Algebra II
 Lesson \#2 Unit 8 Class Worksheet \#2
 For Worksheet \#5- \#8

This lesson will show how second degree functions can be created and used to solve problems.

This lesson will show how second degree functions can be created and used to solve problems. Consider this example.

This lesson will show how second degree functions can be created and used to solve problems. Consider this example.

A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

This lesson will show how second degree functions can be created and used to solve problems. Consider this example.

A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is maximum? What is the maximum area?

All of the problems in the second part of this unit involve problems like this.

This lesson will show how second degree functions can be created and used to solve problems. Consider this example.

A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

All of the problems in the second part of this unit involve problems like this. They require the creation and application of a second degree function for the 'quantity' that we wish to maximize (or minimize), in this case the area of a rectangle.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is maximum? What is the maximum area?

First, we will focus on the 'quantity' that we are asked to maximize,

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

First, we will focus on the 'quantity' that we are asked to maximize, the area of a rectangle.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

First, we will focus on the 'quantity' that we are asked to maximize, the area of a rectangle.

Area =

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

First, we will focus on the 'quantity' that we are asked to maximize, the area of a rectangle.

Area $=($ Length $)($ Width $)$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$
Second, we will 'show' a rectangle that meets the requirements in this problem.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$
Second, we will 'show' a rectangle that meets the requirements in this problem. It has $\mathbf{2}$ sides on the coordinate axes

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$
Second, we will 'show' a rectangle that meets the requirements in this problem. It has $\mathbf{2}$ sides on the coordinate axes and one vertex in the first quadrant on the line $2 \mathrm{x}+3 \mathrm{y}=15$.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
2 x+3 y=15
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
2 x+3 y=15
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
2 x+3 y=15
$$

Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
2 x+3 y=15
$$

3y

Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{aligned}
& 2 x+3 y=15 \\
& 3 y=
\end{aligned}
$$

Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{aligned}
& 2 x+3 y=15 \\
& 3 y=-2 x
\end{aligned}
$$

Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15
\end{array}
$$

Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15
\end{array}
$$

Divide each side by 3.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15
\end{array}
$$

$$
\mathbf{y}
$$

Divide each side by 3.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{aligned}
& 2 x+3 y=15 \\
& 3 y=-2 x+15 \\
& y=
\end{aligned}
$$

Divide each side by 3.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{aligned}
& 2 x+3 y=15 \\
& 3 y=-2 x+15 \\
& y=(-2 / 3) x
\end{aligned}
$$

Divide each side by 3.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Divide each side by 3.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has $\mathbf{2}$ sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has $\mathbf{2}$ sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Now, we can draw a rectangle that meets the requirements of the problem.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Now, we can draw a rectangle that meets the requirements of the problem.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Now, we can draw a rectangle that meets the requirements of the problem. Pick any point in the first quadrant on the line $y=(-2 / 3) x+5$.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Now, we can draw a rectangle that meets the requirements of the problem. Pick any point in the first quadrant on the line $y=(-2 / 3) x+5$.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Now, we can draw a rectangle that meets the requirements of the problem. Pick any point in the first quadrant on the line $y=(-2 / 3) x+5$. Then, draw the rectangle.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Now, we can draw a rectangle that meets the requirements of the problem. Pick any point in the first quadrant on the line $y=(-2 / 3) x+5$. Then, draw the rectangle.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Now, we can draw a rectangle that meets the requirements of the problem. Pick any point in the first quadrant on the line $y=(-2 / 3) x+5$. Then, draw the rectangle.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Now, we can draw a rectangle that meets the requirements of the problem. Pick any point in the first quadrant on the line $y=(-2 / 3) x+5$. Then, draw the rectangle. Clearly, the dimensions of the rectangle are the x and y coordinates of the point we pick.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

Area $=($ Length $)($ Width $)$

Second, we will 'show' a rectangle that meets the requirements in this problem. It has 2 sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. We will solve for y and graph this line.

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

Now, we can draw a rectangle that meets the requirements of the problem. Pick any point in the first quadrant on the line $y=(-2 / 3) x+5$. Then, draw the rectangle. Clearly, the dimensions of the rectangle are the x and y coordinates of the point we pick.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{gathered}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5 \\
\text { Area }=(\text { Length })(\text { Width })
\end{gathered}
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{gathered}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5 \\
\text { Area }=(\text { Length })(\text { Width }) \\
A=
\end{gathered}
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{gathered}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5 \\
\text { Area }=(\text { Length })(\text { Width }) \\
\quad A=x y
\end{gathered}
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
\mathbf{A}=
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
\mathbf{A}=\mathbf{x}(
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
A=x\left(-\frac{2}{3} x+5\right)
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
A=x\left(-\frac{2}{3} x+5\right)
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
A=x\left(\frac{-2}{3} x+5\right)
$$

$$
\mathbf{A}=
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$A=x\left(-\frac{2}{3} x+5\right)$

$$
A=\frac{-2}{3} \mathbf{x}^{2}
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
A=x\left(\frac{-2}{3} x+5\right)
$$

$$
A=\frac{-2}{3} x^{2}+5 x
$$

Now, we can express the area of the rectangle as a function of \mathbf{x}.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$A=x\left(\frac{-2}{3} x+5\right)$
$A=\frac{-2}{3} x^{2}+5 x$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
A=x\left(\frac{-2}{3} x+5\right)
$$

$$
A=\frac{-2}{3} x^{2}+5 x
$$

The maximum value of A, the area, corresponds to the vertex of this second degree function.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{gathered}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5 \\
\text { Area }=(\text { Length })(\text { Width }) \\
A=x y \\
A=x\left(\frac{-2}{3} x+5\right) \\
A=\frac{-2}{3} x^{2}+5 x
\end{gathered}
$$

Find the vertex !!
The maximum value of A, the area, corresponds to the vertex of this second degree function.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
\begin{array}{r}
A=x\left(\frac{-2}{3} x+5\right) \\
A=\frac{-2}{3} x^{2}+5 x
\end{array}
$$

Find the vertex !!

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
\begin{array}{r}
A=x\left(\frac{-2}{3} x+5\right) \\
A=\frac{-2}{3} x^{2}+5 x
\end{array}
$$

Find the vertex !!
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
\begin{array}{r}
A=x\left(\frac{-2}{3} x+5\right) \\
A=\frac{-2}{3} x^{2}+5 x
\end{array}
$$

Find the vertex !!
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
\begin{array}{r}
A=x\left(\frac{-2}{3} x+5\right) \\
A=\frac{-2}{3} x^{2}+5 x
\end{array}
$$

Find the vertex !! Factor.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
\begin{aligned}
& A=x\left(\frac{-2}{3} x+5\right) \quad A= \\
& A=\frac{-2}{3} x^{2}+5 x
\end{aligned}
$$

Find the vertex !! Factor.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{gathered}
A=x y \\
A=x\left(-\frac{2}{3} x+5\right) \quad A=\frac{-2}{3}(\\
A=\frac{-2}{3} x^{2}+5 x
\end{gathered}
$$

Find the vertex !! Factor.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{gathered}
A=x y \\
A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}\right. \\
A=\frac{-2}{3} x^{2}+5 x
\end{gathered}
$$

Find the vertex !! Factor.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A= x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& A=\frac{-2}{3} x^{2}+5 x
\end{aligned}
$$

Find the vertex !! Factor.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A= x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& A=\frac{-2}{3} x^{2}+5 x
\end{aligned}
$$

Find the vertex !!
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A= x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& A=\frac{-2}{3} x^{2}+5 x
\end{aligned}
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

$$
\begin{aligned}
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& A=\frac{-2}{3} x^{2}+5 x \quad A \quad=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x \quad\right)
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{cc}
A=x y & \\
A=x\left(\frac{-2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
A=\frac{-2}{3} x^{2}+5 x & \text { A }
\end{array}
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $\mathbf{y}-\mathbf{y}_{1}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

$$
\begin{aligned}
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \\
& A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& A=\frac{-2}{3} x^{2}+5 x \quad A \quad=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{ll}
\quad A=x y \\
A=x\left(-\frac{2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
A=\frac{-2}{3} x^{2}+5 x & A \quad=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{array}
$$

Find the vertex !!
Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{rl}
A=x y & \\
A=x\left(-\frac{2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=-\frac{2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{array}
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{rl}
A=x y & \\
A=x\left(-\frac{2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{array}
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{rl}
A=x y & \\
A=x\left(-\frac{2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{array}
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{ccc}
A=x y & & \\
A=x\left(\frac{-2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) & A-\frac{75}{8}= \\
A=-\frac{2}{3} x^{2}+5 x & A-\frac{75}{8}=-\frac{2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) &
\end{array}
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{clc}
A=x y & & \\
A=x\left(\frac{-2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) & A-\frac{75}{8}=\frac{-2}{3}(\\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) &
\end{array}
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{rl}
A=x y & \\
A=x\left(\frac{-2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{array}
$$

