Algebra II Lesson #1 Unit 9 Class Worksheet #1 For Worksheets #1-#4

### Sequence

#### Sequence

**Examples of sequences:** 

#### Sequence

**Examples of sequences:** 



#### Sequence

**Examples of sequences:** 

5, 10,

#### Sequence

**Examples of sequences:** 

5, 10, 15,

Sequence

**Examples of sequences:** 

5, 10, 15, 20,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35,

#### Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40,

#### Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

#### Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5,

#### Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7,

#### Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9,

#### Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15, 17,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15, 17, 19,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15, 17, 19, 21,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15, 17, 19, 21, 23,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

**5**, **7**, **9**, **11**, **13**, **15**, **17**, **19**, **21**, **23**, **25**, ...

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ... 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ... 2,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ... 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ... 2, 4,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...
5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
2, 4, 8,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...
5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
2, 4, 8, 16,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...
5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
2, 4, 8, 16, 32,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...
5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
2, 4, 8, 16, 32, 64,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...
5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
2, 4, 8, 16, 32, 64, 128,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...
5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
2, 4, 8, 16, 32, 64, 128, 256,

Sequence

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...
5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
2, 4, 8, 16, 32, 64, 128, 256, 512, ...

**Sequence (informal definition) :** 

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

2, 4, 8, 16, 32, 64, 128, 256, 512, ...

Sequence (informal definition) : A list of numbers in a specific order.

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

2, 4, 8, 16, 32, 64, 128, 256, 512, ...

Sequence (informal definition) : A list of numbers in a specific order.

**Examples of sequences:** 

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

2, 4, 8, 16, 32, 64, 128, 256, 512, ...

Each number is called a <u>term</u> of the sequence.
Sequence (informal definition) : A list of numbers in a specific order.Examples of sequences:Notation

5, 10, 15, 20, 25, 30, 35, 40, 45, ...

5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

2, 4, 8, 16, 32, 64, 128, 256, 512, ...

 Algebra 2
 Class Worksheet #1
 Unit 9

 Sequence (informal definition) : A list of numbers in a specific order.

 Examples of sequences:
 Notation

 5, 10, 15, 20, 25, 30, 35, 40, 45, ...

 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

 Algebra 2
 Class Worksheet #1
 Unit 9

 Sequence (informal definition) : A list of numbers in a specific order.

 Examples of sequences:
 Notation

 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
 First Term: a<sub>1</sub>

 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

 Algebra 2
 Class Worksheet #1
 Unit 9

 Sequence (informal definition) : A list of numbers in a specific order.

 Examples of sequences:
 Notation

 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
 First Term: a<sub>1</sub>

 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

Each number is called a <u>term</u> of the sequence.

 $a_1$  is read 'a sub 1'. The 1 is the subscript.

 Algebra 2
 Class Worksheet #1
 Unit 9

 Sequence (informal definition) : A list of numbers in a specific order.

 Examples of sequences:
 Notation

 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
 First Term: a<sub>1</sub>

 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

 Algebra 2
 Class Worksheet #1
 Unit 9

 Sequence (informal definition) : A list of numbers in a specific order.

 Examples of sequences:
 Notation

 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
 First Term:  $a_1$  

 Second Term:
 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

 Algebra 2
 Class Worksheet #1
 Unit 9

 Sequence (informal definition) : A list of numbers in a specific order.

 Examples of sequences:
 Notation

 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
 First Term:  $a_1$  

 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
 Second Term:  $a_2$  

 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

Algebra 2Class Worksheet #1Unit 9Sequence (informal definition) : A list of numbers in a specific order.Examples of sequences:Notation5, 10, 15, 20, 25, 30, 35, 40, 45, ...First Term:  $a_1$ Second Term:  $a_2$ 

**Third Term:** 

**5**, **7**, **9**, **11**, **13**, **15**, **17**, **19**, **21**, **23**, **25**, ...

2, 4, 8, 16, 32, 64, 128, 256, 512, ...

Algebra 2Class Worksheet #1Unit 9Sequence (informal definition) : A list of numbers in a specific order.Examples of sequences:Notation5, 10, 15, 20, 25, 30, 35, 40, 45, ...First Term:  $a_1$ 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...Second Term:  $a_2$ Third Term:  $a_3$ 

Each number is called a <u>term</u> of the sequence.

2, 4, 8, 16, 32, 64, 128, 256, 512, ...

# Algebra 2Class Worksheet #1Unit 9Sequence (informal definition) : A list of numbers in a specific order.Examples of sequences:Notation5, 10, 15, 20, 25, 30, 35, 40, 45, ...First Term: $a_1$ 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

- **Third Term:** a<sub>3</sub>
  - The n<sup>th</sup> Term:

Each number is called a <u>term</u> of the sequence.

2, 4, 8, 16, 32, 64, 128, 256, 512, ...

# Algebra 2Class Worksheet #1Unit 9Sequence (informal definition) : A list of numbers in a specific order.Examples of sequences:Notation5, 10, 15, 20, 25, 30, 35, 40, 45, ...First Term: $a_1$ 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...

- **Third Term:** a<sub>3</sub>
- The n<sup>th</sup> Term: a<sub>n</sub>

Each number is called a <u>term</u> of the sequence.

2, 4, 8, 16, 32, 64, 128, 256, 512, ...

There are two common ways used to define sequences.

There are two common ways used to define sequences. 1. Using an explicit formula

#### There are two common ways used to define sequences.

- 1. Using an explicit formula
- 2. Using a recursive formula

#### There are two common ways used to define sequences.

- 1. Using an explicit formula
- 2. Using a recursive formula

#### There are two common ways used to define sequences.

1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

# There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

# There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

a.  $a_n = 5n$ 

## There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

#### **Definition**

a.  $a_n = 5n$ 

## There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

 $a_1 =$ 

**Examples of explicit formulas:** 

#### **Definition**

a.  $a_n = 5n$ 

# There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

#### **Definition**

a.  $a_n = 5n$ 

a<sub>1</sub> = (the first term)

# There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

#### **Definition**

a.  $a_n = 5n$ 

 $a_1 = 5(1)$ (the first term)

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**Definition Sequence** 

a.  $a_n = 5n$ 

 $a_1 = 5(1)$ (the first term)

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition       | Sequence |
|----|------------------|----------|
| a. | $a_n = 5n$       | 5,       |
|    | $a_1 = 5(1)$     |          |
|    | (the first term) |          |

# There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**Definition Sequence** 

a.  $a_n = 5n$ 

5,

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**a.** 

DefinitionSequence $a_n = 5n$ 5,

 $a_{2} =$ 

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 



There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**a**.

# DefinitionSequence $a_n = 5n$ 5,

 $a_2 = 5(2)$ (the second term)

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

| Definition | Sequence                          |
|------------|-----------------------------------|
| $a_n = 5n$ | 5, 10,                            |
|            | Definition<br>a <sub>n</sub> = 5n |

 $a_2 = 5(2)$ (the second term)

# There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

### Definition Sequence

a.  $a_n = 5n$  5, 10,

# There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**a.** 

# DefinitionSequence $a_n = 5n$ 5, 10,

 $a_3 =$ 

# There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

# DefinitionSequencea. $a_n = 5n$ 5, 10,

 $a_3 = 5(3)$ 

# There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

# DefinitionSequencea. $a_n = 5n$ 5, 10, 15,

 $a_3 = 5(3)$ 

# There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**a**.

# DefinitionSequence $a_n = 5n$ 5, 10, 15,

# There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

#### An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**a.** 

# DefinitionSequence $a_n = 5n$ 5, 10, 15,

 $a_4 =$
### There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

## DefinitionSequencea. $a_n = 5n$ 5, 10, 15,

 $a_4 = 5(4)$ 

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition | Sequence       |
|----|------------|----------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, |

 $a_4 = 5(4)$ 

### There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**a**.

| Definition | Sequence       |
|------------|----------------|
| $a_n = 5n$ | 5, 10, 15, 20, |

### There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

### An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

## Definition Sequence a. $a_n = 5n$ 5, 10, 15, 20,

 $\mathbf{a}_5 =$ 

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition | Sequence       |
|----|------------|----------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, |

 $a_5 = 5(5)$ 

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition | Sequence           |
|----|------------|--------------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, 25, |

 $a_5 = 5(5)$ 

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**a**.

 Definition
 Sequence

  $a_n = 5n$  5, 10, 15, 20, 25,

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

# Definition Sequence a. $a_n = 5n$ 5, 10, 15, 20, 25,

 $a_{6} =$ 

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

# Definition Sequence a. $a_n = 5n$ 5, 10, 15, 20, 25,

 $a_6 = 5(6)$ 

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

# Definition Sequence a. $a_n = 5n$ 5, 10, 15, 20, 25, 30,

 $a_6 = 5(6)$ 

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**Definition** 

Sequence

a.  $a_n = 5n$  5, 10, 15, 20, 25, 30, ...

### There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

### **Definition**

#### Sequence

a.  $a_n = 5n$  5, 10, 15, 20, 25, 30, ...

**b.** 
$$a_n = 2n + 3$$

### There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

### Definition

#### Sequence

a.  $a_n = 5n$  5, 10, 15, 20, 25, 30, ...

