## Algebra II Worksheet \#3 Unit 8 Selected Solutions

A company produces garden tools. They estimate that their daily profit, P , (in dollars) depends on the number of tools, $n$, they produce per day according to the function $P=-.01 n^{2}+8 n-700$.
7. How many garden tools should they produce per day in order to get a maximum profit? What is the maximum profit?

Find the vertex:

$$
\begin{gathered}
P+700=-.01\left(\mathrm{n}^{2}-800 \mathrm{n}\right) \\
\mathrm{P}+700-1600=-.01\left(\mathrm{n}^{2}-800 \mathrm{n}+160,000\right) \\
\mathrm{P}-900=-.01(\mathrm{n}-400)^{2}
\end{gathered}
$$

The vertex is $(400,900)$.
They should produce 400 tools per day.
The maximum profit is $\$ 900$ per day.
8. What value(s) of n correspond to 'break even' points $(\mathrm{P}=0)$ ?

Find n if $\mathrm{P}=0$.

$$
\begin{aligned}
& 0=-.01 n^{2}+8 n-700 \\
& 0=\mathbf{n}^{2}-800 n+70,000 \\
& 0=(n-100)(\mathbf{n}-700) \\
& n=100 \text { or } n=700
\end{aligned}
$$

They will break even if $\mathbf{n}=\mathbf{1 0 0}$ or $\mathbf{n}=700$.
9. How much money will they lose per day if $\mathrm{n}=0$ ?

Find P if $\mathrm{n}=0$.

$$
\begin{aligned}
& P=-.01 n^{2}+8 n-700 \\
& P=-700
\end{aligned}
$$

They will lose $\$ 700$ per day if $\mathbf{n}=\mathbf{0}$.

