15,20,25,30, \ldots$
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{3}=$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ If $\mathbf{n}=2$, then $a_{3}=\mathbf{a}_{2}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{\mathbf{3}}=\mathbf{a}_{\mathbf{2}}+\mathbf{2}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{3}=\mathbf{a}_{2}+\mathbf{2}=$

Sequence
5, 10, 15, 20, 25, 30, ...
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ 5.7,

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{3}=\mathbf{a}_{\mathbf{2}}+\mathbf{2}=\mathbf{7}$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{\mathbf{3}}=\mathbf{a}_{\mathbf{2}}+\mathbf{2}=\mathbf{7 + 2}$

Sequence
5, 10, 15, 20, 25, 30, ...
5, 7,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ $5,10,15,20,25,30, \ldots$ 5, 7,

If $\mathbf{n}=\mathbf{2}$, then $a_{3}=a_{2}+2=7+2=9$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ $5,10,15,20,25,30, \ldots$ 5, 7, 9,

If $\mathbf{n}=\mathbf{2}$, then $a_{3}=a_{2}+2=7+2=9$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9 ,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ 5, 7, 9,

Notice that to get the 'next term' of the sequence, you add 2.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence 5, 10, 15, 20, 25, 30, ... 5, 7, 9,

Notice that to get the 'next term' of the sequence, you add 2. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence $5,10,15,20,25,30, \ldots$ 5, 7, 9, 11,

Notice that to get the 'next term' of the sequence, you add 2. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence $5,10,15,20,25,30, \ldots$ 5, 7, 9, 11, 13,

Notice that to get the 'next term' of the sequence, you add 2. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence 5, 10, 15, 20, 25, 30, ...

5, 7, 9, 11, 13, 15,

Notice that to get the 'next term' of the sequence, you add 2. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad \mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence $5,10,15,20,25,30, \ldots$ $5,7,9,11,13,15, \ldots$

Notice that to get the 'next term' of the sequence, you add 2. The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$

Sequence
$5,10,15,20,25,30, \ldots$
$5,7,9,11,13,15, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathbf{a}_{\mathrm{n}}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=\mathbf{2} a_{n}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=\mathbf{2} a_{n}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=\mathbf{2} a_{n}$

If $\mathbf{n}=\mathbf{1}$,

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{2}$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{\mathbf{2}}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\quad a_{1}=2 ; a_{n+1}=2 a_{n}$

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{\mathbf{2}}=$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{2}=\mathbf{2} \mathbf{a}_{1}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{2}=\mathbf{2} \mathbf{a}_{1}=$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ 5, 7, 9, 11, 13, 15, ...
c. $\mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathbf{a}_{\mathrm{n}}$

If $\mathbf{n}=\mathbf{1}$, then $\mathrm{a}_{2}=2 \mathrm{a}_{1}=\mathbf{2 (2)}$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

If $\mathrm{n}=1$, then $\mathrm{a}_{2}=2 \mathrm{a}_{1}=2(2)=$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ 5, 7, 9, 11, 13, 15, ...
c. $\mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathbf{a}_{\mathrm{n}} \quad 2$,

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{2}=\mathbf{2} a_{1}=\mathbf{2 (2)}=4$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ 5, 7, 9, 11, 13, 15, ...
c. $a_{1}=2 ; a_{n+1}=2 a_{n} \quad 2,4$,

If $\mathbf{n}=\mathbf{1}$, then $\mathbf{a}_{2}=\mathbf{2} a_{1}=\mathbf{2 (2)}=4$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=\mathbf{2} a_{n}$
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

If $\mathbf{n}=\mathbf{2}$,

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+\mathbf{2}$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

If $\mathbf{n}=\mathbf{2}$, then \mathbf{a}_{3}

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{3}=$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathrm{a}_{\mathrm{n}}$

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{\mathbf{3}}=\mathbf{2} \mathbf{a}_{\mathbf{2}}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{\mathbf{3}}=\mathbf{2} \mathrm{a}_{\mathbf{2}}=$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ 5, 7, 9, 11, 13, 15, ...
c. $\mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathbf{a}_{\mathrm{n}}$