**b.** 
$$a_n = 2n + 3$$

$$a_1 =$$

### There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

## DefinitionSequence $a_n = 5n$ 5, 10, 15, 20, 25, 30, ...

**b.** 
$$a_n = 2n + 3$$

**a**.

$$a_1 = 2(1) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5,                     |

$$a_1 = 2(1) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5,                     |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5,                     |

 $a_{2} =$ 

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5,                     |

$$a_2 = 2(2) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{-} = 2n + 3$ | 5, 7,                  |

$$a_2 = 2(2) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7,                  |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7,                  |

$$a_3 =$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition | Sequence               |
|----|------------|------------------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, 25, 30, |
| b. | a = 2n + 3 | 5.7.                   |

 $a_3 = 2(3) + 3$ 

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition | Sequence               |
|----|------------|------------------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, 25, 30, |
| b. | a = 2n + 3 | 5, 7, 9,               |

$$a_3 = 2(3) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence                 |
|----|------------------|--------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, . |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9,                 |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence                 |
|----|----------------|--------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, . |
| b. | $a_n = 2n + 3$ | 5, 7, 9,                 |

$$a_4 =$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition | Sequence               |
|----|------------|------------------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, 25, 30, |
| b. | a = 2n + 3 | 5, 7, 9,               |

$$a_4 = 2(4) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition | Sequence               |
|----|------------|------------------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, 25, 30, |
| b. | a = 2n + 3 | 5, 7, 9, 11,           |

$$a_4 = 2(4) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence                 |
|----|----------------|--------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, . |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11,             |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence                 |
|----|----------------|--------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, . |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11,             |

$$a_{5} =$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition | Sequence               |
|----|------------|------------------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, 25, 30, |
| b. | a = 2n + 3 | 5, 7, 9, 11,           |

$$a_5 = 2(5) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

**~**n

|    | Definition | Sequence               |
|----|------------|------------------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, 25, 30, |
| h  | a = 2n + 3 | 5 7 9 11 13            |

$$a_5 = 2(5) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence                 |
|----|------------------|--------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, . |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13,         |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence                 |
|----|----------------|--------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, . |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13,         |

$$a_{6} =$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13,       |

$$a_6 = 2(6) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

n

|    | Definition | Sequence               |
|----|------------|------------------------|
| a. | $a_n = 5n$ | 5, 10, 15, 20, 25, 30, |
| h. | a = 2n + 3 | 5, 7, 9, 11, 13, 15,   |

$$a_6 = 2(6) + 3$$

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

п

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_{1} = 2^{n}$  |                        |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    |                        |
|    |                |                        |

 $a_1 =$ 

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    |                        |
|    | $a_1 =$        | <b>2</b> <sup>1</sup>  |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence                |
|----|------------------|-------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30,  |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,    |
| c. | $a_n = 2^n$      | 2,                      |
|    | a <sub>1</sub> = | - <b>2</b> <sup>1</sup> |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2,                     |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition              | Sequence               |
|----|-------------------------|------------------------|
| a. | $a_n = 5n$              | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$          | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$             | 2,                     |
|    | <b>a</b> <sub>2</sub> = | =                      |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition               | Sequence                 |
|----|--------------------------|--------------------------|
| a. | $a_n = 5n$               | 5, 10, 15, 20, 25, 30, . |
| b. | $a_n = 2n + 3$           | 5, 7, 9, 11, 13, 15,     |
| c. | $\mathbf{a}_{n} = 2^{n}$ | 2,                       |
|    | a <sub>2</sub> =         | = <b>2</b> <sup>2</sup>  |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition              | Sequence                 |
|----|-------------------------|--------------------------|
| a. | $a_n = 5n$              | 5, 10, 15, 20, 25, 30, . |
| b. | $a_{n} = 2n + 3$        | 5, 7, 9, 11, 13, 15,     |
| c. | $a_n = 2^n$             | 2, 4,                    |
|    | <b>a</b> <sub>2</sub> = | = <b>2</b> <sup>2</sup>  |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4,                  |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition              | Sequence                 |
|----|-------------------------|--------------------------|
| a. | $a_n = 5n$              | 5, 10, 15, 20, 25, 30, . |
| b. | $a_n = 2n + 3$          | 5, 7, 9, 11, 13, 15,     |
| c. | $a_n = 2^n$             | 2, 4,                    |
|    | <b>a</b> <sub>3</sub> = | =                        |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition              | Sequence                 |
|----|-------------------------|--------------------------|
| a. | $a_n = 5n$              | 5, 10, 15, 20, 25, 30, . |
| b. | $a_n = 2n + 3$          | 5, 7, 9, 11, 13, 15,     |
| c. | $a_n = 2^n$             | 2, 4,                    |
|    | <b>a</b> <sub>3</sub> = | = <b>2</b> <sup>3</sup>  |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence                 |
|----|------------------|--------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, . |
| b. | $a_n = 2n + 3$   | 5, 7, 9, 11, 13, 15,     |
| c. | $a_n = 2^n$      | 2, 4, 8,                 |
|    | a <sub>2</sub> = | = <b>2</b> <sup>3</sup>  |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4, 8,               |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    | 2, 4, 8,               |
|    | a. =           |                        |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition                  | Sequence               |
|----|-----------------------------|------------------------|
| a. | $a_n = 5n$                  | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$              | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$                 | 2, 4, 8,               |
|    | $\mathbf{a}_{\mathbf{A}} =$ | = 24                   |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    | 2, 4, 8, 16,           |
|    | a =            | = 24                   |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4, 8, 16,           |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$   | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4, 8, 16,           |
|    | a <sub>5</sub> = | -                      |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    | 2, 4, 8, 16,           |
|    | a =            | = <b>7</b> 5           |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence                |
|----|----------------|-------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30,  |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,    |
| c. | $a_n = 2^n$    | 2, 4, 8, 16, 32,        |
|    | a. =           | = <b>2</b> <sup>5</sup> |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4, 8, 16, 32,       |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition     | Sequence                 |
|----|----------------|--------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, . |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,     |
| c. | $a_n = 2^n$    | 2, 4, 8, 16, 32,         |
|    | a =            |                          |

~6

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    | 2, 4, 8, 16, 32,       |
|    | a.=            | : 26                   |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition         | Sequence                |
|----|--------------------|-------------------------|
| a. | $a_n = 5n$         | 5, 10, 15, 20, 25, 30,  |
| b. | $a_n = 2n + 3$     | 5, 7, 9, 11, 13, 15,    |
| c. | $a_n = 2^n$        | 2, 4, 8, 16, 32, 64,    |
|    | $\mathbf{a}_{c} =$ | : <b>2</b> <sup>6</sup> |

There are two common ways used to define sequences.1. Using an explicit formula

- 2. Using a recursive formula
- An explicit formula gives a<sub>n</sub> as a function of n.

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4, 8, 16, 32, 64,   |

There are two common ways used to define sequences.1. Using an explicit formula2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n. Examples of explicit formulas:

|    | Definition       | Sequence                 |
|----|------------------|--------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, . |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,     |
| c. | $a_n = 2^n$      | 2, 4, 8, 16, 32, 64,     |

There are two common ways used to define sequences.1. Using an explicit formula2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n. Examples of explicit formulas:

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4, 8, 16, 32, 64,   |

Clearly, n can be any positive integer.

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4, 8, 16, 32, 64,   |

**Clearly, n can be any positive integer.** For example, in sequence #1,

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    | 2, 4, 8, 16, 32, 64,   |

Clearly, n can be any positive integer. For example, in sequence #1, if n = 100,

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    | 2, 4, 8, 16, 32, 64,   |

Clearly, n can be any positive integer. For example, in sequence #1, if n = 100, then  $a_{100}$ ,

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    | 2, 4, 8, 16, 32, 64,   |

Clearly, n can be any positive integer. For example, in sequence #1, if n = 100, then  $a_{100}$ , the  $100^{th}$  term,

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    | 2, 4, 8, 16, 32, 64,   |

Clearly, n can be any positive integer. For example, in sequence #1, if n = 100, then  $a_{100}$ , the 100<sup>th</sup> term, is 5(100)

There are two common ways used to define sequences.1. Using an explicit formula

2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n.

**Examples of explicit formulas:** 

|    | Definition     | Sequence               |
|----|----------------|------------------------|
| a. | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$    | 2, 4, 8, 16, 32, 64,   |

Clearly, n can be any positive integer. For example, in sequence #1, if n = 100, then  $a_{100}$ , the 100<sup>th</sup> term, is 5(100) = 500.