Find the vertex !! Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{rl}
A=x y & \\
A=x\left(\frac{-2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{array}
$$

Find the vertex !!
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{rll}
A=x y & & A-\frac{75}{8}= \\
A=x\left(-\frac{2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) & \text { Vertex: } \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) &
\end{array}
$$

Find the vertex !!
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{rll}
A=x y & & A-\frac{75}{8}=\frac{-2}{3}(x- \\
A=x\left(\frac{-2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) & \text { Vertex: }\left(\frac{15}{4},\right. \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{array}
$$

Find the vertex !!
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{ccc}
A=x y & & A-\frac{75}{8}=\frac{-2}{3}\left(x-\frac{15}{4}\right)^{2} \\
A=x\left(-\frac{2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) & \text { Vertex: }\left(\frac{15}{4}, \frac{75}{8}\right) \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{array}
$$

Find the vertex !!
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& \begin{array}{lc}
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) \\
\text { ind the vertex }!! & \text { Vertex: }\left(\frac{15}{4}, \frac{75}{8}\right) \\
&
\end{array} \\
& \text { Find the vertex !! }
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{lll}
\quad A=x y & & \\
A=x\left(-\frac{2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) & A-\frac{75}{8}=\frac{-2}{3}\left(x-\frac{15}{4}\right)^{2} \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { Find the vertex !! } &
\end{array}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $\mathbf{y}-\mathbf{y}_{1}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& \quad \begin{array}{ll}
A=x y & \\
A=x\left(-\frac{2}{3} x+5\right) & A=-\frac{2}{3}\left(x^{2}-\frac{15}{2} x\right)
\end{array} \\
& \left.\begin{array}{rlr}
\text { A }=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\frac{15}{3}\left(x-\frac{15}{4}\right)^{2}, \frac{75}{8}\right) \\
\text { Find the vertex !! } & & X
\end{array}\right)
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{lll}
\quad \begin{array}{l}
\text { A }=x y \\
A=x\left(-\frac{2}{3} x+5\right)
\end{array} & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) & A-\frac{75}{8}=\frac{-2}{3}\left(x-\frac{15}{4}\right)^{2} \\
A=-\frac{2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { Find the vertex !! } & & X
\end{array}
$$

$$
\mathbf{x}=
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{lll}
\quad A=x y & & 4 \\
A=x\left(\frac{-2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) & A-\frac{75}{8}=\frac{-2}{3}\left(x-\frac{15}{4}\right)^{2} \\
A=-\frac{2}{3} x^{2}+5 x & A-\frac{75}{8}=-\frac{2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { Find the vertex !! } & &
\end{array}
$$

$$
x=\frac{15}{4}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(-\frac{2}{3} x+5\right) \\
& A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& \begin{array}{lll}
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\begin{array}{cc}
\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { ind the vertex }!! & \\
& \\
\text { X } & A
\end{array}\right)
\end{array} \\
& \text { Find the vertex !! } \\
& x=\frac{15}{4} \Rightarrow
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
A=x\left(\frac{-2}{3} x+5\right)
$$

$$
A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right)
$$

$$
\begin{array}{lll}
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\begin{array}{cc}
\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { ind the vertex !! } &
\end{array}\right. \\
\text { lit A }
\end{array}
$$

$$
x=\frac{15}{4} \Rightarrow y=
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(-\frac{2}{3} x+5\right) \\
& A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(-\frac{2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find the vertex !! } \\
& \text { A }-\frac{75}{8}=\frac{-2}{3}\left(x-\frac{15}{4}\right)^{2}
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right)
$$

$$
\begin{array}{lll}
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\begin{array}{c}
\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { ind the vertex !! }
\end{array}\right. \\
\text { lin }
\end{array}
$$

$$
x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
A=x y
$$

$$
A=x\left(\frac{-2}{3} x+5\right)
$$

$$
A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right)
$$

$$
\begin{array}{lll}
A=-\frac{2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { ind the vertex !! } & &
\end{array}
$$

$$
x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \\
& A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& A-\frac{75}{8}=\frac{-2}{3}\left(x-\frac{15}{4}\right)^{2} \\
& \begin{array}{lll}
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\begin{array}{cc}
\left(\frac{15}{4}, ~ \frac{75}{8}\right) \\
\text { ind the vertex !! } &
\end{array} \quad \begin{array}{l}
1 \\
\text { A }
\end{array}\right.
\end{array}
\end{aligned}
$$

$$
x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{array}{lll}
\quad A=x y & A=-2 \\
A=x\left(\frac{-2}{3} x+5\right) & \left.A=\frac{15}{3} x\right) & A-\frac{75}{8}=\frac{-2}{3}\left(x-\frac{15}{4}\right)^{2} \\
\mathbf{A}=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { Find the vertex !! } & & X
\end{array}
$$

$$
x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
$$

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(-\frac{2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& \begin{array}{lll}
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\begin{array}{cc}
\left(\frac{15}{4},\right. & \left.\frac{75}{8}\right) \\
\text { ind the vertex }!! & \\
& \\
\text { X } & \text { A }
\end{array}\right)
\end{array}
\end{aligned}
$$

$$
x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
$$

The rectangle with maximum area is

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=-\frac{-5}{2}+5=\frac{5}{2}
\end{aligned}
$$

The rectangle with maximum area is

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=-\frac{-5}{2}+5=\frac{5}{2}
\end{aligned}
$$

The rectangle with maximum area is $\mathbf{3 . 7 5}$ units long

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& \quad A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \\
& A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& A=\frac{-2}{3} x^{2}+5 x
\end{aligned} \quad A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) \quad \text { Vertex: }\left(\frac{15}{4}, \frac{75}{8}\right)
$$

$$
x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
$$

The rectangle with maximum area is $\mathbf{3 . 7 5}$ units long and

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& \begin{array}{lll}
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\begin{array}{cc}
\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { ind the vertex }!! &
\end{array}\right. \\
& & \text { A }
\end{array} \\
& x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
\end{aligned}
$$

The rectangle with maximum area is $\mathbf{3 . 7 5}$ units long and

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& \quad \begin{array}{ll}
A=x y & \\
A=x\left(-\frac{2}{3} x+5\right) & A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right)
\end{array} \\
& \text { Find the vertex }!! \\
& \\
& \qquad
\end{aligned}
$$

The rectangle with maximum area is $\mathbf{3 . 7 5}$ units long and 2.5 units wide.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{aligned}
& 2 \mathrm{x}+3 \mathrm{y}=15 \\
& 3 y=-2 x+15 \\
& y=(-2 / 3) x+5 \\
& \text { Area }=(\text { Length })(\text { Width }) \\
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
\end{aligned}
$$

The rectangle with maximum area is $\mathbf{3 . 7 5}$ units long and 2.5 units wide.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{aligned}
& 2 \mathrm{x}+3 \mathrm{y}=15 \\
& 3 y=-2 x+15 \\
& y=(-2 / 3) x+5 \\
& \text { Area }=(\text { Length })(\text { Width }) \\
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
\end{aligned}
$$

The rectangle with maximum area is $\mathbf{3 . 7 5}$ units long and 2.5 units wide.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{aligned}
& 2 \mathrm{x}+3 \mathrm{y}=15 \\
& 3 y=-2 x+15 \\
& y=(-2 / 3) x+5 \\
& \text { Area }=(\text { Length })(\text { Width }) \\
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& \begin{array}{lr}
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=-\frac{2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) \\
\text { Vertex: }\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { ind the vertex }!! & X
\end{array} \\
& x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
\end{aligned}
$$

The rectangle with maximum area is $\mathbf{3 . 7 5}$ units long and 2.5 units wide.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{aligned}
& 2 \mathrm{x}+3 \mathrm{y}=15 \\
& 3 y=-2 x+15 \\
& y=(-2 / 3) x+5 \\
& \text { Area }=(\text { Length })(\text { Width }) \\
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \quad A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& \begin{array}{lrl}
A=-\frac{2}{3} x^{2}+5 x & A-\frac{75}{8}=-\frac{2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\begin{array}{c}
\left(\frac{15}{4}, \frac{75}{8}\right) \\
\text { ind the vertex }!!
\end{array}\right. \\
& X & A
\end{array} \\
& x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
\end{aligned}
$$

The rectangle with maximum area is 3.75 units long and $\mathbf{2 . 5}$ units wide. Its area is $\mathbf{9 . 3 7 5}$ square units.

