Algebra II Worksheet \#1 Unit 8 Selected Solutions

A steel ball is propelled upward from a point that is 224 feet above the ground. Its height, h (in feet), above the ground after t seconds is given by the function $h=\mathbf{- 1 6 t}+\mathbf{8 0 t}+\mathbf{2 2 4}$, where $t \geq 0$. Use this equation to answer the following questions.

1. How high above the ground will the ball be after 3 seconds?

Find h when $\mathrm{t}=3$.

$$
\begin{aligned}
& h=-16(3)^{2}+80(3)+224 \\
& h=-16(9)+240+224 \\
& h=-144+240+224=320
\end{aligned}
$$

The ball will be 320 feet high after $\mathbf{3}$ seconds.
3. When will the ball be 288 feet above the ground?

Find t when $h=288 . \quad \mathbf{2 8 8}=\mathbf{- 1 6 t}{ }^{\mathbf{2}}+\mathbf{8 0 t}+\mathbf{2 2 4}$

$$
16 t^{2}-80 t+64=0
$$

$$
t^{2}-5 t+4=0
$$

$$
(t-1)(t-4)=0
$$

$$
t=1 \text { or } t=4
$$

The ball will be 288 feet high after 1 second and again after $\mathbf{4}$ seconds.
7. What is the maximum height that the ball will reach and how long will it take it to reach that height?

Find the vertex of the function $\mathbf{h}=\mathbf{- 1 6 t} \mathbf{t}^{\mathbf{2}} \mathbf{8 0 t}+\mathbf{2 2 4}$.

$$
\begin{aligned}
h-224 & =-16\left(\mathbf{t}^{2}-5 t\right) \\
h-224-100 & =-16\left(t^{2}-5 t+6.25\right) \\
h-324 & =-16(t-2.5)^{2} \\
\text { Vertex: } & (2.5,324)
\end{aligned}
$$

The maximum height is $\mathbf{3 2 4}$ feet. It will take $\mathbf{2} .5$ seconds to reach that height.