There are two common ways used to define sequences.1. Using an explicit formula2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n. Examples of explicit formulas:

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4, 8, 16, 32, 64,   |

Clearly, n can be any positive integer.

|                                                                                                                     | Algebra 2 Clas | s Worksheet #1 Unit 9  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------|------------------------|--|
| There are two common ways used to define sequences.<br>1. Using an explicit formula<br>2. Using a recursive formula |                |                        |  |
| An explicit formula gives a <sub>n</sub> as a function of n.                                                        |                |                        |  |
| Examples of explicit formulas:                                                                                      |                |                        |  |
|                                                                                                                     | Definition     | Sequence               |  |
| a.                                                                                                                  | $a_n = 5n$     | 5, 10, 15, 20, 25, 30, |  |
| b.                                                                                                                  | $a_n = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |  |
| c.                                                                                                                  | $a_n = 2^n$    | 2, 4, 8, 16, 32, 64,   |  |

**Clearly, n can be any positive integer.** For example, in sequence #2,

|                                                                                                                     | Algebra 2 Class | s Worksheet #1 Unit 9  |
|---------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|
| There are two common ways used to define sequences.<br>1. Using an explicit formula<br>2. Using a recursive formula |                 |                        |
| An explicit formula gives a <sub>n</sub> as a function of n.                                                        |                 |                        |
| Examples of explicit formulas:                                                                                      |                 |                        |
|                                                                                                                     | Definition      | Sequence               |
| a.                                                                                                                  | $a_n = 5n$      | 5, 10, 15, 20, 25, 30, |
| b.                                                                                                                  | $a_n = 2n + 3$  | 5, 7, 9, 11, 13, 15,   |
| c.                                                                                                                  | $a_n = 2^n$     | 2, 4, 8, 16, 32, 64,   |

Clearly, n can be any positive integer. For example, in sequence #2, if n = 100,
|                                                                                                                     | Algebra 2 Clas                                               | s Worksheet #1 Unit 9  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------|--|--|
| There are two common ways used to define sequences.<br>1. Using an explicit formula<br>2. Using a recursive formula |                                                              |                        |  |  |
| An exp                                                                                                              | An explicit formula gives a <sub>n</sub> as a function of n. |                        |  |  |
| Exam                                                                                                                | Examples of explicit formulas:                               |                        |  |  |
|                                                                                                                     | Definition                                                   | Sequence               |  |  |
| a.                                                                                                                  | $a_n = 5n$                                                   | 5, 10, 15, 20, 25, 30, |  |  |
| b.                                                                                                                  | $a_n = 2n + 3$                                               | 5, 7, 9, 11, 13, 15,   |  |  |
| c.                                                                                                                  | $a_n = 2^n$                                                  | 2, 4, 8, 16, 32, 64,   |  |  |

Clearly, n can be any positive integer. For example, in sequence #2, if n = 100, then  $a_{100} = 2(100) + 3$ 

|                                                                                                                     | Algebra 2 C                    | lass Worksheet #1 Unit 9 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|--|--|--|
| There are two common ways used to define sequences.<br>1. Using an explicit formula<br>2. Using a recursive formula |                                |                          |  |  |  |
| An explicit formula gives a <sub>n</sub> as a function of n.                                                        |                                |                          |  |  |  |
| Exam                                                                                                                | Examples of explicit formulas: |                          |  |  |  |
|                                                                                                                     | Definition                     | Sequence                 |  |  |  |
| a.                                                                                                                  | $a_n = 5n$                     | 5, 10, 15, 20, 25, 30,   |  |  |  |
| b.                                                                                                                  | $a_n = 2n + 3$                 | 5, 7, 9, 11, 13, 15,     |  |  |  |
| c.                                                                                                                  | $a_n = 2^n$                    | 2, 4, 8, 16, 32, 64,     |  |  |  |

Clearly, n can be any positive integer. For example, in sequence #2, if n = 100, then  $a_{100} = 2(100) + 3 = 203$ .

There are two common ways used to define sequences.1. Using an explicit formula2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n. Examples of explicit formulas:

|    | Definition       | Sequence               |
|----|------------------|------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_n = 2^n$      | 2, 4, 8, 16, 32, 64,   |

Clearly, n can be any positive integer.

|                                                                                                                     | Algebra 2 Clas         | s Worksheet #1 Unit 9  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|--|--|--|
| There are two common ways used to define sequences.<br>1. Using an explicit formula<br>2. Using a recursive formula |                        |                        |  |  |  |
| An exp                                                                                                              | olicit formula gives a | as a function of n.    |  |  |  |
| Exam                                                                                                                | ples of explicit formu | las:                   |  |  |  |
|                                                                                                                     | Definition             | Sequence               |  |  |  |
| a.                                                                                                                  | $a_n = 5n$             | 5, 10, 15, 20, 25, 30, |  |  |  |
| b.                                                                                                                  | $a_n = 2n + 3$         | 5, 7, 9, 11, 13, 15,   |  |  |  |
| c.                                                                                                                  | $a_{n} = 2^{n}$        | 2, 4, 8, 16, 32, 64,   |  |  |  |

**Clearly, n can be any positive integer.** For example, in sequence #3,

|                                                                                                                     | Algebra 2 Class                     | s Worksheet #1 Unit 9  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|--|--|--|
| There are two common ways used to define sequences.<br>1. Using an explicit formula<br>2. Using a recursive formula |                                     |                        |  |  |  |
| An exp                                                                                                              | olicit formula gives a <sub>n</sub> | as a function of n.    |  |  |  |
| Examples of explicit formulas:                                                                                      |                                     |                        |  |  |  |
|                                                                                                                     | Definition                          | Sequence               |  |  |  |
| a.                                                                                                                  | $a_n = 5n$                          | 5, 10, 15, 20, 25, 30, |  |  |  |
| b.                                                                                                                  | $a_n = 2n + 3$                      | 5, 7, 9, 11, 13, 15,   |  |  |  |
| c.                                                                                                                  | $a_n = 2^n$                         | 2, 4, 8, 16, 32, 64,   |  |  |  |

Clearly, n can be any positive integer. For example, in sequence #3, if n = 100,

|                                | Algebra 2 Clas                                               | s Worksheet #1 Unit 9        |  |  |  |
|--------------------------------|--------------------------------------------------------------|------------------------------|--|--|--|
| There                          | are two common way                                           | vs used to define sequences. |  |  |  |
|                                | 1. Using an e                                                | xplicit formula              |  |  |  |
|                                | 2. Using a re                                                | cursive formula              |  |  |  |
| An exp                         | An explicit formula gives a <sub>n</sub> as a function of n. |                              |  |  |  |
| Examples of explicit formulas: |                                                              |                              |  |  |  |
|                                | Definition                                                   | Sequence                     |  |  |  |
| a.                             | $a_n = 5n$                                                   | 5, 10, 15, 20, 25, 30,       |  |  |  |
| b.                             | $a_n = 2n + 3$                                               | 5, 7, 9, 11, 13, 15,         |  |  |  |
| c.                             | $a_{n} = 2^{n}$                                              | 2, 4, 8, 16, 32, 64,         |  |  |  |

Clearly, n can be any positive integer. For example, in sequence #3, if n = 100, then  $a_{100} = 2^{100}$ .

|                                | Algebra 2 Class                                              | s Worksheet #1 Unit 9       |  |  |  |
|--------------------------------|--------------------------------------------------------------|-----------------------------|--|--|--|
| There                          | <mark>are two common way</mark>                              | s used to define sequences. |  |  |  |
|                                | 1. Using an explicit formula                                 |                             |  |  |  |
|                                | 2. Using a ree                                               | cursive formula             |  |  |  |
| An exp                         | An explicit formula gives a <sub>n</sub> as a function of n. |                             |  |  |  |
| Examples of explicit formulas: |                                                              |                             |  |  |  |
|                                | Definition                                                   | Sequence                    |  |  |  |
| a.                             | $a_n = 5n$                                                   | 5, 10, 15, 20, 25, 30,      |  |  |  |
| b.                             | $a_n = 2n + 3$                                               | 5, 7, 9, 11, 13, 15,        |  |  |  |
| c.                             | $a_n = 2^n$                                                  | 2, 4, 8, 16, 32, 64,        |  |  |  |

Clearly, n can be any positive integer. For example, in sequence #3, if n = 100, then  $a_{100} = 2^{100}$ . (about 1.27 x  $10^{30}$  !!)

There are two common ways used to define sequences.1. Using an explicit formula2. Using a recursive formula

An explicit formula gives a<sub>n</sub> as a function of n. Examples of explicit formulas:

|    | Definition       | Sequence                 |
|----|------------------|--------------------------|
| a. | $a_n = 5n$       | 5, 10, 15, 20, 25, 30, . |
| b. | $a_{n} = 2n + 3$ | 5, 7, 9, 11, 13, 15,     |
| c. | $a_n = 2^n$      | 2, 4, 8, 16, 32, 64,     |

#### There are two common ways used to define sequences.

- 1. Using an explicit formula
- 2. Using a recursive formula

#### There are two common ways used to define sequences.

- 1. Using an explicit formula
- 2. Using a recursive formula

# There are two common ways used to define sequences.

- 1. Using an explicit formula
- 2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence.

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

# There are two common ways used to define sequences. 1. Using an explicit formula 2. Using a recursive formula

**a.** 
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$ 

# There are two common ways used to define sequences.

- 1. Using an explicit formula
- 2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

# Definition

**a.** 
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$ 

# There are two common ways used to define sequences.

- 1. Using an explicit formula
- 2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

### Definition

**a.** 
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$ 

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

# **Definition** Sequence a. $a_1 = 5$ ; $a_{n+1} = a_n + 5$

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

**Definition**  
a. 
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$   
**Sequence**  
5,

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |           |                     | Sequence |
|------------|-----------|---------------------|----------|
| •          | $a_1 = 5$ | $a_{n+1} = a_n + 5$ | 5,       |

a.

