Algebra II
 Lesson \#1 Unit 8 Class Worksheet \#1
 For Worksheets \#1- \#3

In this unit we will apply $2^{\text {nd }}$ degree functions.

In this unit we will apply $2^{\text {nd }}$ degree functions. Here is an example.

In this unit we will apply $2^{\text {nd }}$ degree functions. Here is an example.

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

In this unit we will apply $2^{\text {nd }}$ degree functions. