Algebra II Worksheet \#8 Unit 8 Selected Homework Solutions

2. Sue wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If he has a total of 2000 feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Consider the diagram shown. Let x represent the length of the rectangular plot of land. Let y represent its width. Clearly, the total amount of fencing required is $2 x+4 y$.

Once again, to maximize the area, we must represent the area as a function of one variable.

$$
\begin{array}{ll}
A=x y \text { where } & 2 x+4 y=2000 \\
4 y & =-2 x+2000 \\
y & =-.5 x+500 \\
A & =x(-.5 x+500) \\
A & =-.5 x^{2}+\mathbf{5 0 0 x}
\end{array}
$$

Therefore,
The maximum area corresponds to the vertex of this function.

$$
\begin{gathered}
\mathrm{A}=-.5\left(\mathrm{x}^{2}-1000 \mathrm{x}\right) \\
\mathrm{A}-\mathbf{1 2 5 , 0 0 0}=-.5\left(\mathrm{x}^{2}-1000 \mathrm{x}+250,000\right) \\
\mathrm{A}-\mathbf{1 2 5 , 0 0 0}=-.5(\mathbf{x}-\mathbf{5 0 0})^{2} \\
\text { The vertex is }(\mathbf{5 0 0}, \underline{\mathbf{1 2 5}, 000}) . \\
\text { For maximum area, } \mathbf{x}=\mathbf{5 0 0} . \\
\mathbf{y}=-.5(\mathbf{5 0 0})+\mathbf{5 0 0}=-\mathbf{- 2 5 0}+\mathbf{5 0 0}=\mathbf{2 5 0} .
\end{gathered}
$$

The plot with maximum area is 500 feet long and 250 feet wide.
The plot will have a maximum area of $\mathbf{1 2 5 , 0 0 0}$ square feet.