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

DefinitionSequencea.
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$ 5,

If n = 1,

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

Sequence

Definition  
a. 
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$  5,  
If n = 1, then a,

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| <b>Definition</b> |           |                       |    | Sequence |
|-------------------|-----------|-----------------------|----|----------|
| a.                | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, |          |

If n = 1, then  $a_2 =$ 

# There are two common ways used to define sequences.

- 1. Using an explicit formula
- 2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

# Definition a. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ If n = 1, then $a_2 = a_1$

Sequence

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

# DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5,

If 
$$n = 1$$
, then  $a_2 = a_1 + 5$ 

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

# DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5,

If 
$$n = 1$$
, then  $a_2 = a_1 + 5 =$ 

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

# Definition Sequence a. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, If n = 1, then $a_2 = a_1 + 5 = 5 + 5$

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

DefinitionSequencea.
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$ 5,

If 
$$n = 1$$
, then  $a_2 = a_1 + 5 = 5 + 5 = 10$ 

## There are two common ways used to define sequences. **1. Using an explicit formula**

2. Using a recursive formula

| Definition |           |                       | Sequence |
|------------|-----------|-----------------------|----------|
| a.         | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10,   |

If 
$$n = 1$$
, then  $a_2 = a_1 + 5 = 5 + 5 = 10$ 

# There are two common ways used to define sequences. **1. Using an explicit formula**

2. Using a recursive formula

| Definition |           |                       | Sequence |
|------------|-----------|-----------------------|----------|
| a.         | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10,   |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |           |                       | Sequence |
|------------|-----------|-----------------------|----------|
| a.         | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10,   |

If n = 2,

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

Definition Sequence  
a. 
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$  5, 10,  
If n = 2, then  $a_3$ 

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |           |                       | Sequence |
|------------|-----------|-----------------------|----------|
| a.         | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10,   |

If n = 2, then  $a_3 =$ 

#### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

Sequence

, 10,

Definition  
a. 
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$  5  
If  $n = 2$ , then  $a_3 = a_2$ 

## There are two common ways used to define sequences. **1. Using an explicit formula**

2. Using a recursive formula

| Definition |           |                       | Sequence |
|------------|-----------|-----------------------|----------|
| a.         | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10,   |

If 
$$n = 2$$
, then  $a_3 = a_2 + 5$ 

## There are two common ways used to define sequences. **1. Using an explicit formula**

2. Using a recursive formula

| Definition |           |                       | Sequence |
|------------|-----------|-----------------------|----------|
| a.         | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10,   |

If 
$$n = 2$$
, then  $a_3 = a_2 + 5 =$
### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula



### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | D         | e  | inition             | Sequence |
|----|-----------|----|---------------------|----------|
| a. | $a_1 = 5$ | ;  | $a_{n+1} = a_n + 5$ | 5, 10,   |
|    |           |    |                     |          |
| ]  | [f n = 2, | tł | $a_3 = a_2 + 5$     | = 10 + 5 |

### There are two common ways used to define sequences. **1. Using an explicit formula**

2. Using a recursive formula

|    | D         | efinition             | Sequence |
|----|-----------|-----------------------|----------|
| a. | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10,   |

If 
$$n = 2$$
, then  $a_3 = a_2 + 5 = 10 + 5 =$ 

### There are two common ways used to define sequences. **1. Using an explicit formula**

2. Using a recursive formula

|    | D         | efinition             | Sequence |
|----|-----------|-----------------------|----------|
| a. | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10,   |

If 
$$n = 2$$
, then  $a_3 = a_2 + 5 = 10 + 5 = 15$ 

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | D         | efinition             | Sequence   |
|----|-----------|-----------------------|------------|
| a. | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10, 15, |

If 
$$n = 2$$
, then  $a_3 = a_2 + 5 = 10 + 5 = 15$ 

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

| Definition |             |                     | Sequence   |
|------------|-------------|---------------------|------------|
| a.         | $a_1 = 5$ ; | $a_{n+1} = a_n + 5$ | 5, 10, 15, |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |           |                       | Sequence   |
|------------|-----------|-----------------------|------------|
| a.         | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10, 15, |

Notice that to get the 'next term' of the sequence,

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |           |                     | Sequence   |
|------------|-----------|---------------------|------------|
| a.         | $a_1 = 5$ | $a_{n+1} = a_n + 5$ | 5, 10, 15, |

Notice that to get the 'next term' of the sequence, you add 5.

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | <b>Definition</b>               | Sequence   |
|----|---------------------------------|------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition |                       | Sequence       |
|----|------------|-----------------------|----------------|
| a. | $a_1 = 5$  | ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| a. $a_1 = 5$ : $a_{11} = a_1 + 5$ 5, 10, 15, 20, 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $\mathbf{u}_{\mathbf{n}} = \mathbf{u}_{\mathbf{n}},  \mathbf{u}_{\mathbf{n}+1} = \mathbf{u}_{\mathbf{n}} = \mathbf{u}_{\mathbf{n}} = \mathbf{u}_{\mathbf{n}},  \mathbf{u}_{\mathbf{n}} =$ | 5, |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | <b>Definition</b>               | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |             |                     | Sequence               |
|------------|-------------|---------------------|------------------------|
| a.         | $a_1 = 5$ ; | $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

DefinitionSequencea.  $a_1 = 5$ ;  $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

### DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

### DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5,                     |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

### DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$ 5,

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

### DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$ 5,

If n = 1,

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

## DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$ 5,If n = 1, then $a_2$

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

### DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$ 5,

If n = 1, then  $a_2 =$ 

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

### Definition

a. 
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$   
b.  $a_1 = 5$ ;  $a_{n+1} = a_n + 2$ 

If n = 1, then  $a_2 = a_1$ 

Sequence 5, 10, 15, 20, 25, 30, ...

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. **Examples of recursive formulas:** 

### Definition

a. 
$$a_1 = 5$$
;  $a_{n+1} = a_n + 5$   
b.  $a_1 = 5$ ;  $a_{n+1} = a_n + 2$ 

Sequence 5, 10, 15, 20, 25, 30, ...

If n = 1, then  $a_2 = a_1 + 2$ 

**a**<sub>n+1</sub>

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

# DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$ 5,If n = 1, then $a_2 = a_1 + 2 =$

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

# DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$ 5,If n = 1, then $a_2 = a_1 + 2 = 5$

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                          | Sequence               |
|----|-------------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$     | 5,                     |
|    | If $n = 1$ , then $a_2 = a_1 + 2 =$ | 5 + 2                  |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5,                     |
|    | If $n = 1$ then $a = a + 2$     | = 5 + 2 = 7            |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                        | Sequence               |
|----|-----------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$   | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$   | 5, 7,                  |
|    | If $n = 1$ , then $a_2 = a_1 + 2$ | = 5 + 2 = 7            |

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| l. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| ). | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7,                  |

2

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition                                     | Sequence               |
|------------------------------------------------|------------------------|
| $a_1 = 5 ; a_{n+1} = a_n + 5$                  | 5, 10, 15, 20, 25, 30, |
| <b>a</b> <sub>1</sub> = 5; $a_{n+1} = a_n + 2$ | 5, 7,                  |
| If $n = 2$ ,                                   |                        |

a

h

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

## DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$ 5, 7,If n = 2, then $a_3$

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition                      | Sequence               |
|---------------------------------|------------------------|
| $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7,                  |

If n = 2, then  $a_3 =$ 

a.

b.

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

# DefinitionSequencea. $a_1 = 5$ ; $a_{n+1} = a_n + 5$ 5, 10, 15, 20, 25, 30, ...b. $a_1 = 5$ ; $a_{n+1} = a_n + 2$ 5, 7,If n = 2, then $a_3 = a_2$

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition                        | Sequence               |
|-----------------------------------|------------------------|
| $a_1 = 5$ ; $a_{n+1} = a_n + 5$   | 5, 10, 15, 20, 25, 30, |
| $a_1 = 5$ ; $a_{n+1} = a_n + 2$   | 5, 7,                  |
| If $n = 2$ , then $a_3 = a_2 + 2$ |                        |

a.

b.

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition                          | Sequence               |
|-------------------------------------|------------------------|
| $a_1 = 5$ ; $a_{n+1} = a_n + 5$     | 5, 10, 15, 20, 25, 30, |
| $a_1 = 5$ ; $a_{n+1} = a_n + 2$     | 5, 7,                  |
| If $n = 2$ , then $a_3 = a_2 + 2 =$ |                        |

a

b

### There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                          | Sequence               |
|----|-------------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$     | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$     | 5.7,                   |
|    | If $n = 2$ , then $a_3 = a_2 + 2 =$ | = 7                    |
# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                        | Sequence               |
|----|-----------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$   | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$   | 5, 7,                  |
|    | If $n = 2$ , then $a_3 = a_2 + 2$ | = 7 + 2                |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                                                                       | Sequence               |
|----|----------------------------------------------------------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$                                                  | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$                                                  | 5, 7,                  |
|    | $\mathbf{If} \mathbf{n} = 2 + \mathbf{b} \mathbf{n} \mathbf{n} = \mathbf{n} + 2$ | -7.1.20                |

If n = 2, then  $a_3 = a_2 + 2 = 7 + 2 = 9$ 

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9,               |
|    |                                 | <b>—</b> • •           |

If n = 2, then  $a_3 = a_2 + 2 = 7 + 2 = 9$ 

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| l. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| ). | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9,               |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9,               |

Notice that to get the 'next term' of the sequence, you add 2.

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |                                 | Sequence               |
|------------|---------------------------------|------------------------|
| a.         | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b.         | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9,               |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11,           |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13,       |

# There are two common ways used to define sequences. **1. Using an explicit formula**

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |

# There are two common ways used to define sequences. **1. Using an explicit formula**

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

| Definition |                                 | Sequence               |
|------------|---------------------------------|------------------------|
| a.         | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b.         | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

| Definition |                                 | Sequence               |  |
|------------|---------------------------------|------------------------|--|
| a.         | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |  |
| b.         | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |  |
| c.         | $a_1 = 2$ ; $a_{n+1} = 2a_n$    |                        |  |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    |                        |

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2,                     |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2,                     |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2,                     |
|    | If $n = 1$ ,                    |                        |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2,                     |
|    | If $n = 1$ , then $a_2$ ,       |                        |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2,                     |
|    | If $n = 1$ , then $a_2 =$       |                        |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence                 |
|----|---------------------------------|--------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, . |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,     |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2,                       |
|    | If $n = 1$ , then $a_2 = 2a_1$  |                          |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                       | Sequence               |
|----|----------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$  | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$  | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$     | 2,                     |
|    | If $n = 1$ , then $a_2 = 2a_1 =$ |                        |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sequence               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,                     |
|    | If $n = 1$ , then $a_2 = 2a_1 = 2a_2 $ | = 2(2)                 |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2,                     |
|    |                                 |                        |

If n = 1, then  $a_2 = 2a_1 = 2(2) =$ 

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2,                     |
|    |                                 |                        |

If n = 1, then  $a_2 = 2a_1 = 2(2) = 4$ 

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4,                  |
|    |                                 |                        |

If n = 1, then  $a_2 = 2a_1 = 2(2) = 4$ 

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4,                  |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4,                  |
|    |                                 |                        |

If n = 2,

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence                 |
|----|---------------------------------|--------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, . |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,     |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4,                    |
|    | If $n = 2$ , then $a_3$         |                          |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4,                  |
|    | If $n = 2$ , then $a_3 =$       |                        |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                       | Sequence                 |
|----|----------------------------------|--------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$  | 5, 10, 15, 20, 25, 30, . |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$  | 5, 7, 9, 11, 13, 15,     |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$     | 2, 4,                    |
|    | If $n = 2$ , then $a_1 = 2a_2$ . |                          |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                       | Sequence               |
|----|----------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$  | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$  | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$     | 2, 4,                  |
|    | If $n = 2$ , then $a_3 = 2a_2 =$ |                        |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                         | Sequence               |
|----|------------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$    | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$    | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$       | 2,4,                   |
|    | If $n = 2$ , then $a_1 = 2a_2 = 2$ | 2(4)                   |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                       | Sequence               |
|----|----------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$  | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$  | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$     | 2, 4,                  |
|    | If $n = 2$ , then $a_3 = 2a_2 =$ | = 2(4) =               |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4,                  |
|    |                                 |                        |

If n = 2, then  $a_3 = 2a_2 = 2(4) = 8$ 

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8,               |
|    |                                 |                        |

If n = 2, then  $a_3 = 2a_2 = 2(4) = 8$ 

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8,               |

# There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8,               |

Notice that to get the 'next term' of the sequence,
## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8,               |

Notice that to get the 'next term' of the sequence, you multiply by 2.

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8,               |

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |                                 | Sequence               |
|------------|---------------------------------|------------------------|
| a.         | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b.         | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c.         | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8, 16,           |

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8, 16, 32,       |

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8, 16, 32, 64,   |

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8, 16, 32, 64,   |

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |                                 | Sequence               |
|------------|---------------------------------|------------------------|
| a.         | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b.         | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c.         | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8, 16, 32, 64,   |

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8, 16, 32, 64,   |
|    |                                 |                        |

Notice that in each of these examples, you are given a<sub>1</sub>, the first term.

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8, 16, 32, 64,   |

Notice that in each of these examples, you are given a<sub>1</sub>, the first term.

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | D         | efinition             | Sequence               |
|----|-----------|-----------------------|------------------------|
| a. | $a_1 = 5$ | ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ | ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2$ | $a_{n+1} = 2a_n$      | 2, 4, 8, 16, 32, 64,   |

Notice that in each of these examples, you are given  $a_1$ , the first term. You are also given a formula which tells how to find the 'next term'.

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

|    | Definition                      | Sequence               |
|----|---------------------------------|------------------------|
| a. | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b. | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c. | $a_1 = 2; a_{n+1} = 2a_n$       | 2, 4, 8, 16, 32, 64,   |

Notice that in each of these examples, you are given  $a_1$ , the first term. You are also given a formula which tells how to find the 'next term'.

## There are two common ways used to define sequences. 1. Using an explicit formula

2. Using a recursive formula

A recursive formula gives the value of  $a_1$  and also gives  $a_{n+1}$  as a function of  $a_n$ .  $a_{n+1}$  is the term that follows  $a_n$  in the sequence. That is why  $a_{n+1}$  is referred to as the 'next term'. Examples of recursive formulas:

| Definition |                                 | Sequence               |
|------------|---------------------------------|------------------------|
| a.         | $a_1 = 5$ ; $a_{n+1} = a_n + 5$ | 5, 10, 15, 20, 25, 30, |
| b.         | $a_1 = 5$ ; $a_{n+1} = a_n + 2$ | 5, 7, 9, 11, 13, 15,   |
| c.         | $a_1 = 2$ ; $a_{n+1} = 2a_n$    | 2, 4, 8, 16, 32, 64,   |

Notice that in each of these examples, you are given  $a_1$ , the first term. You are also given a formula which tells how to find the 'next term'. This allows you to extend the sequence.

1.  $a_n = 2n - 1$ 

1.  $a_n = 2n - 1$ 

 $a_1 =$ 

1.  $a_n = 2n - 1$ 

 $a_1 = 2(1) - 1$ 

 $a_1 = 2(1) - 1$ 



 $a_2 = 2(2) - 1$ 

 $a_2 = 2(2) - 1$ 

 $a_{3} =$ 

 $a_3 = 2(3) - 1$ 

 $a_3 = 2(3) - 1$ 

 $a_{4} =$ 

 $a_4 = 2(4) - 1$ 

 $a_4 = 2(4) - 1$ 

 $a_{5} =$ 

 $a_5 = 2(5) - 1$ 

 $a_5 = 2(5) - 1$ 

2.  $a_n = n^2$
## Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1. $a_n = 2n - 1$ 1, 3, 5, 7, 9

2.  $a_n = n^2$ 

$$\mathbf{a}_1 =$$

1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

2.  $a_n = n^2$ 

$$a_1 = 1^2$$

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 3, 5, 7, 9

$$a_1 = 1^2$$

# Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1. $a_n = 2n - 1$ 1, 3, 5, 7, 92. $a_n = n^2$ 1,

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 3, 5, 7, 9

$$a_2 =$$

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 3, 5, 7, 9

$$a_2 = 2^2$$

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4,

$$a_2 = 2^2$$

# Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1. $a_n = 2n - 1$ 1, 3, 5, 7, 92. $a_n = n^2$ 1, 4,

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4,

$$a_3 =$$

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4,

$$a_3 = 3^2$$

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4, 9,

$$a_3 = 3^2$$

## Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1. $a_n = 2n - 1$ 1, 3, 5, 7, 9

2. 
$$a_n = n^2$$
 1, 4, 9,

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4, 9,

$$a_{4} =$$

$$a_4 = 4^2$$

$$a_4 = 4^2$$

## Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1. $a_n = 2n - 1$ 1, 3, 5, 7, 9

2. 
$$a_n = n^2$$
 1, 4, 9, 16,

$$\mathbf{a}_5 =$$

$$a_5 = 5^2$$

$$a_5 = 5^2$$

## Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1. $a_n = 2n - 1$ 1, 3, 5, 7, 9

2. 
$$a_n = n^2$$
 1, 4, 9, 16, 25

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$

- 1.  $a_n = 2n 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$

 $a_1 = 2(3)^0$ 

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4, 9, 16, 25

3.  $a_n = 2(3)^{n-1}$ 

$$a_1 = 2(3)^0 = 2(1) =$$

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2,

$$a_1 = 2(3)^0 = 2(1) =$$

#### Algebra 2 Class Worksheet #1 Unit 9 Use the given formula to write the first 5 terms of each sequence. 1. $a_n = 2n - 1$ 1, 3, 5, 7, 9

2. 
$$a_n = n^2$$
  
3.  $a_n = 2(3)^{n-1}$   
2,

49

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2,

 $a_2 =$ 

1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 3.  $a_n = 2(3)^{n-1}$ 1, 3, 5, 7, 9 1, 4, 9, 16, 25 2,

 $a_2 = 2(3)^1 =$ 

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2,

$$a_2 = 2(3)^1 = 2(3) =$$

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6,

$$a_2 = 2(3)^1 = 2(3) =$$

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6,

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6,

 $a_3 =$ 

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6,

 $a_3 = 2(3)^2 =$ 

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6,

$$a_3 = 2(3)^2 = 2(9) =$$

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18,

$$a_3 = 2(3)^2 = 2(9) =$$

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18,
1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18,

 $a_4 =$ 

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18,

 $a_4 = 2(3)^3 =$ 

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18,

$$a_4 = 2(3)^3 = 2(27) =$$

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54,

$$a_4 = 2(3)^3 = 2(27) =$$

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54,

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54,

 $a_{5} =$ 

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54,

 $a_5 = 2(3)^4 =$ 

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54,

$$a_5 = 2(3)^4 = 2(81) =$$

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

 $a_5 = 2(3)^4 = 2(81) =$ 

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$

2, 6, 18, 54, 162

- 1.  $a_n = 2n 1$ 1, 3, 5, 7, 9 **2.**  $a_n = n^2$
- 3.  $a_n = 2(3)^{n-1}$
- 4.  $a_1 = 3; a_{n+1} = a_n + 2.5$

1, 4, 9, 16, 25

2, 6, 18, 54, 162

- 1.  $a_n = 2n 1$ 1, 3, 5, 7, 9 **2.**  $a_n = n^2$ 1, 4, 9, 16, 25 3.  $a_n = 2(3)^{n-1}$ 2, 6, 18, 54, 162
- 4.  $a_1 = 3; a_{n+1} = a_n + 2.5$

3,

- 1.  $a_n = 2n 1$ 1, 3, 5, 7, 9 **2.**  $a_n = n^2$ 1, 4, 9, 16, 25 3.  $a_n = 2(3)^{n-1}$ 2, 6, 18, 54, 162
- 4.  $a_1 = 3; a_{n+1} = a_n + 2.5$

3,

1.  $a_n = 2n - 1$ 1. 3, 5, 7, 92.  $a_n = n^2$ 1. 4, 9, 16, 253.  $a_n = 2(3)^{n-1}$ 2. 6, 18, 54, 1624.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$ 3.

