Algebra II Class Worksheet #1 Unit 9 page 1

Sequence (informal definition) : A set of numbers in a specific order.

Examples of sequences:

- a. 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
- b. 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
- c. 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

Each number is called a <u>term</u> of the sequence.

Notation

We will use

a₁ to represent the first term of any sequence

a, to represent the second term of any sequence

a, to represent the third term of any sequence

 \mathbf{a}_{A} to represent the fourth term of any sequence

In general, a_n is used to represent the n^{th} term of any sequence.

There are two common ways used to define sequences.

- 1. Using an **explicit** formula
- 2. Using a **recursive** formula

An explicit formula gives a_n as a function of n.

Examples of explicit formulas:

	Definition	Sequence
a.	$a_n = 5n$	5, 10, 15, 20, 25, 30,
b.	$a_{n} = 2n + 3$	5, 7, 9, 11, 13, 15,
c.	$a_n = 2^n$	2, 4, 8, 16, 32, 64,

Algebra II Class Worksheet #1 Unit 9 page 2 A recursive formula tells you the value of a_1 and also gives a_{n+1} as a function of a_n .

a_{n+1} is the term that follows a_n (the next term).

Examples of recursive formulas:

Definition			Sequence
a.	$a_1 = 5$	$a_{n+1} = a_n + 5$	5, 10, 15, 20, 25, 30,
b.	$a_1 = 5$	$\mathbf{a}_{\mathbf{n}+1} = \mathbf{a}_{\mathbf{n}} + 2$	5, 7, 9, 11, 13, 15,
c.	a ₁ = 2	$\mathbf{a}_{\mathbf{n}+1} = 2\mathbf{a}_{\mathbf{n}}$	2, 4, 8, 16, 32, 64,

Problems:

Use the given formula to write the first 5 terms of each sequence.

1.	$a_{n} = 2n - 1$			
2.	$\mathbf{a}_{n} = \mathbf{n}^{2}$			
3.	$a_n = 2(3)^{n-1}$			
4.	$a_1 = 3$; $a_{n+1} = a_n + 2.5$			
5.	$a_1 = 32$; $a_{n+1} = 0.5a_n$			
6.	$a_1 = 10$; $a_{n+1} = a_n - 2$			
Write	an explicit formula for each sequ	uence.		
7.	3, 6, 9, 12, 15, 18, 21,			
8.	0, 3, 8, 15, 24, 35, 48,			
9.	3, 9, 27, 81, 243, 729,			
Write a recursive formula for each sequence.				
10.	4, 6, 8, 10, 12, 14, 16,			
11.	3, 6, 12, 24, 48, 96, 192,			
12.	0, 1, 3, 7, 15, 31, 63, 127,			