## Algebra II Class Worksheet \#1 Unit 9 page 1

Sequence (informal definition) : A set of numbers in a specific order.
Examples of sequences:
a. $5,10,15,20,25,30,35,40,45, \ldots$
b. $\quad 5,7,9,11,13,15,17,19,21,23,25, \ldots$
c. $2,4,8,16,32,64,128,256,512, \ldots$

Each number is called a term of the sequence.
Notation
We will use
$a_{1}$ to represent the first term of any sequence
$a_{2}$ to represent the second term of any sequence
$a_{3}$ to represent the third term of any sequence
$a_{4}$ to represent the fourth term of any sequence
In general, $\mathbf{a}_{\mathbf{n}}$ is used to represent the $\mathbf{n}^{\text {th }}$ term of any sequence.
There are two common ways used to define sequences.

1. Using an explicit formula
2. Using a recursive formula

An explicit formula gives $\mathbf{a}_{\mathbf{n}}$ as a function of $\mathbf{n}$.
Examples of explicit formulas:

Definition
Sequence
a. $\quad a_{n}=5 n$
$5,10,15,20,25,30, \ldots$
b.

$$
a_{n}=2 n+3
$$

$$
5,7,9,11,13,15, \ldots
$$

$$
a_{n}=2^{n}
$$

$$
2,4,8,16,32,64, \ldots
$$

## Algebra II Class Worksheet \#1 Unit 9 page 2

A recursive formula tells you the value of $a_{1}$ and also gives $\mathbf{a}_{\mathbf{n}^{+1}}$ as a function of $\mathbf{a}_{\mathbf{n}}$.
$a_{n+1}$ is the term that follows $a_{n}$ (the next term).
Examples of recursive formulas:

Definition
a. $\quad a_{1}=5$
$a_{n+1}=a_{n}+5$

$$
5,10,15,20,25,30, \ldots
$$

b.

$$
5,7,9,11,13,15, \ldots
$$

c.

$$
\mathbf{a}_{1}=\mathbf{5}
$$

$$
a_{n+1}=a_{n}+2
$$

$$
2,4,8,16,32,64, \ldots
$$

Sequence

Problems:
Use the given formula to write the first 5 terms of each sequence.

1. $a_{n}=2 n-1$
2. $a_{n}=n^{2}$
3. $a_{n}=2(3)^{n-1}$
4. $a_{1}=3 ; a_{n+1}=a_{n}+2.5$ $\qquad$
5. $a_{1}=32 ; a_{n+1}=0.5 a_{n}$
6. $\quad a_{1}=10 ; a_{n+1}=a_{n}-2$

Write an explicit formula for each sequence.
7. $3,6,9,12,15,18,21, \ldots$ $\qquad$
8. $0,3,8,15,24,35,48, \ldots$
9. $3,9,27,81,243,729, \ldots$

Write a recursive formula for each sequence.
10. $4,6,8,10,12,14,16, \ldots$ $\qquad$
11. $3,6,12,24,48,96,192, \ldots$ $\qquad$
12. $0,1,3,7,15,31,63,127, \ldots$