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$  3, 5.5,

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$  3, 5.5,

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$  3, 5.5, 8,

1.  $a_n = 2n - 1$ 1. 3, 5, 7, 92.  $a_n = n^2$ 1. 4, 9, 16, 253.  $a_n = 2(3)^{n-1}$ 2. 6, 18, 54, 1624.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$ 3. 5.5, 8,

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$  3, 5.5, 8, 10.5,

1.  $a_n = 2n - 1$ 1. 3, 5, 7, 92.  $a_n = n^2$ 1. 4, 9, 16, 253.  $a_n = 2(3)^{n-1}$ 2. 6, 18, 54, 1624.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$ 3. 5.5, 8, 10.5,

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$  3, 5.5, 8, 10.5, 13

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25

   3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$

3, 5.5, 8, 10.5, 13

- 1.  $a_n = 2n 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$

3, 5.5, 8, 10.5, 13

- 1.  $a_n = 2n 1$ 1, 3, 5, 7, 9 **2.**  $a_n = n^2$
- 3.  $a_n = 2(3)^{n-1}$

4. 
$$a_1 = 3$$
;  $a_{n+1} = a_n + 2.5$ 

5. 
$$a_1 = 3; a_{n+1} = .5a_n$$

1, 4, 9, 16, 25

2, 6, 18, 54, 162

3, 5.5, 8, 10.5, 13

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$  3, 5.5, 8, 10.5, 13

5. 
$$a_1 = 3; a_{n+1} = .5a_n$$

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$  3, 5.5, 8, 10.5, 13

5. 
$$a_1 = 3; a_{n+1} = .5a_n$$

1.  $a_n = 2n - 1$ 1, 3, 5, 7, 9 **2.**  $a_n = n^2$ 1, 4, 9, 16, 25 3.  $a_n = 2(3)^{n-1}$ 2, 6, 18, 54, 162 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$ 3, 5.5, 8, 10.5, 13

5. 
$$a_1 = 3; a_{n+1} = .5a_n$$

3,

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$

4. 
$$a_1 = 3$$
;  $a_{n+1} = a_n + 2.5$ 

**5.** 
$$a_1 = 3; a_{n+1} = .5a_n$$

| 1, 3, 5, 7, 9       |
|---------------------|
| 1, 4, 9, 16, 25     |
| 2, 6, 18, 54, 162   |
| 3, 5.5, 8, 10.5, 13 |
| 3, 1.5,             |
|                     |

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25

   3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

   4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$  3, 5.5, 8, 10.5, 13
- 5.  $a_1 = 3; a_{n+1} = .5a_n$

3, 1.5,

 1.  $a_n = 2n - 1$  1, 3, 5, 7, 9

 2.  $a_n = n^2$  1, 4, 9, 16, 25

 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162

 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$  3, 5.5, 8, 10.5, 13

5. 
$$a_1 = 3; a_{n+1} = .5a_n$$

3, 1.5, 0.75,

- 1.  $a_n = 2n 1$ 1, 3, 5, 7, 9 2.  $a_n = n^2$ 1, 4, 9, 16, 25 3.  $a_n = 2(3)^{n-1}$ 2, 6, 18, 54, 162
- 4.  $a_1 = 3; a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3; a_{n+1} = .5a_n$

3, 5.5, 8, 10.5, 13

3, 1.5, 0.75,

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$

4. 
$$a_1 = 3$$
;  $a_{n+1} = a_n + 2.5$ 

5. 
$$a_1 = 3; a_{n+1} = .5a_n$$

2, 6, 18, 54, 162

3, 5.5, 8, 10.5, 13

3, 1.5, 0.75, 0.375,

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3; a_{n+1} = .5a_n$

- 3, 5.5, 8, 10.5, 13
  - 3, 1.5, 0.75, 0.375,

- 1.  $a_n = 2n 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$  2.

4. 
$$a_1 = 3$$
;  $a_{n+1} = a_n + 2.5$ 

**5.** 
$$a_1 = 3; a_{n+1} = .5a_n$$

2, 6, 18, 54, 162

- 3, 5.5, 8, 10.5, 13
  - 3, 1.5, 0.75, 0.375, 0.1875

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25

   3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$

- 3, 5.5, 8, 10.5, 13
  - 3, 1.5, 0.75, 0.375, 0.1875
- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25

   3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10$ ;  $a_{n+1} = a_n 2$

2, 6, 18, 54, 162 3, 5.5, 8, 10.5, 13 3, 1.5, 0.75, 0.375, 0.1875

- 1.  $a_n = 2n 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54,
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10$ ;  $a_{n+1} = a_n 2$

1, 4, 9, 16, 25 2, 6, 18, 54, 162 3, 5.5, 8, 10.5, 13 3, 1.5, 0.75, 0.375, 0.1875

- 1.  $a_n = 2n 1$ 2.  $a_n = n^2$ 1, 3, 5, 7, 9 1, 4, 9, 16, 25
- 3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10$ ;  $a_{n+1} = a_n 2$

2, 6, 18, 54, 162 3, 5.5, 8, 10.5, 13 3, 1.5, 0.75, 0.375, 0.1875 10,

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25

   3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10; a_{n+1} = a_n 2$

- 2, 6, 18, 54, 162 3, 5.5, 8, 10.5, 13 3, 1.5, 0.75, 0.375, 0.1875
  - 10,

Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1.  $a_n = 2n - 1$ 1, 3, 5, 7, 9

- 2.  $a_n = n^2$ 3.  $a_n = 2(3)^{n-1}$ 2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10; a_{n+1} = a_n 2$

3, 5.5, 8, 10.5, 13

3, 1.5, 0.75, 0.375, 0.1875

10,

Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 3.  $a_n = 2(3)^{n-1}$ 2. (3, 1, 4, 9, 16, 25)3.  $a_n = 2(3)^{n-1}$ 2. (3, 1, 4, 9, 16, 25)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (3, 1, 2, 5, 7, 9)3. (

- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10; a_{n+1} = a_n 2$

 1, 4, 9, 10, 23

 2, 6, 18, 54, 162

 3, 5.5, 8, 10.5, 13

 3, 1.5, 0.75, 0.375, 0.1875

 10, 8,

Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1.  $a_n = 2n - 1$ 1, 3, 5, 7, 9

- 2.  $a_n = n^2$ 3.  $a_n = 2(3)^{n-1}$ 2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10; a_{n+1} = a_n 2$

<u>3, 5.5, 8, 10.5, 13</u>

<u>3, 1.5, 0.75, 0.375, 0.1875</u>

10, 8,

Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 3.  $a_n = 2(3)^{n-1}$ 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$ 

- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10; a_{n+1} = a_n 2$

<u>3, 1.5, 0.75, 0.375, 0.1875</u> 10, 8, 6,

Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1.  $a_n = 2n - 1$ 1, 3, 5, 7, 9

- 2.  $a_n = n^2$ 3.  $a_n = 2(3)^{n-1}$ 2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10; a_{n+1} = a_n 2$

<u>3, 5.5, 8, 10.5, 13</u> <u>3, 1, 5, 0, 75, 0, 375, 0, 1</u>

3, 1.5, 0.75, 0.375, 0.1875

10, 8, 6,

Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 3.  $a_n = 2(3)^{n-1}$ 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$ 3.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$ 

- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10; a_{n+1} = a_n 2$

3, 1.5, 0.75, 0.375, 0.1875

<u>10, 8, 6, 4,</u>

Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1.  $a_n = 2n - 1$ 1, 3, 5, 7, 9

- 2.  $a_n = n^2$ 3.  $a_n = 2(3)^{n-1}$ 2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10; a_{n+1} = a_n 2$

<u>3, 1.5, 0.75, 0.375, 0.1875</u>

3, 5.5, 8, 10.5, 13

<u>10, 8, 6, 4,</u>

Algebra 2Class Worksheet #1Unit 9Use the given formula to write the first 5 terms of each sequence.1.  $a_n = 2n - 1$ 2.  $a_n = n^2$ 3.  $a_n = 2(3)^{n-1}$ 2.  $a_n = 2(3)^{n-1}$ 

- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10; a_{n+1} = a_n 2$

3, 5.5, 8, 10.5, 13 3, 1.5, 0.75, 0.375, 0.1875 10, 8, 6, 4, 2

- 1.  $a_n = 2n 1$  1, 3, 5, 7, 9

   2.  $a_n = n^2$  1, 4, 9, 16, 25

   3.  $a_n = 2(3)^{n-1}$  2, 6, 18, 54, 162
- 4.  $a_1 = 3$ ;  $a_{n+1} = a_n + 2.5$
- 5.  $a_1 = 3$ ;  $a_{n+1} = .5a_n$
- 6.  $a_1 = 10$ ;  $a_{n+1} = a_n 2$

- 2, 0, 18, 54, 102 3, 5.5, 8, 10.5, 13 3, 1.5, 0.75, 0.375, 0.1875
- 10, 8, 6, 4, 2

- 7. 3, 6, 9, 12, 15, 18, 21, ...
- **8.** 0, 3, 8, 15, 24, 35, 48, ...
- 9. 3, 9, 27, 81, 243, 729, ...

7. **3**, **6**, **9**, **12**, **15**, **18**, **21**, ...

(3)(1),

7. 3, 6, 9, 12, 15, 18, 21, ...

(3)(1),

7. 3, 6, 9, 12, 15, 18, 21, ...

(3)(1), (3)(2),

7. 3, 6, 9, 12, 15, 18, 21, ...

(3)(1), (3)(2),

- 7. 3, 6, 9, 12, 15, 18, 21, ...
  - (3)(1), (3)(2), (3)(3),

7. 3, 6, 9, 12, 15, 18, 21, ...

(3)(1), (3)(2), (3)(3),

7. 3, 6, 9, 12, 15, 18, 21, ...

(3)(1), (3)(2), (3)(3), (3)(4),

7. 3, 6, 9, 12, 15, 18, 21, ...

(3)(1), (3)(2), (3)(3), (3)(4),

7. 3, 6, 9, 12, 15, 18, 21, ...

 $(3)(1), (3)(2), (3)(3), (3)(4), \dots$ 

7. 3, 6, 9, 12, 15, 18, 21, ...

 $a_n =$ 

 $(3)(1), (3)(2), (3)(3), (3)(4), \dots$ 

7. 3, 6, 9, 12, 15, 18, 21, ...

 $a_n = 3n$ 

 $(3)(1), (3)(2), (3)(3), (3)(4), \dots$ 

# Algebra 2 Class Worksheet #1 Unit 9 Write an explicit formula for each of the following sequences. 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8. 0, 3, 8, 15, 24, 35, 48, ...

 Algebra 2
 Class Worksheet #1
 Unit 9

 Write an explicit formula for each of the following sequences.

 7.
 3, 6, 9, 12, 15, 18, 21, ...
  $a_n = 3n$  

 8.
 0, 3, 8, 15, 24, 35, 48, ...

 Algebra 2
 Class Worksheet #1
 Unit 9

 Write an explicit formula for each of the following sequences.

 7.
 3, 6, 9, 12, 15, 18, 21, ...

 8.
 0, 3, 8, 15, 24, 35, 48, ...

**8. 0**, **3**, **8**, **15**, **24**, **35**, **48**, ...

 $1^2 - 1$ 

**8.** 0, 3, 8, 15, 24, 35, 48, ...

 $1^2 - 1$ ,

8. 0, 3, 8, 15, 24, 35, 48, ...

 $1^2 - 1$ ,

- 7. 3, 6, 9, 12, 15, 18, 21, ...
- **8.** 0, **3**, **8**, 15, 24, 35, 48, ...

 $1^2 - 1$ ,  $2^2 - 1$ 

$$a_n = 3n$$

**8.** 0, 3, 8, 15, 24, 35, 48, ...

 $1^2 - 1$ ,  $2^2 - 1$ ,
Algebra 2Class Worksheet #1Unit 9Write an explicit formula for each of the following sequences.7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 

8. 0, 3, 8, 15, 24, 35, 48, ...

 $1^2 - 1$ ,  $2^2 - 1$ ,

- 7. 3, 6, 9, 12, 15, 18, 21, ...
- 8. 0, 3, 8, 15, 24, 35, 48, ...

 $1^2 - 1, 2^2 - 1, 3^2 - 1$ 

$$a_n = 3n$$

- 7. 3, 6, 9, 12, 15, 18, 21, ...
- **8.** 0, 3, 8, 15, 24, 35, 48, ...

 $1^2 - 1$ ,  $2^2 - 1$ ,  $3^2 - 1$ ,

$$a_n = 3n$$

- 7. 3, 6, 9, 12, 15, 18, 21, ...
- 8. 0, 3, 8, <mark>15,</mark> 24, 35, 48, ...

 $1^2 - 1$ ,  $2^2 - 1$ ,  $3^2 - 1$ ,

$$a_n = 3n$$

- 7. 3, 6, 9, 12, 15, 18, 21, ...
- 8. 0, 3, 8, <mark>15,</mark> 24, 35, 48, ...

 $1^2 - 1, 2^2 - 1, 3^2 - 1, 4^2 - 1$ 

$$a_n = 3n$$

Algebra 2Class Worksheet #1Unit 9Write an explicit formula for each of the following sequences.7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 

**8.** 0, 3, 8, 15, 24, 35, 48, ...

 $1^2 - 1$ ,  $2^2 - 1$ ,  $3^2 - 1$ ,  $4^2 - 1$ , ...

 $1^2 - 1$ ,  $2^2 - 1$ ,  $3^2 - 1$ ,  $4^2 - 1$ , ...

 $1^2 - 1$ ,  $2^2 - 1$ ,  $3^2 - 1$ ,  $4^2 - 1$ , ...

- 7. 3, 6, 9, 12, 15, 18, 21, ...  $a_n = 3n$  

   8. 0, 3, 8, 15, 24, 35, 48, ...  $a_n = n^2 1$  

   9. 2, 0, 27, 91, 242, 720
- 9. 3, 9, 27, 81, 243, 729, ...

7.  $3, 6, 9, 12, 15, 18, 21, \dots$  $a_n = 3n$ 8.  $0, 3, 8, 15, 24, 35, 48, \dots$  $a_n = n^2 - 1$ 9.  $3, 9, 27, 81, 243, 729, \dots$ 

7.  $3, 6, 9, 12, 15, 18, 21, \dots$  $a_n = 3n$ 8.  $0, 3, 8, 15, 24, 35, 48, \dots$  $a_n = n^2 - 1$ 9.  $3, 9, 27, 81, 243, 729, \dots$ 

 $a_n = 3n$ 

 $a_n = n^2 - 1$ 

- 7. 3, 6, 9, 12, 15, 18, 21, ...
  - **8.** 0, 3, 8, 15, 24, 35, 48, ...
  - **9. 3, 9, 27, 81, 243, 729,** ...

**3**<sup>1</sup>

- 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8. 0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 1$
- 9. 3, 9, 27, 81, 243, 729, ...

**3**<sup>1</sup>,

- 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8. 0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 1$ 
  - 9. 3, 9, 27, 81, 243, 729, ...

**3**<sup>1</sup>,

- 7. 3, 6, 9, 12, 15, 18, 21, ...
  - **8.** 0, 3, 8, 15, 24, 35, 48, ...
  - 9. 3, 9, 27, 81, 243, 729, ...

3<sup>1</sup>, 3<sup>2</sup>

Each term is a power of 3.

 $a_n = 3n$  $a_n = n^2 - 1$ 

- 7.  $3, 6, 9, 12, 15, 18, 21, \dots$  $a_n = 3n$ 8.  $0, 3, 8, 15, 24, 35, 48, \dots$  $a_n = n^2 1$ 9.  $3, 9, 27, 81, 243, 729, \dots$ 
  - $3^1, 3^2,$
  - Each term is a power of 3.

- 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8. 0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 1$ 
  - 9. 3, 9, <mark>27</mark>, 81, 243, 729, ...

 $3^1, 3^2,$ 

- 7. 3, 6, 9, 12, 15, 18, 21, ...
- **8.** 0, 3, 8, 15, 24, 35, 48, ...
- 9. 3, 9, <mark>27</mark>, 81, 243, 729, ...

3<sup>1</sup>, 3<sup>2</sup>, 3<sup>3</sup>

Each term is a power of 3.

 $a_n = 3n$  $a_n = n^2 - 1$ 

- 7. 3, 6, 9, 12, 15, 18, 21, ...  $a_n = 3n$  

   8. 0, 3, 8, 15, 24, 35, 48, ...  $a_n = n^2 1$
- 9. 3, 9, 27, 81, 243, 729, ...

 $3^1, 3^2, 3^3,$ 

- 7.  $3, 6, 9, 12, 15, 18, 21, \dots$  $a_n = 3n$ 8.  $0, 3, 8, 15, 24, 35, 48, \dots$  $a_n = n^2 1$ 
  - 9. 3, 9, 27, 81, 243, 729, ...

 $3^1, 3^2, 3^3,$ 

- 7. 3, 6, 9, 12, 15, 18, 21, ...
  - **8.** 0, 3, 8, 15, 24, 35, 48, ...
  - 9. 3, 9, 27, 81, 243, 729, ...

 $3^1, 3^2, 3^3, 3^4$ 

Each term is a power of 3.

 $a_n = 3n$  $a_n = n^2 - 1$ 

- - $3^1, 3^2, 3^3, 3^4, \dots$

- 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8. 0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 1$ 9. 3, 9, 27, 81, 243, 729, ... $a_n =$ 
  - $3^1, 3^2, 3^3, 3^4, \dots$

| $a_n = 3n$      |
|-----------------|
| $a_n = n^2 - 1$ |
| $a_n = 3^n$     |
|                 |

 $3^1, 3^2, 3^3, 3^4, \dots$ 

| 7. | 3, 6, 9, 12, 15, 18, 21, | $a_n = 3n$      |  |
|----|--------------------------|-----------------|--|
| 8. | 0, 3, 8, 15, 24, 35, 48, | $a_n = n^2 - 1$ |  |
| 9. | 3, 9, 27, 81, 243, 729,  | $a_n = 3^n$     |  |

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...