If $\mathbf{n}=2$, then $a_{3}=2 a_{2}=2(4)$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\mathrm{a}_{1}=2 ; \mathrm{a}_{\mathrm{n}+1}=\mathbf{2} \mathrm{a}_{\mathrm{n}} \quad 2,4$,

If $n=2$, then $a_{3}=2 a_{2}=2(4)=$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ 5, 7, 9, 11, 13, 15, ...
c. $a_{1}=2 ; a_{n+1}=2 a_{n} \quad 2,4$,

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{3}=\mathbf{2} a_{2}=\mathbf{2 (4)}=8$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
Sequence
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$ $5,10,15,20,25,30, \ldots$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$ $5,7,9,11,13,15, \ldots$
c. $a_{1}=2 ; a_{n+1}=2 a_{n} \quad 2,4,8$,

If $\mathbf{n}=\mathbf{2}$, then $\mathbf{a}_{3}=\mathbf{2} a_{2}=\mathbf{2 (4)}=8$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4, 8,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4, 8,

Notice that to get the 'next term' of the sequence,

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\quad a_{1}=2 ; a_{n+1}=2 a_{n}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4, 8,

Notice that to get the 'next term' of the sequence, you multiply by 2 .

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=\mathbf{2} a_{n}$

Sequence $5,10,15,20,25,30, \ldots$ 5, 7, 9, 11, 13, 15, ... 2, 4, 8,

Notice that to get the 'next term' of the sequence, you multiply by 2 . The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathbf{a}_{\mathrm{n}}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4, 8, 16,

Notice that to get the 'next term' of the sequence, you multiply by 2 . The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathbf{a}_{\mathrm{n}}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
2, 4, 8, 16, 32,

Notice that to get the 'next term' of the sequence, you multiply by 2 . The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=2 a_{n}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
$2,4,8,16,32,64$,

Notice that to get the 'next term' of the sequence, you multiply by 2 . The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence.
That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad \mathbf{a}_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathrm{a}_{\mathrm{n}}$

Sequence $5,10,15,20,25,30, \ldots$ 5, 7, 9, 11, 13, 15, ... $2,4,8,16,32,64, \ldots$

Notice that to get the 'next term' of the sequence, you multiply by 2 . The pattern continues.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\mathbf{a}_{1}=5 ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{a}_{\mathrm{n}}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathrm{a}_{\mathrm{n}}$

Sequence
$5,10,15,20,25,30, \ldots$
5, 7, 9, 11, 13, 15, ...
$2,4,8,16,32,64, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\mathbf{a}_{1}=2 ; a_{n+1}=\mathbf{2} a_{n}$

Notice that in each of these examples, you are given a_{1}, the first term.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:
Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\quad \mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathrm{a}_{\mathrm{n}}$

Notice that in each of these examples, you are given a_{1}, the first term.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $a_{1}=2 ; a_{n+1}=\mathbf{2} a_{n}$

Sequence $5,10,15,20,25,30, \ldots$

5, 7, 9, 11, 13, 15, ...
$2,4,8,16,32,64, \ldots$

Notice that in each of these examples, you are given a_{1}, the first term. You are also given a formula which tells how to find the 'next term'.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\quad \mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathbf{a}_{\mathrm{n}}$

Sequence $5,10,15,20,25,30, \ldots$ 5, 7, 9, 11, 13, 15, ... $2,4,8,16,32,64, \ldots$

Notice that in each of these examples, you are given a_{1}, the first term. You are also given a formula which tells how to find the 'next term'.

Algebra 2 Class Worksheet \#1 Unit 9

There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of a_{1} and also gives a_{n+1} as a function of $a_{n} \cdot a_{n+1}$ is the term that follows a_{n} in the sequence. That is why a_{n+1} is referred to as the 'next term'.
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5 ; a_{n+1}=a_{n}+5$
b. $\quad a_{1}=5 ; a_{n+1}=a_{n}+2$
c. $\quad \mathbf{a}_{1}=\mathbf{2} ; \mathbf{a}_{\mathrm{n}+1}=\mathbf{2} \mathbf{a}_{\mathrm{n}}$

Sequence $5,10,15,20,25,30, \ldots$ 5, 7, 9, 11, 13, 15, ... $2,4,8,16,32,64, \ldots$