Algebra II Class Worksheet \#2 Unit 8

1. A rectangle has two sides on the coordinate axes and one vertex in the first quadrant on the line $2 x+3 y=15$. What are the dimensions of the rectangle if its area is a maximum? What is the maximum area?

$$
\begin{array}{r}
2 x+3 y=15 \\
3 y=-2 x+15 \\
y=(-2 / 3) x+5
\end{array}
$$

$$
\text { Area }=(\text { Length })(\text { Width })
$$

$$
\begin{aligned}
& A=x y \\
& A=x\left(\frac{-2}{3} x+5\right) \\
& A=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x\right) \\
& \begin{array}{lll}
A=\frac{-2}{3} x^{2}+5 x & A-\frac{75}{8}=\frac{-2}{3}\left(x^{2}-\frac{15}{2} x+\frac{225}{16}\right) & \text { Vertex: }\left(\begin{array}{cc}
\left(\frac{15}{4},\right. & \left.\frac{75}{8}\right) \\
\text { ind the vertex }!! &
\end{array}\right. \\
& & X
\end{array} \\
& x=\frac{15}{4} \Rightarrow y=\left(\frac{-2}{3}\right)\left(\frac{15}{4}\right)+5=\frac{-5}{2}+5=\frac{5}{2}
\end{aligned}
$$

The rectangle with maximum area is $\mathbf{3 . 7 5}$ units long and 2.5 units wide. Its area is $\mathbf{9 . 3 7 5}$ square units.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

We will start by drawing a diagram showing the fenced in area.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

We will start by drawing a diagram showing the fenced in area.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

We will start by drawing a diagram showing the fenced in area.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

We will start by drawing a diagram showing the fenced in area.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

We will start by drawing a diagram showing the fenced in area.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width. The total amount of fencing needed is $2 x+4 y$.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width. The total amount of fencing needed is $2 x+4 y$. Since she has 1000 feet of fencing to work with,

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width. The total amount of fencing needed is $2 x+4 y$. Since she has 1000 feet of fencing to work with, to maximize the total area enclosed,

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width. The total amount of fencing needed is $2 x+4 y$. Since she has 1000 feet of fencing to work with, to maximize the total area enclosed, she will need to use all of the fencing.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width. The total amount of fencing needed is $2 x+4 y$. Since she has 1000 feet of fencing to work with, to maximize the total area enclosed, she will need to use all of the fencing. Therefore,

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width. The total amount of fencing needed is $2 x+4 y$. Since she has 1000 feet of fencing to work with, to maximize the total area enclosed, she will need to use all of the fencing. Therefore, $2 \mathrm{x}+4 \mathrm{y}$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width. The total amount of fencing needed is $2 x+4 y$. Since she has 1000 feet of fencing to work with, to maximize the total area enclosed, she will need to use all of the fencing. Therefore, $2 \mathrm{x}+4 \mathrm{y}=$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

Let x represent the length of the plot of land. Let y represent its width. The total amount of fencing needed is $2 x+4 y$. Since she has 1000 feet of fencing to work with, to maximize the total area enclosed, she will need to use all of the fencing. Therefore, $2 x+4 y=1000$.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

$$
2 x+4 y=1000
$$

Let x represent the length of the plot of land. Let y represent its width. The total amount of fencing needed is $2 x+4 y$. Since she has 1000 feet of fencing to work with, to maximize the total area enclosed, she will need to use all of the fencing. Therefore, $2 x+4 y=1000$.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

$$
2 x+4 y=1000
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

$$
2 x+4 y=1000
$$

Alice wants to maximize the total area enclosed.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

$$
2 x+4 y=1000
$$

Alice wants to maximize the total area enclosed. Clearly,

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

$$
2 x+4 y=1000
$$

Alice wants to maximize the total area enclosed. Clearly, if A represents the total area enclosed,

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

$$
2 x+4 y=1000
$$

Alice wants to maximize the total area enclosed. Clearly, if A represents the total area enclosed, then $\mathbf{A}=$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area?

$$
2 x+4 y=1000
$$

Alice wants to maximize the total area enclosed. Clearly, if A represents the total area enclosed, then $A=x y$.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
2 x+4 y=1000
$$

Alice wants to maximize the total area enclosed. Clearly, if A represents the total area enclosed, then $A=x y$.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
2 x+4 y=1000
$$

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
2 x+4 y=1000
$$

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
2 x+4 y=1000
$$

Solve for \mathbf{y}.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
2 x+4 y=1000
$$

Solve for y.
Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
2 x+4 y=1000
$$

4y

Solve for y.
Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& 2 x+4 y=1000 \\
& 4 y=
\end{aligned}
$$

Solve for \mathbf{y}.
Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& 2 x+4 y=1000 \\
& 4 y=-2 x
\end{aligned}
$$

Solve for \mathbf{y}.
Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& 2 x+4 y=1000 \\
& 4 y=-2 x+1000
\end{aligned}
$$

Solve for y.
Add - 2 x to each side.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& 2 x+4 y=1000 \\
& 4 y=-2 x+1000
\end{aligned}
$$

Solve for y.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& 2 x+4 y=1000 \\
& 4 y=-2 x+1000
\end{aligned}
$$

Solve for y.
Divide each side by 4.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& 2 x+4 y=1000 \\
& 4 y=-2 x+1000 \\
& y
\end{aligned}
$$

Solve for \mathbf{y}.
Divide each side by 4.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& 2 x+4 y=1000 \\
& 4 y=-2 x+1000 \\
& y=
\end{aligned}
$$

Solve for y.
Divide each side by 4.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
2 x & +4 y=1000 \\
4 y & =-2 x+1000 \\
y & =-\frac{1}{2} x
\end{aligned}
$$

Solve for y.
Divide each side by 4.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
2 x & +4 y=1000 \\
4 y & =-2 x+1000 \\
y & =-\frac{1}{2} x+
\end{aligned}
$$

Solve for y.
Divide each side by 4.

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Solve for y.
Divide each side by 4.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Now, substitute this

Algebra II Class Worksheet \#2 Unit 8
2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y^{\swarrow}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Now, substitute this for y in the area equation.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y^{\swarrow}$

$$
\mathbf{A}=
$$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Now, substitute this for y in the area equation.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y^{\swarrow}$

$$
A=\mathbf{x}(
$$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Now, substitute this for y in the area equation.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y^{\swarrow}$

$$
A=x\left(\frac{-1}{2} x+250\right)
$$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Now, substitute this for y in the area equation.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
A=x\left(\frac{-1}{2} x+250\right)
$$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=\frac{-1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
A=x\left(\frac{-1}{2} x+250\right)
$$

Multiply.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=
\end{aligned}
$$

Multiply.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=\frac{-1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}
\end{aligned}
$$

Multiply.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Multiply.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
\mathbf{A}=
$$

Factor.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(-\frac{1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}(
$$

Factor.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(-\frac{1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}\right.
$$

Factor.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

Factor.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=\frac{-1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
\begin{array}{ll}
A=\frac{1}{2}\left(x^{2}-500 x\right) \\
& x \\
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=\frac{-1}{2} x+250
\end{array}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

Complete the square.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

A $\quad=\frac{-1}{2}\left(x^{2}-500 x\right.$

$$
\begin{array}{|l|l|}
\hline & \\
\hline & \\
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=\frac{-1}{2} x+250
\end{array}
$$

Complete the square.
Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
\begin{aligned}
& A=\frac{-1}{2}\left(x^{2}-500 x\right) \\
& =\frac{-1}{2}\left(x^{2}-500 x\right.
\end{aligned}
$$

A

Complete the square.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
\mathrm{A} \quad=\frac{-1}{2}\left(\mathrm{x}^{2}-500 \mathrm{x}+62,500\right)
$$

Complete the square.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(-\frac{1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
\begin{array}{cc}
A & 2 x+4 y=1000 \\
& 4 y=-2 x+1000 \\
\text { Complete the square. } & y=\frac{-1}{2} x+250
\end{array}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

Complete the square.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
\begin{array}{cc}
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right) & 2 x+4 y=1000 \\
& 4 y=-2 x+1000 \\
\text { Complete the square. } & y=\frac{-1}{2} x+250
\end{array}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
\begin{array}{cc}
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right) & 2 x+4 y=1000 \\
& 4 y=-2 x+1000 \\
\text { Complete the square. } & y=\frac{-1}{2} x+250
\end{array}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
2 x+4 y=1000
$$

$$
\mathrm{A}-\mathbf{3 1 , 2 5 0}=
$$

$$
\begin{aligned}
4 y & =-2 x+1000 \\
y & =\frac{-1}{2} x+250
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $\mathbf{y}-\mathbf{y}_{1}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(
$$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $\mathbf{y}-\mathbf{y}_{1}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Complete the square.

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $\mathbf{y}-\mathbf{y}_{1}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
2 x+4 y=1000
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

$$
\begin{aligned}
& A-31,250=\frac{-1}{2}(x-250)^{2} \\
& 4 y=-2 x+1000 \\
& y=\frac{-1}{2} x+250
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex:

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $\mathbf{y}-\mathbf{y}_{1}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: (250,

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $\mathbf{y}-\mathbf{y}_{1}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{1}\right)^{2}$.

The vertex of the function is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathrm{xy}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: ($\mathbf{2 5 0}, \underline{\mathbf{3 1 , 2 5 0}}$)

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $\mathbf{y}-\mathbf{y}_{1}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
\begin{array}{cc}
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right) & 2 x+4 y=1000 \\
\text { A-31,250 }=\frac{-1}{2}(x-250)^{2} & 4 y=-2 x+1000 \\
\text { Vertex: }(\underline{\mathbf{2 5 0}}, \underline{\mathbf{3 1}, 250}) & y=\frac{-1}{2} x+250
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad \mathbf{A}=\mathbf{x y}$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
\begin{gathered}
A-\mathbf{3 1 , 2 5 0}=\frac{-1}{2}\left(x^{2}-500 x+62,500\right) \\
\text { A-31,250 }=\frac{-1}{2}(x-250)^{2} \\
\text { Vertex: } \left.: \frac{(\mathbf{2 5 0}}{\frac{\mathbf{3}}{\uparrow}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathrm{A}}\right)
\end{gathered}
$$

$$
2 x+4 y=1000
$$

$$
4 y=-2 x+1000
$$

$$
y=\frac{-1}{2} x+250
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(-\frac{1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: $\frac{(\mathbf{2 5 0}}{\mathbf{x}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathbf{A}}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(-\frac{1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
\begin{aligned}
& A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right) \\
& \text { A-31,250 }=\frac{-1}{2}(x-250)^{2} \\
& \text { Vertex: } \frac{(\mathbf{2 5 0}}{\frac{\mathbf{x}}{\mathbf{1}}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathbf{A}} \\
& 2 \mathrm{x}+4 \mathrm{y}=1000 \\
& 4 y=-2 x+1000 \\
& y=\frac{-1}{2} x+250 \\
& \mathbf{x}=\mathbf{2 5 0}
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(-\frac{1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
\begin{array}{cc}
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right) & 2 x+4 y=1000 \\
A-31,250=\frac{-1}{2}(x-250)^{2} & 4 y=-2 x+1000 \\
\text { Vertex: }\left(\frac{250}{\frac{1}{4}}, \frac{\mathbf{3 1 , 2 5 0})}{A}\right. & y=\frac{-1}{2} x+250
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(-\frac{1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
\begin{array}{cc}
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right) & 2 x+4 y=1000 \\
A-31,250=\frac{-1}{2}(x-250)^{2} & 4 y=-2 x+1000 \\
\text { Vertex: }\left(\frac{250}{\uparrow}, \frac{\mathbf{3 1 , 2 5 0})}{\AA}\right. & y=\frac{-1}{2} x+250 \\
\mathbf{A} & x=250
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: $\frac{(\mathbf{2 5 0}}{\frac{\mathbf{x}}{\uparrow}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathbf{A}}$

$$
\begin{gathered}
4 y=-2 x+1000 \\
y=\frac{-1}{2} x+250 \\
x=250 \Rightarrow y=-\frac{1}{2}(250)+250
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: $\frac{(\mathbf{2 5 0}}{\frac{\mathbf{x}}{\mathbf{1}}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathbf{A}}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250 \\
x=250 \Rightarrow y=-\frac{1}{2}(\mathbf{2 5 0})+250 \\
y=
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(-\frac{1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: $\frac{(\mathbf{2 5 0}}{\frac{\mathbf{x}}{\mathbf{1}}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathbf{A}}$

$$
\begin{gathered}
4 y=-2 x+1000 \\
y=\frac{-1}{2} x+250 \\
x=250 \Rightarrow y=\frac{-1}{2}(\mathbf{2 5 0})+\mathbf{2 5 0} \\
y=\mathbf{1 2 5}
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(-\frac{1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: $\frac{(\mathbf{2 5 0}}{\mathbf{x}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathbf{A}}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250 \\
x=250 \Rightarrow y=-\frac{1}{2}(\mathbf{2 5 0})+250
\end{gathered}
$$

The total area enclosed is a maximum if the plot is $\mathbf{2 5 0}$ feet long and $\mathbf{1 2 5}$ feet wide.

$$
y=125
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: $\frac{(\mathbf{2 5 0}}{\mathbf{x}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathbf{A}}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250 \\
x=250 \Rightarrow y=-\frac{1}{2}(\mathbf{2 5 0})+250
\end{gathered}
$$

The total area enclosed is a maximum if the plot is $\mathbf{2 5 0}$ feet long and $\mathbf{1 2 5}$ feet wide.

$$
y=125
$$

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: $\frac{(\mathbf{2 5 0}}{\frac{\mathbf{x}}{\uparrow}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathbf{A}}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=-\frac{1}{2} x+250 \\
x=250 \Rightarrow y=\frac{-1}{2}(\mathbf{2 5 0})+250
\end{gathered}
$$

The total area enclosed is a maximum if the plot is $\mathbf{2 5 0}$ feet long and $\mathbf{1 2 5}$ feet wide.

$$
y=125
$$

The maximum area is $\mathbf{3 1 , 2 5 0}$ square feet.

Algebra II Class Worksheet \#2 Unit 8

2. Alice wants to fence in a rectangular plot of land and to divide it into three equal areas using two lengths of fencing parallel to two opposite sides. If she has a total of $\mathbf{1 0 0 0}$ feet of fencing to work with, then find the dimensions that will maximize the total area enclosed. What is the maximum area? $\quad A=x y$

$$
\begin{aligned}
& A=x\left(\frac{-1}{2} x+250\right) \\
& A=\frac{-1}{2} x^{2}+250 x
\end{aligned}
$$

Find the vertex !!

$$
A=\frac{-1}{2}\left(x^{2}-500 x\right)
$$

$$
A-31,250=\frac{-1}{2}\left(x^{2}-500 x+62,500\right)
$$

$$
A-31,250=\frac{-1}{2}(x-250)^{2}
$$

Vertex: $\frac{(\mathbf{2 5 0}}{\frac{\mathbf{x}}{\uparrow}}, \frac{\mathbf{3 1 , 2 5 0}}{\mathbf{A}}$

$$
\begin{gathered}
2 x+4 y=1000 \\
4 y=-2 x+1000 \\
y=\frac{-1}{2} x+250 \\
x=250 \Rightarrow y=\frac{-1}{2}(\mathbf{2 5 0})+\mathbf{2 5 0}
\end{gathered}
$$

The total area enclosed is a maximum if the plot is $\mathbf{2 5 0}$ feet long and $\mathbf{1 2 5}$ feet wide.

$$
y=125
$$

The maximum area is $\mathbf{3 1 , 2 5 0}$ square feet.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of units rented)(

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of units rented)(monthly rental charge)
This is a common type of problem situation.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-x$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-\mathrm{x}$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-x$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.
Make sure you understand this.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-\mathrm{x}$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0 + 2 0 x}$.
Number
Vacant
\mathbf{X}

Make sure you understand this.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-\mathrm{x}$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+20 \mathrm{x}$.

Number	Number
Vacant	Rented
\mathbf{x}	$\mathbf{4 0 - x}$

Make sure you understand this.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-x$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0 + 2 0 x}$.

Number	Number Rented	Monthly Charge (\$)	Make sure you
Vacant	understand this.		
\mathbf{x}	$\mathbf{4 0 - x}$	$\mathbf{6 0 0}+\mathbf{2 0 x}$	

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

I = (number of units rented)(monthly rental charge)			
This is a common type of problem situation.			
Let x represent the number of vacant units.			
Then, the number of units rented is $40-\mathrm{x}$.			
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0}$			
Number	Number	Monthly	
Vacant	Rented	Charge (\$)	Make
X	$40-\mathrm{x}$	$600+20 x$	unders

0

If $\mathbf{x}=\mathbf{0}$,

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-\mathrm{x}$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0 + 2 0 x}$.

Number Vacant	Number Rented	Monthly Charge (\$)	Make sure you understand this.
\mathbf{x}	$\mathbf{4 0 - x}$	$\mathbf{6 0 0}+\mathbf{2 0 x}$	
$\mathbf{0}$	$\mathbf{4 0 - 0}=\mathbf{4 0}$		

If $x=0$, there are 40 units rented

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

If $\mathbf{x}=\mathbf{0}$, there are 40 units rented and the monthly charge is $\$ 600$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-\mathrm{x}$.
Also, the monthly rental charge (in dollars) is $600+20 x$.

Number	Number	Monthly	
Vacant	Rented	Charge (\$)	Make sure you
\mathbf{x}	$40-x$	$600+20 x$	understand this.
0	$40-0=40$	$600+20(0)=\mathbf{6 0 0}$	

If $x=0$, there are 40 units rented and the monthly charge is $\$ 600$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-x$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+20 \mathrm{x}$.

Number	Number	Monthly	Make sure you
Vacant	Rented	Charge (\$)	understand this.
\mathbf{x}	$\mathbf{4 0 - x}$	$\mathbf{6 0 0}+\mathbf{2 0 x}$	
$\mathbf{0}$	$\mathbf{4 0 - 0}=\mathbf{4 0}$	$\mathbf{6 0 0}+\mathbf{2 0 (0)}=\mathbf{6 0 0}$	

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-x$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0 + 2 0 x}$.

Number	Number	Monthly	
Vacant	Rented	Charge (\$)	Make sure you
\mathbf{x}	$\mathbf{4 0 - x}$	$\mathbf{6 0 0}+\mathbf{2 0 x}$	understand this.
$\mathbf{0}$	$\mathbf{4 0 - 0}=\mathbf{4 0}$	$\mathbf{6 0 0}+\mathbf{2 0 (0)}=\mathbf{6 0 0}$	

1
If $\mathrm{x}=1$,

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-\mathrm{x}$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.

Number	Number	Monthly	
Vacant	Rented	Charge (\$)	Make sure you
understand this.			
\mathbf{x}	$\mathbf{4 0 - x}$	$\mathbf{6 0 0}+\mathbf{2 0 x}$	un
$\mathbf{0}$	$\mathbf{4 0 - 0}=\mathbf{4 0}$	$\mathbf{6 0 0}+\mathbf{2 0 (0)}=\mathbf{6 0 0}$	
$\mathbf{1}$	$\mathbf{4 0 - 1 = 3 9}$		

If $x=1$, there are 39 units rented

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is 40 - x .
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.

Number	Number	Monthly
Vacant	Rented	Charge (\$)
\mathbf{x}	$\mathbf{4 0 - x}$	$\mathbf{6 0 0}+\mathbf{2 0 x}$
0	$\mathbf{4 0 - 0}=\mathbf{4 0}$	$\mathbf{6 0 0}+\mathbf{2 0 (0)}=\mathbf{6 0 0}$
$\mathbf{1}$	$\mathbf{4 0 - 1}=\mathbf{3 9}$	$\mathbf{6 0 0}+\mathbf{2 0 (1) = 6 2 0}$

If $x=1$, there are 39 units rented and the monthly charge is $\$ 620$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is 40 - x .
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.

Number	Number	Monthly
Vacant	Rented	Charge (\$)
\mathbf{x}	$\mathbf{4 0 - x}$	$\mathbf{6 0 0}+\mathbf{2 0 x}$
0	$\mathbf{4 0 - 0}=\mathbf{4 0}$	$\mathbf{6 0 0}+\mathbf{2 0 (0) = \mathbf { 6 0 0 }}$
$\mathbf{1}$	$\mathbf{4 0 - 1 = 3 9}$	$\mathbf{6 0 0}+\mathbf{2 0 (1) = 6 2 0}$

If $x=1$, there are 39 units rented and the monthly charge is $\$ 620$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-x$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+20 \mathrm{x}$.

Number Vacant	Number Rented	Monthly Charge (\$)	Make sure you
\mathbf{x}	$40-x$	$600+20 x$	understand this.
0	$40-0=40$	$600+20(0)=600$	
1	$40-1=39$	$\mathbf{6 0 0}+\mathbf{2 0}(1)=620$	

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-x$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+20 \mathrm{x}$.

Number
Vacant
x Number

1

$$
40-1=39
$$

$$
600+20(1)=620
$$

Make sure you understand this.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-\mathrm{x}$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0 + 2 0 x}$.

Number
Vacant Rented
x
40 - x
$1 \quad 40-1=39 \quad 600+20(1)=620$

If $\mathbf{x}=\mathbf{2}$,

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

$I=($ number of units rented)(monthly rental charge)			
This is a common type of problem situation.			
Let x represent the number of vacant units.			
Then, the number of units rented is $40-\mathrm{x}$.			
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.			
Number	Number	Monthly	
Vacant	Rented	Charge (\$)	Make sure you
\mathbf{x}	$40-x$	$600+20 x$	understand this.
1	$40-1=39$	$\mathbf{6 0 0}+\mathbf{2 0}(1)=$	
2	$40-2=38$		

If $x=2$, there are 38 units rented

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

If $x=2$, there are 38 units rented and the monthly charge is $\$ 640$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is 40 - x .
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.

Number	Number	Monthly
Vacant	Rented	Charge (\$)
\mathbf{x}	$40-\mathbf{x}$	$600+20 x$
1	$40-1=39$	$600+20(1)=620$
2	$40-2=38$	$600+20(2)=640$

If $\mathbf{x}=\mathbf{2}$, there are 38 units rented and the monthly charge is $\mathbf{\$ 6 4 0}$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is 40 - x .
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.

Number	Number	Monthly
Vacant	Rented	Charge (\$)
\mathbf{x}	$40-\mathbf{x}$	$600+20 x$
1	$40-1=39$	$600+20(1)=620$
2	$40-2=38$	$600+20(2)=640$

Make sure you understand this.

Got it?

If $\mathbf{x}=\mathbf{2}$, there are 38 units rented and the monthly charge is $\mathbf{\$ 6 4 0}$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is 40 - x .
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.

Number	Number	Monthly
Vacant	Rented	Charge (\$)
\mathbf{x}	$40-\mathbf{x}$	$600+20 x$
1	$40-1=39$	$600+20(1)=620$
2	$40-2=38$	$600+20(2)=640$

Make sure you understand this.

Got it.

If $\mathbf{x}=\mathbf{2}$, there are 38 units rented and the monthly charge is $\mathbf{\$ 6 4 0}$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

This is a common type of problem situation.
Let x represent the number of vacant units.
Then, the number of units rented is $40-\mathrm{x}$.
Also, the monthly rental charge (in dollars) is $\mathbf{6 0 0}+\mathbf{2 0 x}$.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40-x

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): 600 + 20x

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of units rented)(monthly rental charge)
Number of units rented : 40-x Monthly rental charge (\$): 600 + 20x

$$
\mathbf{I}=
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40-x Monthly rental charge (\$): 600 + 20x

$$
I=(40-x)(
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): 600 + 20x

$$
I=(40-x)(600+20 x)
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): 600 + 20x

$$
I=(40-x)(600+20 x)
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=24,000
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=24,000+800 x
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I. $I=$ (number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

$$
\mathbf{I}=
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
\begin{gathered}
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2} \\
I=-20 x^{2}
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
\begin{gathered}
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2} \\
I=-20 x^{2}
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
\begin{gathered}
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2} \\
I=-20 x^{2}+200 x
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of units rented)(monthly rental charge)
Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
\begin{gathered}
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2} \\
I=-20 x^{2}+200 x
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - $x \quad$ Monthly rental charge (\$) : 600 + 20x

$$
\begin{gathered}
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2} \\
I=-20 x^{2}+200 x+24,000
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
\begin{gathered}
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2} \\
I=-20 x^{2}+200 x+24,000
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
\begin{gathered}
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2} \\
I=-20 x^{2}+200 x+24,000
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $\quad I=-20 x^{2}+200 x+24,000$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $\quad I=-20 x^{2}+200 x+24,000$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$): 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$): 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

Subtract 24,000 from each side.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$): 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

I

Subtract 24,000 from each side.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$
I - 24,000

Subtract 24,000 from each side.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\text { I }-\mathbf{2 4 , 0 0 0}=
$$

Subtract 24,000 from each side.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
I-24,000=-20 x^{2}
$$

Subtract 24,000 from each side.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
I-24,000=-20 x^{2}+200 x
$$

Subtract 24,000 from each side.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - $x \quad$ Monthly rental charge (\$) : $600+20 x$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
I-24,000=-20 x^{2}+200 x
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
I-24,000=-20 x^{2}+200 x
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - $x \quad$ Monthly rental charge (\$) : $600+20 x$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
I-24,000=-20 x^{2}+200 x
$$

Factor.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
I-24,000=-20 x^{2}+200 x
$$

I-24,000
Factor.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \\
& I-24,000= \\
& \text { Factor. }
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{gathered}
I-24,000=-20 x^{2}+200 x \\
I-24,000=-20(\\
\text { Factor. }
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{gathered}
I-24,000=-20 x^{2}+200 x \\
I-24,000=-20\left(x^{2}\right. \\
\text { Factor. }
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{gathered}
I-24,000=-20 x^{2}+200 x \\
I-24,000=-20\left(x^{2}-10 x\right) \\
\text { Factor. }
\end{gathered}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \\
& I-24,000=-20\left(x^{2}-10 x\right)
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
I-24,000=-20 x^{2}+200 x
$$

$$
I-24,000=-20\left(x^{2}-10 x\right)
$$

Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000 \quad=-20\left(x^{2}-10 x\right. \\
& I-24,000=-20\left(x^{2}-10 x\right) \\
& \quad \text { Complete the square. }
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000 \quad=-20\left(x^{2}-10 x\right. \\
& I-24,000=-20\left(x^{2}-10 x\right) \\
& \quad \text { Complete the square. }
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000 \quad=-20\left(x^{2}-10 x+25\right) \\
& I-24,000=-20\left(x^{2}-10 x\right) \\
& \quad \text { Complete the square. }
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000 \quad=-20\left(x^{2}-10 x+25\right) \\
& I-24,000=-20\left(x^{2}-10 x\right) \\
& \text { Complete the square. }
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
& I-24,000=-20\left(x^{2}-10 x\right) \\
& \text { Complete the square. }
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
I-24,000=-20 x^{2}+200 x \quad I-24,000-500=-20\left(x^{2}-10 x+25\right)
$$

$$
I-24,000=-20\left(x^{2}-10 x\right)
$$

Complete the square.
Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
& I-24,000=-20\left(x^{2}-10 x\right) \\
& \quad \text { Complete the square. }
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I \\
& \text { Complete the square. }
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500 \\
\text { Complete the square. } &
\end{array}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{rr}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500= \\
\text { Complete the square. } &
\end{array}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500= \\
\text { Complete the square. } &
\end{array}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{lr}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(
\end{array}
$$

Complete the square.
Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-\mathbf{2 0}(x-5)^{2} \\
\text { Complete the square. } &
\end{array}
$$

Express the function in 'vertex form'.
Given any 2nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $\quad I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2}
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: }
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: }(\underline{5},
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: }(\underline{5}, \underline{\mathbf{2 4}, 500})
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of \$20 per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $40-x \quad$ Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: }(\underline{5}, \underline{24,500})
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of \$20 per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $40-x \quad$ Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: }\left(\frac{5}{\uparrow}, \underline{24,500}\right) \\
& X
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of \$20 per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $40-x \quad$ Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: } \frac{\left(5, \frac{5}{1}, \underline{24,500}\right)}{\frac{1}{1}}
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - $x \quad$ Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: }\left(\frac{5}{\frac{5}{1}}, \frac{24,500}{\frac{1}{1}}\right)
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : $600+20 x$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & \text { I-24,500 }=-20(x-5)^{2} \\
& \text { Vertex: } \underset{\substack{\frac{5}{4}}}{\mathbf{2 4 , 5 0 0})} \\
& \frac{1}{I}
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of \$20 per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : $600+20 x$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: } \frac{(5,5, \underline{14,500})}{\frac{1}{1}} \\
& \mathbf{x} \\
& 600+20 x=
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : $600+20 x$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{cc}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: } \frac{(5,5, \underline{14,500})}{\frac{1}{1}} \\
& \\
& 600+20 x=
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : $600+20 x$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
& I-24,000=-20\left(x^{2}-10 x\right) \quad I-24,500=-20(x-5)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 600+20 x= \\
& =600+20(5)
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : $600+20 x$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{rr}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: }\left(\frac{5}{\frac{5}{1}}, \underline{\mathbf{2 4 , 5 0 0})}\right. \\
& \frac{1}{I} \\
& 600+20 x= \\
& =600+20(5)=700
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - x Monthly rental charge (\$) : $600+20 x$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{rr}
I-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: }
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of \$20 per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $40-x \quad$ Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
& I-24,000=-20\left(x^{2}-10 x\right) \quad I-24,500=-20(x-5)^{2} \\
& \text { Vertex: } \left.\frac{(5}{\frac{5}{\uparrow}}, \frac{24,500}{\frac{1}{I}}\right) \\
& \text { They should charge } \$ 700 \text { per month. } \\
& 600+20 x= \\
& =600+20(5)=700
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : $40-x \quad$ Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+\mathbf{2 0 0 x}+\mathbf{2 4 , 0 0 0}$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
& I-24,000=-20\left(x^{2}-10 x\right) \quad I-24,500=-20(x-5)^{2} \\
& \text { Vertex: } \left.\frac{(5}{\frac{5}{\Lambda}}, \frac{24,500}{\frac{1}{1}}\right) \\
& \text { They should charge } \$ 700 \text { per month. } \\
& 600+20 x= \\
& =600+20(5)=700
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - $x \quad$ Monthly rental charge (\$) : 600 + 20x

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+\mathbf{2 0 0 x}+\mathbf{2 4 , 0 0 0}$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
& I-24,000=-20\left(x^{2}-10 x\right) \quad I-24,500=-20(x-5)^{2} \\
& \text { Vertex: } \underset{\substack{\frac{5}{4} \\
x}}{\frac{24,500}{1}} \\
& \text { They should charge } \$ 700 \text { per month. } \\
& 600+20 x= \\
& =600+20(5)=700
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$$
I=(\text { number of units rented })(\text { monthly rental charge })
$$

Number of units rented : 40 - $x \quad$ Monthly rental charge (\$) : $600+20 x$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $I=-20 x^{2}+200 x+24,000$

$$
\begin{aligned}
& I-24,000=-20 x^{2}+200 x \quad I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
& I-24,000=-20\left(x^{2}-10 x\right) \quad I-24,500=-20(x-5)^{2} \\
& \text { Vertex: } \underset{\substack{\frac{5}{4} \\
x}}{\left(\frac{24,500}{1}\right)} \\
& \text { They should charge } \$ 700 \text { per month. } \\
& \text { The maximum monthly income is } \mathbf{\$ 2 4 , 5 0 0} \text {. } \\
& 600+20 x= \\
& =600+20(5)=700
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

3. The owner of a large apartment building with forty units has found that if the rent for each unit is $\$ 600$ per month, then all of the units will be rented. But one unit will become vacant for each increase of $\$ 20$ per month. What rate should be charged per month per unit in order to maximize the total monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of units rented)(monthly rental charge)

Number of units rented : $\mathbf{4 0} \mathbf{- x}$ Monthly rental charge (\$): $\mathbf{6 0 0}+\mathbf{2 0 x}$

$$
I=(40-x)(600+20 x)=24,000+800 x-600 x-20 x^{2}
$$

Find the vertex !! $\quad I=-20 x^{2}+200 x+24,000$

$$
\begin{array}{lr}
\text { I }-24,000=-20 x^{2}+200 x & I-24,000-500=-20\left(x^{2}-10 x+25\right) \\
I-24,000=-20\left(x^{2}-10 x\right) & I-24,500=-20(x-5)^{2} \\
& \text { Vertex: }(\underset{\uparrow}{5}, \underline{(x, 500}) \\
\text { They should charge } \$ 700 \text { per month. } \quad X \quad I
\end{array}
$$

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$\mathbf{I}=$

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of TV's sold per month)(

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month $)($ price per TV)

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
This problem is similar to problem \#3.

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$.

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Number Sold
Per Month

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> $I=($ number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Number Sold
Per Month
200

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> $I=($ number of TV's sold per month $)($ price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Number Sold
Per Month
$200+$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Number Sold
Per Month
$200+20 x$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Number Sold	Price per
Per Month	TV (\$)
$200+20 x$	

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Number Sold	Price per
Per Month	TV (\$)
$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Number Sold	Price per
Per Month	TV (\$)
$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Number Sold	Price per
Per Month	TV (\$)
$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of x	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> $I=($ number of TV's sold per month $)($ price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of x	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$

If $\mathbf{x}=\mathbf{0}$,

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
$\mathbf{0}$	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	

If $\mathbf{x}=\mathbf{0}$, there are 200 TV's sold per month

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
0	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$

If $\mathbf{x}=\mathbf{0}$, there are 200 TV's sold per month, and the price is $\$ 800$ per set.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
0	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$

If $\mathbf{x}=\mathbf{0}$, there are 200 TV's sold per month, and the price is $\$ 800$ per set.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
0	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
0	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$

If $\mathbf{x}=\mathbf{1}$,

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
$\mathbf{0}$	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$
$\mathbf{1}$	$\mathbf{2 0 0}+\mathbf{2 0}=\mathbf{2 2 0}$	

If $\mathbf{x}=\mathbf{1}$, there are 220 TV's sold per month,

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
$\mathbf{0}$	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$
$\mathbf{1}$	$\mathbf{2 0 0}+\mathbf{2 0}=\mathbf{2 2 0}$	$\mathbf{8 0 0}-\mathbf{2 5}=\mathbf{7 7 5}$

If $\mathbf{x}=\mathbf{1}$, there are 220 TV's sold per month, and the price is $\$ 775$ per set.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ 25$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
$\mathbf{0}$	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$
$\mathbf{1}$	$\mathbf{2 0 0}+\mathbf{2 0}=\mathbf{2 2 0}$	$\mathbf{8 0 0}-\mathbf{2 5}=\mathbf{7 7 5}$

