Algebra II Worksheet \#6 Unit 8 Selected Homework Solutions

6. Sam wants to fence in a rectangular plot of land and to divide it into four equal areas using three lengths of fencing parallel to two opposite sides. If he has a total of 800 feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Consider the diagram shown. Let x represent the length of the rectangular plot of land. Let y represent its width. Clearly, the total amount of fencing required is $2 x+5 y$.

Once again, to maximize the area, we must represent the area as a function of one variable.

$$
\begin{aligned}
& A=x y \text { where } \quad 2 x+5 y=800 \\
& 5 y=-2 x+800 \\
& y=-.4 x+160
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& A=x(-.4 x+160) \\
& A=-.4 x^{2}+160 x
\end{aligned}
$$

The maximum area corresponds to the vertex of this function.

$$
\begin{gathered}
A=-.4\left(\mathbf{x}^{2}-400 \mathrm{x}\right) \\
\mathrm{A}-\mathbf{1 6 , 0 0 0}=-.4\left(\mathrm{x}^{2}-\mathbf{4 0 0 x}+\mathbf{4 0 , 0 0 0}\right) \\
\mathrm{A}-\mathbf{1 6 , 0 0 0}=-.4(\mathrm{x}-\mathbf{2 0 0})^{2} \\
\text { The vertex is }(\mathbf{2 0 0}, \underline{\mathbf{1 6 , 0 0 0}) .} \\
\text { For maximum area, } \mathrm{x}=\mathbf{2 0 0} . \\
\mathrm{y}=-. \mathbf{4 (2 0 0)}+\mathbf{1 6 0}=-\mathbf{- 8 0}+\mathbf{1 6 0}=\mathbf{8 0} .
\end{gathered}
$$

The plot with maximum area is 200 feet long and 80 feet wide.
The plot will have a maximum area of $\mathbf{1 6 , 0 0 0}$ square feet.