Notice that in each of these examples, you are given a_{1}, the first term. You are also given a formula which tells how to find the 'next term'. This allows you to extend the sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$

$$
\mathbf{a}_{1}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$

$$
a_{1}=2(1)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$

1,

$$
a_{1}=2(1)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$

1,

$$
\mathbf{a}_{2}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$

1,

$$
a_{2}=2(2)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$

1,3,

$$
a_{2}=2(2)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1,3,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$

1,3,

$$
\mathbf{a}_{3}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$

1,3,

$$
a_{3}=2(3)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5$,

$$
a_{3}=2(3)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5$,

$$
\mathbf{a}_{4}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5$,

$$
a_{4}=2(4)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$
$1,3,5,7$,

$$
a_{4}=2(4)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7$,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7$,

$$
\mathbf{a}_{5}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$
$1,3,5,7$,

$$
a_{5}=2(5)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1,3,5, 7, 9

$$
a_{5}=2(5)-1
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $a_{n}=n^{2}$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

$$
\mathbf{a}_{1}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

$$
a_{1}=1^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1,

$$
a_{1}=1^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1,

$$
\mathbf{a}_{2}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1,

$$
a_{2}=2^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1,4,

$$
a_{2}=2^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1,4,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1,4,

$$
\mathbf{a}_{3}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1,4,

$$
\mathbf{a}_{3}=3^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1,3,5,7, 9
2. $a_{n}=n^{2}$
$1,4,9$,

$$
\mathbf{a}_{3}=3^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $a_{n}=n^{2}$
$1,4,9$,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1,3,5,7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
$1,4,9$,

$$
\mathbf{a}_{4}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
$1,4,9$,

$$
a_{4}=4^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16,

$$
a_{4}=4^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1,3,5,7, 9
2. $a_{n}=n^{2}$

1, 4, 9, 16,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16,

$$
\mathbf{a}_{5}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $a_{n}=n^{2}$

1, 4, 9, 16,

$$
a_{5}=5^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25

$$
a_{5}=5^{2}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

$$
a_{1}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
$1,4,9,16,25$
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

$$
a_{1}=2(3)^{0}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

$1,3,5,7,9$

2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
$1,4,9,16,25$
3. $a_{n}=2(3)^{n-1}$

$$
a_{1}=2(3)^{0}=2(1)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2,

$$
a_{1}=2(3)^{0}=2(1)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

2,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
$1,4,9,16,25$
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

2,

$$
\mathbf{a}_{2}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

2,

$$
a_{2}=2(3)^{1}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

$1,3,5,7,9$

2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2,

$$
a_{2}=2(3)^{1}=2(3)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1,3,5,7,9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
$\mathbf{1 , 4 , 9 , 1 6 , 2 5}$
3. $a_{n}=2(3)^{n-1}$

2, 6,

$$
a_{2}=2(3)^{1}=2(3)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

2, 6,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6,

$$
\mathbf{a}_{3}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6,

$$
a_{3}=2(3)^{2}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

$1,3,5,7,9$

2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
$\mathbf{1 , 4 , 9 , 1 6 , 2 5}$
3. $a_{n}=2(3)^{n-1}$

2,6,

$$
a_{3}=2(3)^{2}=2(9)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1,3,5,7,9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18,

$$
a_{3}=2(3)^{2}=2(9)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

2, 6, 18,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
$1,4,9,16,25$
3. $a_{n}=2(3)^{n-1}$

2, 6, 18,

$$
\mathbf{a}_{4}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18,

$$
a_{4}=2(3)^{3}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18,

$$
a_{4}=2(3)^{3}=2(27)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54,

$$
a_{4}=2(3)^{3}=2(27)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
$1,4,9,16,25$
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

2, 6, 18, 54,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54,

$$
a_{5}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54,

$$
a_{5}=2(3)^{4}=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54,

$$
a_{5}=2(3)^{4}=2(81)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $a_{n}=n^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162

$$
a_{5}=2(3)^{4}=2(81)=
$$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

2, 6, 18, 54, 162

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

$1,3,5,7,9$

2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

$1,3,5,7,9$

2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
3,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
3,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
3,

Add 2.5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
$1,3,5,7,9$
1, 4, 9, 16, 25
2, 6, 18, 54, 162
3, 5.5,

Add 2.5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
3, 5.5,

Add 2.5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

Add 2.5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $a_{n}=n^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
$3,5.5,8$,

Add 2.5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

Add 2.5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
$3,5.5,8,10.5$,

Add 2.5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

Add 2.5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

$1,3,5,7,9$

2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
$3,5.5,8,10.5,13$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$

2, 6, 18, 54, 162
$3,5.5,8,10.5,13$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

3,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$
$3,5.5,8,10.5,13$
3,

Multiply by .5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
$3,5.5,8,10.5,13$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

Multiply by .5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$
$3,5.5,8,10.5,13$
3, 1.5,

Multiply by .5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

Multiply by .5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$
$3,5.5,8,10.5,13$
$3,1.5,0.75$,

Multiply by .5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

Multiply by .5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375$,

Multiply by .5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$

2, 6, 18, 54, 162
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

Multiply by .5 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $a_{n}=n^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$

10,

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

$1,3,5,7,9$

2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$

10,

Subtract 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$

Subtract 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$

10, 8,

Subtract 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$

Subtract 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$
$10,8,6$,

Subtract 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$

$1,3,5,7,9$
$1,4,9,16,25$
$2,6,18,54,162$
$3,5.5,8,10.5,13$
$3,1.5,0.75,0.375,0.1875$
$10,8,6,4$,
4

Subtract 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$
$10,8,6,4$,

Subtract 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$
$1,3,5,7,9$
2. $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}$

1, 4, 9, 16, 25
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$
$\frac{3,1.5,0.75,0.375,0.1875}{\frac{10,8,6,4,2}{4}}$

Subtract 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Use the given formula to write the first 5 terms of each sequence.

1. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$

1, 3, 5, 7, 9
2. $a_{n}=n^{2}$

1, 4, 9, 16, 25
3. $\mathrm{a}_{\mathrm{n}}=2(3)^{\mathrm{n}-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$
5. $a_{1}=3 ; a_{n+1}=.5 a_{n}$

2, 6, 18, 54, 162
3, 5.5, 8, 10.5, 13
$3,1.5,0.75,0.375,0.1875$
6. $a_{1}=10 ; a_{n+1}=a_{n}-2$
$10,8,6,4,2$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

Each term is a multiple of 3.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
(3)(1),

Each term is a multiple of 3.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
(3)(1),

Each term is a multiple of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$ (3)(1), (3)(2),

Each term is a multiple of 3.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
(3)(1), (3)(2),

Each term is a multiple of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
(3)(1), (3)(2), (3)(3),

Each term is a multiple of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
(3)(1), (3)(2), (3)(3),

Each term is a multiple of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$(3)(1),(3)(2),(3)(3),(3)(4)$,
Each term is a multiple of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
(3)(1), (3)(2), (3)(3), (3)(4),

Each term is a multiple of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
(3)(1), (3)(2), (3)(3), (3)(4), \ldots

Each term is a multiple of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

(3)(1), (3)(2), (3)(3), (3)(4), \ldots

Each term is a multiple of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$a_{n}=3 n$
(3)(1), (3)(2), (3)(3), (3)(4), \ldots

Each term is a multiple of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=3 \mathbf{n}$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$a_{n}=3 n$
8. $\mathbf{0}, \mathbf{3}, 8,15,24,35,48, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
8. $0,3,8,15,24,35,48, \ldots$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$

Each term is $\mathbf{1}$ less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
1^{2}-1
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{1}^{2}-1,
$$

Each term is $\mathbf{1}$ less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{1}^{2}-1,
$$

Each term is $\mathbf{1}$ less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{1}^{2}-1,2^{2}-1
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{1}^{2}-1,2^{2}-1
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{1}^{2}-1,2^{2}-1
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
1^{2}-1,2^{2}-1,3^{2}-1
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
1^{2}-1,2^{2}-1,3^{2}-1,
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $\mathbf{0}, \mathbf{3}, 8,15,24,35,48, \ldots$

$$
1^{2}-1,2^{2}-1,3^{2}-1,
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $\mathbf{0}, \mathbf{3}, 8,15,24,35,48, \ldots$

$$
1^{2}-1,2^{2}-1,3^{2}-1,4^{2}-1
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
1^{2}-1,2^{2}-1,3^{2}-1,4^{2}-1, \ldots
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=$

$$
1^{2}-1,2^{2}-1,3^{2}-1,4^{2}-1, \ldots
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$a_{n}=3 n$
$a_{n}=n^{2}-1$