If $\mathbf{x}=\mathbf{1}$, there are 220 TV's sold per month, and the price is $\$ 775$ per set.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
$\mathbf{0}$	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$
$\mathbf{1}$	$\mathbf{2 0 0}+\mathbf{2 0}=\mathbf{2 2 0}$	$\mathbf{8 0 0}-\mathbf{2 5}=\mathbf{7 7 5}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold Ver Month	Price per TV (\$)
Value	Per	
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
$\mathbf{0}$	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$
$\mathbf{1}$	$\mathbf{2 0 0}+\mathbf{2 0}=\mathbf{2 2 0}$	$\mathbf{8 0 0 - \mathbf { 2 5 } = \mathbf { 7 7 5 }}$

If $\mathbf{x}=\mathbf{2}$,

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
$\mathbf{0}$	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0}-\mathbf{0}=\mathbf{8 0 0}$
$\mathbf{1}$	$\mathbf{2 0 0}+\mathbf{2 0}=\mathbf{2 2 0}$	$\mathbf{8 0 0}-\mathbf{2 5}=\mathbf{7 7 5}$
$\mathbf{2}$	$\mathbf{2 0 0}+\mathbf{4 0}=\mathbf{2 4 0}$	

If $\mathbf{x}=\mathbf{2}$, there are $\mathbf{2 4 0}$ TV's sold per month,

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

> We need a function for the total monthly income, I.
> I = (number of TV's sold per month)(price per TV)

This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Value	Number Sold Per Month $200+20 x$	$\begin{aligned} & \text { Price per } \\ & \text { TV (\$) } \\ & 800-25 x \end{aligned}$
0	$200+0=200$	$800-0=800$
1	$\mathbf{2 0 0}+\mathbf{2 0}=\mathbf{2 2 0}$	$800-25=775$
2	$\mathbf{2 0 0}+\mathbf{4 0}=\mathbf{2 4 0}$	$\mathbf{8 0 0}-\mathbf{5 0}=\mathbf{7 5 0}$

If $\mathbf{x}=\mathbf{2}$, there are 240 TV's sold per month, and the price is $\$ 750$ per set.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ 25$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of TV's sold per month)(price per TV)
This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

	Number Sold	Price per
Value	Per Month	TV (\$)
of \mathbf{x}	$\mathbf{2 0 0}+\mathbf{2 0 x}$	$\mathbf{8 0 0}-\mathbf{2 5 x}$
0	$\mathbf{2 0 0}+\mathbf{0}=\mathbf{2 0 0}$	$\mathbf{8 0 0 - 0}=\mathbf{8 0 0}$
$\mathbf{1}$	$\mathbf{2 0 0}+\mathbf{2 0}=\mathbf{2 2 0}$	$\mathbf{8 0 0}-\mathbf{2 5}=\mathbf{7 7 5}$
$\mathbf{2}$	$\mathbf{2 0 0}+\mathbf{4 0}=\mathbf{2 4 0}$	$\mathbf{8 0 0}-\mathbf{5 0}=\mathbf{7 5 0}$

If $\mathbf{x}=\mathbf{2}$, there are 240 TV's sold per month, and the price is $\$ 750$ per set.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ 25$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of TV's sold per month)(price per TV)
This problem is similar to problem \#3.
We will represent the number of TV's sold per month as $200+20 x$. We will represent the price per television set as $800-25 x$ (dollars)

Value of \mathbf{x}	Number Sold Per Month $200+20 x$	$\begin{gathered} \text { Price per } \\ \text { TV (\$) } \\ 800-25 x \end{gathered}$	
0	$200+0=200$	$800-0=800$	
1	$200+\mathbf{2 0}=\mathbf{2 2 0}$	$800-25=775$	It works!
2	$\mathbf{2 0 0}+\mathbf{4 0}=\mathbf{2 4 0}$	$\mathbf{8 0 0}-\mathbf{5 0}=\mathbf{7 5 0}$	

If $\mathbf{x}=\mathbf{2}$, there are 240 TV's sold per month, and the price is $\$ 750$ per set.

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month $)($ price per TV)

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month :

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) :

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x $\mathbf{I}=$

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

$$
\begin{aligned}
& \text { We need a function for the total monthly income, } I \text {. } \\
& \text { I =(number of TV's sold per month)(price per TV) } \\
& \text { number of TV's sold per month :200+20x Price per TV }(\$): 800-25 x \\
& I=(\mathbf{2 0 0}+\mathbf{2 0 x})
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month $)($ price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month $)($ price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x
$$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month $)($ price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x $I=(\mathbf{2 0 0}+\mathbf{2 0 x})(800-\mathbf{2 5 x})=\mathbf{1 6 0 , 0 0 0}-\mathbf{5 , 0 0 0 x}+\mathbf{1 6 , 0 0 0 x}-500 x^{2}$

Multiply.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

$$
\mathbf{I}=
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
\begin{gathered}
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2} \\
I=-500 x^{2}
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
\begin{gathered}
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2} \\
I=-500 x^{2}
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
\begin{gathered}
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2} \\
I=-500 x^{2}+11,000 x
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
\begin{gathered}
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2} \\
I=-500 x^{2}+11,000 x
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
\begin{gathered}
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2} \\
I=-500 x^{2}+11,000 x+160,000
\end{gathered}
$$

Rearrange the terms, and combine like terms.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
\begin{gathered}
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2} \\
I=-500 x^{2}+11,000 x+160,000
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
\begin{gathered}
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2} \\
I=-500 x^{2}+11,000 x+160,000
\end{gathered}
$$

Algebra II Class Worksheet \#2 Unit 8
4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !!
$I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$

Subtract 160,000 from each side.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
I

Subtract 160,000 from each side.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !!
$I=-500 x^{2}+11,000 x+160,000$
I-160,000
Subtract $\mathbf{1 6 0 , 0 0 0}$ from each side.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
I $-\mathbf{1 6 0 , 0 0 0}=$
Subtract $\mathbf{1 6 0 , 0 0 0}$ from each side.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathbf{x}^{\mathbf{2}}$
Subtract $\mathbf{1 6 0 , 0 0 0}$ from each side.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathbf{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
Subtract $\mathbf{1 6 0 , 0 0 0}$ from each side.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathbf{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathbf{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
I = (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$

Factor.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=-\mathbf{5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
I-160,000
Factor.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
I $-\mathbf{1 6 0 , 0 0 0}=$
Factor.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-160,000=-500 x^{2}+11,000 x$
I $-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}($
Factor.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=-\mathbf{5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
$I-160,000=-500\left(x^{2}\right.$
Factor.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=-\mathbf{5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
I-160,000 = -500($\left.\mathbf{x}^{2}-\mathbf{2 2 x}\right)$
Factor.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
I-160,000 $=\mathbf{- 5 0 0}\left(x^{2}-22 x\right)$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
I-160,000 $=\mathbf{- 5 0 0}\left(x^{2}-22 x\right)$

Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
I $-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0} \quad=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x} \quad\right)$
Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right.$
Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
I $-\mathbf{1 6 0 , 0 0 0}=-500\left(x^{2}-22 x\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-22 \mathrm{x}+121\right)$
Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
I $-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+11,000 x+160,000$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
I $-\mathbf{1 6 0 , 0 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
I $-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-22 \mathrm{x}+121\right)$
Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathbf{x}^{2}+\mathbf{1 1 , 0 0 0 x} \quad I$
$I-160,000=-500\left(x^{2}-22 x\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+11,000 x+160,000$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathbf{x}^{\mathbf{2}}+\mathbf{1 1 , 0 0 0 x} \quad$ I -220,500
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
I $-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-22 \mathrm{x}+121\right)$
Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$

$$
\begin{array}{ll}
I-160,000=-500 x^{2}+11,000 x & I-220,500= \\
I-160,000=-500\left(x^{2}-22 x\right) & \\
I-160,000-60,500=-500\left(x^{2}-22 x+121\right)
\end{array}
$$

Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+11,000 x+160,000$

$$
\begin{array}{ll}
I-160,000=-500 x^{2}+11,000 x & I-220,500= \\
I-160,000=-500\left(x^{2}-22 x\right) & \\
I-160,000-60,500=-500\left(x^{2}-22 x+121\right)
\end{array}
$$

Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+11,000 x+160,000$

$$
\begin{aligned}
& I-160,000=-500 x^{2}+11,000 x \\
& I-160,000=-500\left(x^{2}-22 x\right) \\
& I-160,000-60,500=-500\left(x^{2}-22 x+121\right)
\end{aligned}
$$

Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$

$$
\begin{aligned}
& I-160,000=-500 x^{2}+11,000 x \\
& I-160,000=-500\left(x^{2}-22 x\right) \\
& I-160,000-60,500=-500\left(x^{2}-22 x+121\right)
\end{aligned}
$$