11. 3, 6, 12, 24, 48, 96, 192, ...

12. 0, 1, 3, 7, 15, 31, 63, 127, ...

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...

Write a recursive formula for each of the following sequences.

**10. 4, 6, 8, 10, 12, 14, 16, ...** 

The first term is 4.

Write a recursive formula for each of the following sequences.

**10. 4, 6, 8, 10, 12, 14, 16,**  $\dots$  **a**<sub>1</sub> = **4** 

The first term is 4.

Write a recursive formula for each of the following sequences.

**10. 4, 6, 8, 10, 12, 14, 16,**  $\dots$  **a**<sub>1</sub> = **4**;

The first term is 4. Then, add 2 recursively.

 $a_{n} = 3^{n}$ 

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...  $a_1 = 4$ ; The first term is 4. Then, add 2 recursively.

9. 3, 9, 27, 81, 243, 729, ...

 $a_{n} = 3^{n}$ 

9. 3, 9, 27, 81, 243, 729, ...

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...  $a_1 = 4$ ; The first term is 4. Then, add 2 recursively.

9. 3, 9, 27, 81, 243, 729, ...  $a_n = 3^n$ 

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...  $a_1 = 4$ ; The first term is 4. Then, add 2 recursively.

### Algebra 2 Class Worksheet #1 Unit 9 Write an explicit formula for each of the following sequences. $a_n = 3n$ 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = n^2 - 1$ 8. 0, 3, 8, 15, 24, 35, 48, ...

 $a_{n} = 3^{n}$ 9. 3, 9, 27, 81, 243, 729, ...

Write a recursive formula for each of the following sequences.

10. **4**, 6, 8, 10, **12**, 14, 16, ...  $a_1 = 4$ ; The first term is 4. Then, add 2 recursively.

### Algebra 2 Class Worksheet #1 Unit 9 Write an explicit formula for each of the following sequences. $a_n = 3n$ 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = n^2 - 1$ 8. 0, 3, 8, 15, 24, 35, 48, ...

 $a_{n} = 3^{n}$ 9. 3, 9, 27, 81, 243, 729, ...

Write a recursive formula for each of the following sequences.

**10. 4, 6, 8, 10, 12, 14, 16,** ...  $a_1 = 4$ ; The first term is 4. Then, add 2 recursively.
#### Algebra 2 Class Worksheet #1 Unit 9 Write an explicit formula for each of the following sequences. $a_n = 3n$ 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = n^2 - 1$ 8. 0, 3, 8, 15, 24, 35, 48, ... $a_{n} = 3^{n}$

Write a recursive formula for each of the following sequences.

**10. 4, 6, 8, 10, 12, 14, 16, ...** 

9. 3, 9, 27, 81, 243, 729, ...

 $a_1 = 4$ ;

Write a recursive formula for each of the following sequences.

**10. 4, 6, 8, 10, 12, 14, 16,**  $\dots$  **a**<sub>1</sub> = **4**;

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...  $a_1 = 4$ ;  $a_{n+1} =$ 

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...  $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...  $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...

$$a_1 = 4$$
;  $a_{n+1} = a_n + 2$ 

11. 3, 6, 12, 24, 48, 96, 192, ...

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...

$$a_1 = 4$$
;  $a_{n+1} = a_n + 2$ 

**11. 3,** 6, 12, 24, 48, 96, 192, ...

The first term is 3.

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...  $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 

**11. 3,** 6, 12, 24, 48, 96, 192, ...

 $a_1 = 3$ 

The first term is 3.

Write a recursive formula for each of the following sequences.

10.4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 11.3, 6, 12, 24, 48, 96, 192, ... $a_1 = 3$ ;

Write a recursive formula for each of the following sequences.

- 10. 4, 6, 8, 10, 12, 14, 16, ...  $a_1 = 4$ ;  $a_{n+1} = a_n + 2$
- 11. 3, 6, 12, 24, 48, 96, 192, ...  $a_1 = 3$ ;

## Algebra 2Class Worksheet #1Unit 9Write an explicit formula for each of the following sequences.7.3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8.0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 - 1$ 9.3, 9, 27, 81, 243, 729, ... $a_n = 3^n$ Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 11. 3, 6, 12, 24, 48, 96, 192, ... $a_1 = 3$ ;

# Algebra 2 Class Worksheet #1 Unit 9 Write an explicit formula for each of the following sequences. $a_n = 3n$ 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8. 0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 - 1$ 9. 3, 9, 27, 81, 243, 729, ... $a_n = 3^n$ Write a recursive formula for each of the following sequences. 10. 4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ; $a_{n+1} = a_n + 2$

11. 3, 6, 12, 24, 48, 96, 192, ...  $a_1 = 3$ ;

# Algebra 2 Class Worksheet #1 Unit 9 Write an explicit formula for each of the following sequences. $a_n = 3n$ 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8. 0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 - 1$ 9. 3, 9, 27, 81, 243, 729, ... $a_n = 3^n$ Write a recursive formula for each of the following sequences. 10. 4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ; $a_{n+1} = a_n + 2$

11. 3, 6, 12, 24, 48, 96, 192, ...  $a_1 = 3$ ; The first term is 3 ... Then multiply by 2 recursive

# Algebra 2 Class Worksheet #1 Unit 9 Write an explicit formula for each of the following sequences. $a_n = 3n$ 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8. 0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 - 1$ 9. 3, 9, 27, 81, 243, 729, ... $a_n = 3^n$ Write a recursive formula for each of the following sequences. 10. 4. 6. 8. 10, 12, 14, 16, ... $a_1 = 4$ ; $a_{n+1} = a_n + 2$

10. 4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 11. 3, 6, 12, 24, 48, 96, 192, ... $a_1 = 3$ ;The first term is 3. Then, multiply by 2 recursively.

# Algebra 2Class Worksheet #1Unit 9Write an explicit formula for each of the following sequences.7.3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8.0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 - 1$ 9.3, 9, 27, 81, 243, 729, ... $a_n = 3^n$ Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 11. 3, 6, 12, 24, 48, 96, 192, ... $a_1 = 3$ ;The first term is 3. Then, multiply by 2 recursively.

Write a recursive formula for each of the following sequences.

10.4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 11.3, 6, 12, 24, 48, 96, 192, ... $a_1 = 3$ ;

Write a recursive formula for each of the following sequences.

10.4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 11.3, 6, 12, 24, 48, 96, 192, ... $a_1 = 3$ ;  $a_{n+1} =$ 

Write a recursive formula for each of the following sequences.

10.4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 11.3, 6, 12, 24, 48, 96, 192, ... $a_1 = 3$ ;  $a_{n+1} = 2a_n$ 

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ...  $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 

11. 3, 6, 12, 24, 48, 96, 192, ...

$$a_1 = 3$$
;  $a_{n+1} = 2a_n$ 

### Algebra 2 Class Worksheet #1 Unit 9 Write an explicit formula for each of the following sequences. $a_n = 3n$ 7. 3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8. 0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 - 1$ 9. 3, 9, 27, 81, 243, 729, ... $a_n = 3^n$

Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 11. 3, 6, 12, 24, 48, 96, 192, ... $a_1 = 3$ ;  $a_{n+1} = 2a_n$ 

12. 0, 1, 3, 7, 15, 31, 63, 127, ...



12. **0**, 1, 3, 7, 15, 31, 63, 127, ...

The first term is 0.



The first term is 0.























## Algebra 2Class Worksheet #1Unit 9Write an explicit formula for each of the following sequences.7.3, 6, 9, 12, 15, 18, 21, ... $a_n = 3n$ 8.0, 3, 8, 15, 24, 35, 48, ... $a_n = n^2 - 1$ 9.3, 9, 27, 81, 243, 729, ... $a_n = 3^n$ Write a recursive formula for each of the following sequences.

10. 4, 6, 8, 10, 12, 14, 16, ... $a_1 = 4$ ;  $a_{n+1} = a_n + 2$ 11. 3, 6, 12, 24, 48, 96, 192, ... $a_1 = 3$ ;  $a_{n+1} = 2a_n$ 12. 0, 1, 3, 7, 15, 31, 63, 127, ... $a_1 = 0$ ;  $a_{n+1} = 2a_n + 1$ 

#### Algebra 2 Class Worksheet #1 Unit 9 Write an explicit formula for each of the following sequences.

| 7. | 3, 6, 9, 12, 15, 18, 21, | $a_n = 3n$      |
|----|--------------------------|-----------------|
| 8. | 0, 3, 8, 15, 24, 35, 48, | $a_n = n^2 - 1$ |
| 9. | 3, 9, 27, 81, 243, 729,  | $a_n = 3^n$     |

Write a recursive formula for each of the following sequences.

| 10. | 4, 6, 8, 10, 12, 14, 16,     | $a_1 = 4$ ; $a_{n+1} = a_n + 2$  |
|-----|------------------------------|----------------------------------|
| 11. | 3, 6, 12, 24, 48, 96, 192,   | $a_1 = 3$ ; $a_{n+1} = 2a_n$     |
| 12. | 0, 1, 3, 7, 15, 31, 63, 127, | $a_1 = 0$ ; $a_{n+1} = 2a_n + 1$ |