8. $0,3,8,15,24,35,48, \ldots$

$$
1^{2}-1,2^{2}-1,3^{2}-1,4^{2}-1, \ldots
$$

Each term is 1 less than a perfect square.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
$\begin{array}{ll}\text { 7. } 3,6,9,12,15,18,21, \ldots \\ \text { 8. } \mathbf{0}, 3,8,15,24,35,48, \ldots\end{array} \quad a_{n}=3 n$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$a_{n}=3 n$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$a_{n}=3 n$
$a_{n}=n^{2}-1$
8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$a_{n}=3 n$
$a_{n}=n^{2}-1$
8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$a_{n}=3 n$
$a_{n}=n^{2}-1$
8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

3^{1}

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$a_{n}=3 n$
$a_{n}=n^{2}-1$

8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$ 3^{1},

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$a_{n}=3 n$
$a_{n}=n^{2}-1$

8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

$$
3^{1},
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$a_{n}=3 n$
$a_{n}=n^{2}-1$
8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

$$
3^{1}, 3^{2}
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$a_{n}=3 n$
$a_{n}=n^{2}-1$

8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

$$
3^{1}, 3^{2}
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$a_{n}=3 n$
$a_{n}=n^{2}-1$

8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

$$
3^{1}, 3^{2}
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$a_{n}=3 n$
$a_{n}=n^{2}-1$
8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

$$
3^{1}, 3^{2}, 3^{3}
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$a_{n}=3 n$
$a_{n}=n^{2}-1$

8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

$$
3^{1}, 3^{2}, 3^{3},
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$a_{n}=3 n$
$a_{n}=n^{2}-1$

8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

$$
3^{1}, 3^{2}, 3^{3},
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$a_{n}=3 n$
$a_{n}=n^{2}-1$

8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

$$
3^{1}, 3^{2}, 3^{3}, 3^{4}
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$ $a_{n}=3 n$
$a_{n}=n^{2}-1$
8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{3}^{1}, \mathbf{3}^{2}, \mathbf{3}^{3}, 3^{4}, \ldots
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$\mathbf{a}_{n}=3 n$
$\mathbf{a}_{n}=\mathbf{n}^{2}-1$
$\mathbf{a}_{n}=$

$$
\mathbf{3}^{1}, \mathbf{3}^{2}, \mathbf{3}^{3}, 3^{4}, \ldots
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$ $a_{n}=3 n$
$a_{n}=n^{2}-1$
8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$

$$
\mathbf{3}^{1}, \mathbf{3}^{2}, \mathbf{3}^{3}, 3^{4}, \ldots
$$

Each term is a power of 3 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$

$a_{n}=3 n$
$a_{n}=n^{2}-1$

8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
11. $3,6,12,24,48,96,192, \ldots$
12. $\mathbf{0}, 1,3,7,15,31,63,127, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=3 \mathbf{n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$

The first term is 4.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
$a_{1}=4$

The first term is 4.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
$\mathrm{a}_{1}=4 ;$
The first term is 4 . Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$

$$
\mathbf{a}_{1}=4 ;
$$

The first term is 4 . Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$

$$
\mathbf{a}_{1}=4 ;
$$

The first term is 4 . Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$

$$
\mathbf{a}_{1}=4 ;
$$

The first term is 4 . Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
$\mathrm{a}_{1}=4 ;$
The first term is 4 . Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$

$$
\mathbf{a}_{1}=4 ;
$$

The first term is 4.
Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
$\mathrm{a}_{1}=4 ;$
The first term is 4 . Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
$\mathrm{a}_{1}=4 ;$
The first term is 4 . Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$

$$
\mathbf{a}_{1}=4 ; \mathbf{a}_{\mathrm{n}+1}=
$$

The first term is 4 . Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$

The first term is 4 . Then, add 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$a_{n}=3 n$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
$a_{1}=4 ; a_{n+1}=a_{n}+2$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$