Complete the square.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
 $I=($ number of TV's sold per month)(price per TV)

number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$

$$
I-160,000=-500 x^{2}+11,000 x \quad I-220,500=-500(x-11)^{2}
$$

$I-160,000=-500\left(x^{2}-22 x\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
 $I=$ (number of TV's sold per month)(price per TV)

number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0 x ^ { 2 }}+\mathbf{1 1 , 0 0 0 x} \quad I-220,500=-500(x-11)^{2}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right) \quad$ Vertex:
I $-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
 $I=($ number of TV's sold per month)(price per TV)

number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0 x ^ { 2 }}+\mathbf{1 1 , 0 0 0 x} \quad I-220,500=-500(x-11)^{2}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right) \quad$ Vertex: $(\underline{11}$,
I $-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
 $I=($ number of TV's sold per month)(price per TV)

number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0 x ^ { 2 }}+\mathbf{1 1 , 0 0 0 x} \quad I-220,500=-500(x-11)^{2}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right) \quad$ Vertex: $(\underline{11}, \underline{\mathbf{2 2 0}, 500})$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0 x ^ { 2 }}+\mathbf{1 1 , 0 0 0 x} \quad I-220,500=-\mathbf{5 0 0}(x-11)^{2}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right) \quad$ Vertex: $(\underline{11}, \underline{\mathbf{2 2 0}, 500})$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x} \quad$ I $-\mathbf{2 2 0 , 5 0 0}=\mathbf{- 5 0 0}(x-11)^{2}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x} \quad$ I $-\mathbf{2 2 0 , 5 0 0}=\mathbf{- 5 0 0}(x-11)^{2}$
$\begin{array}{lr}I-160,000=-500\left(x^{2}-22 x\right) & \text { Vertex: }\left(\frac{11}{\frac{11}{\uparrow}}, \frac{\mathbf{2 2 0 , 5 0 0}}{\frac{1}{x}}\right) \\ I-160,000-60,500=-500\left(x^{2}-22 x+121\right) & x\end{array}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+11,000 x+160,000$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x} \quad$ I $-\mathbf{2 2 0 , 5 0 0}=\mathbf{- 5 0 0 (x - 1 1) ^ { 2 }}$
$\begin{array}{lr}I-160,000=-500\left(x^{2}-22 x\right) & \text { Vertex: }\left(\frac{11}{\frac{11}{4}}, \frac{\mathbf{2 2 0 , 5 0 0}}{\frac{1}{4}}\right) \\ I-160,000-60,500=-500\left(x^{2}-22 x+121\right) & X\end{array}$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
I $-\mathbf{2 2 0 , 5 0 0}=\mathbf{- 5 0 0}(x-11)^{2}$
$I-160,000=-500\left(x^{2}-22 x\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-500\left(\mathrm{x}^{2}-22 \mathrm{x}+121\right)$
Vertex: $\left.\frac{(11}{\frac{11}{\uparrow}}, \frac{\mathbf{2 2 0 , 5 0 0}}{\frac{1}{\mathrm{I}}}\right)$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+11,000 x+160,000$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
$I-160,000=-500\left(x^{2}-22 x\right)$
I $-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
I-220,500 $=\mathbf{- 5 0 0}(x-11)^{2}$
Vertex: $\frac{\left(\frac{11}{\uparrow}, \frac{220,500}{\frac{1}{\mathrm{I}}}\right)}{\frac{1}{\mathrm{I}}}$

$$
800-25 x=
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+11,000 x+160,000$

$$
\begin{aligned}
& \mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x} \\
& \text { I }-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right) \\
& \mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right) \\
& \text { I-220,500 = -500(x-11) }{ }^{2} \\
& \text { Vertex: } \frac{\left(\frac{11}{1}, \frac{220,500}{\frac{1}{1}}\right)}{\frac{1}{1}} \\
& 800-25 x=
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+11,000 x+160,000$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
$I-160,000=-500\left(x^{2}-22 x\right)$
I $-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
I-220,500 $=\mathbf{- 5 0 0}(x-11)^{2}$
Vertex: $\left(\frac{11}{\frac{11}{\uparrow}}, \frac{\mathbf{2 2 0 , 5 0 0}}{\frac{1}{\mathrm{I}}}\right)$
$800-25 \mathrm{x}=$
$=800-25(11)$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+11,000 x+160,000$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
$I-160,000=-500\left(x^{2}-22 x\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
I-220,500 $=\mathbf{- 5 0 0}(x-11)^{2}$
Vertex: $\left(\frac{11}{\frac{11}{\uparrow}}, \frac{220,500}{\frac{1}{x}}\right)$
$800-25 \mathrm{x}=$
$=800-25(11)=525$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\$ \mathbf{2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.
$I=$ (number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+11,000 x+160,000$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
$\mathrm{I}-160,000=-500\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+121\right)$
They should charge $\$ 525$ per television set.

$$
I-220,500=-500(x-11)^{2}
$$

$800-25 \mathrm{x}=$

$$
=800-25(11)=525
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

I = (number of TV's sold per month)(price per TV)

number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$I-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x} \quad$ I $-\mathbf{2 2 0 , 5 0 0}=\mathbf{- 5 0 0 (x - 1 1) ^ { 2 }}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$

$$
\begin{aligned}
\text { Vertex: } & \left(\frac{\mathbf{1 1}}{\frac{1}{x}}, \frac{\mathbf{2 2 0 , 5 0 0}}{\frac{1}{I}}\right) \\
& \quad \mathbf{8 0 0}-\mathbf{2 5 x}= \\
& =800-\mathbf{2 5}(\mathbf{1 1})=\mathbf{5 2 5}
\end{aligned}
$$

They should charge $\$ 525$ per television set.

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)

number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
I-220,500 $=\mathbf{- 5 0 0}(x-11)^{2}$
Vertex: $\frac{\left(\frac{11}{\uparrow}, \frac{220,500}{\frac{1}{x}}\right)}{\frac{I}{1}}$
$800-25 x=$
They should charge $\$ 525$ per television set.

$$
=800-25(11)=525
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=$ (number of TV's sold per month)(price per TV)

number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $I=-500 x^{2}+\mathbf{1 1 , 0 0 0 x}+\mathbf{1 6 0 , 0 0 0}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
I-220,500 $=\mathbf{- 5 0 0}(x-11)^{2}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=-\mathbf{5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
They should charge $\$ 525$ per television set.

$$
\begin{aligned}
& \text { Vertex: } \frac{\left(\frac{11}{\mathrm{~A}}, \frac{\mathbf{2 2 0 , 5 0 0}}{\frac{1}{\mathrm{I}}}\right)}{(} \\
& 800-25 x= \\
& =800-25(11)=525
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

I = (number of TV's sold per month)(price per TV)

number of TV's sold per month : 200 + 20x Price per TV (\$) : 800 - 25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+11,000 x+160,000$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
I-220,500 $=\mathbf{- 5 0 0}(x-11)^{2}$
$\mathrm{I}-160,000=-500\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+121\right)$
Vertex: $\underset{\mathrm{x}}{\left.\frac{(11}{\mathrm{A}}, \frac{220,500}{\mathrm{I}}\right)}$
$800-25 x=$
They should charge $\$ 525$ per television set. The maximum monthly income is $\mathbf{\$ 2 2 0 , 5 0 0}$.

$$
=800-25(11)=525
$$

Algebra II Class Worksheet \#2 Unit 8

4. A television set manufacturer can sell 200 sets per month for $\$ 800$ per set. Marketing research indicates that the company can sell 20 more sets per month for each $\mathbf{\$ 2 5}$ decrease in price. What price per set will give the greatest monthly income? What is the maximum monthly income?

We need a function for the total monthly income, I.

$I=($ number of TV's sold per month)(price per TV)
number of TV's sold per month : 200 + 20x Price per TV (\$) : 800-25x

$$
I=(200+20 x)(800-25 x)=160,000-5,000 x+16,000 x-500 x^{2}
$$

Find the vertex !! $\quad I=-500 x^{2}+11,000 x+160,000$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0} \mathrm{x}^{2}+\mathbf{1 1 , 0 0 0 x}$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}\right)$
$\mathrm{I}-\mathbf{1 6 0 , 0 0 0}-\mathbf{6 0 , 5 0 0}=\mathbf{- 5 0 0}\left(\mathrm{x}^{2}-\mathbf{2 2 x}+\mathbf{1 2 1}\right)$
They should charge $\$ 525$ per television set. The maximum monthly income is $\mathbf{\$ 2 2 0 , 5 0 0}$.

I-220,500 = -500(x-11) ${ }^{2}$
Vertex: $\frac{\left(\frac{11}{\uparrow}, \frac{220,500}{\frac{1}{x}}\right)}{\frac{1}{1}}$
$800-25 x=$

$$
=800-25(11)=525
$$