The first term is 3.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3$

The first term is 3.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3$;

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
$\mathrm{a}_{1}=4 ; \mathrm{a}_{\mathrm{n}+1}=\mathrm{a}_{\mathrm{n}}+2$
11. $3,6,12,24,48,96,192, \ldots$ $\mathrm{a}_{1}=3$;

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3$;

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
$\mathrm{a}_{1}=4 ; \mathrm{a}_{\mathrm{n}+1}=\mathrm{a}_{\mathrm{n}}+2$
11. $3,6,12,24,48,96,192, \ldots$

$$
\mathbf{a}_{1}=3 ;
$$

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots$
$\mathrm{a}_{1}=4 ; \mathrm{a}_{\mathrm{n}+1}=\mathrm{a}_{\mathrm{n}}+2$
11. $3,6,12,24,48,96,192, \ldots$

$$
\mathbf{a}_{1}=3 ;
$$

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$

$$
\mathbf{a}_{1}=3 ;
$$

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3$;

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$a_{n}=n^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3$;

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3 ; a_{n+1}=$

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3 ; a_{n+1}=2 a_{n}$

The first term is 3 . Then, multiply by 2 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$
$a_{n}=3^{n}$
Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=2 a_{n}$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-1
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3 ; a_{n+1}=2 a_{n}$
12. $\mathbf{0}, 1,3,7,15,31,63,127, \ldots$

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-1
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=2 a_{n}$
12. $\mathbf{0}, 1,3,7,15,31,63,127, \ldots$

The first term is 0 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-1
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3 ; a_{n+1}=2 a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0$

The first term is 0 .

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-\mathbf{1}
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=\mathbf{2} a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0$;

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-\mathbf{1}
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=\mathbf{2} a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots$
$\mathrm{a}_{1}=0$;

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-\mathbf{1}
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=\mathbf{2} a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0$;

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-\mathbf{1}
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=\mathbf{2} a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0$;

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-1
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=2 a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0$;

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-\mathbf{1}
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=\mathbf{2} a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0$;

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-1
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=\mathbf{2} a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0$;

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-\mathbf{1}
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=\mathbf{2} a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0$;

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-\mathbf{1}
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=\mathbf{2} a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0$;

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-1
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$
$a_{1}=3 ; a_{n+1}=\mathbf{2} a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0 ; a_{n+1}=$

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-\mathbf{1}
$$

9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots$ $\mathrm{a}_{1}=3 ; \mathrm{a}_{\mathrm{n}+1}=2 \mathrm{a}_{\mathrm{n}}$
12. $0,1,3,7,15,31,63,127, \ldots \quad a_{1}=0 ; a_{n+1}=2 a_{n}+1$

The first term is 0 . Then, multiply by 2 and add 1 recursively.

Algebra 2 Class Worksheet \#1 Unit 9

Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$
$\mathbf{a}_{\mathrm{n}}=\mathrm{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3 ; a_{n+1}=2 a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \ldots a_{1}=0 ; a_{n+1}=2 a_{n}+1$

Algebra 2 Class Worksheet \#1 Unit 9
Write an explicit formula for each of the following sequences.
7. $3,6,9,12,15,18,21, \ldots$
$\mathbf{a}_{\mathbf{n}}=\mathbf{3 n}$
8. $0,3,8,15,24,35,48, \ldots$ $\mathbf{a}_{\mathrm{n}}=\mathbf{n}^{2}-1$
9. $3,9,27,81,243,729, \ldots$

$$
\mathbf{a}_{\mathrm{n}}=3^{\mathrm{n}}
$$

Write a recursive formula for each of the following sequences.
10. $4,6,8,10,12,14,16, \ldots \quad a_{1}=4 ; a_{n+1}=a_{n}+2$
11. $3,6,12,24,48,96,192, \ldots \quad a_{1}=3 ; a_{n+1}=2 a_{n}$
12. $0,1,3,7,15,31,63,127, \ldots \ldots a_{1}=0 ; a_{n+1}=2 a_{n}+1$

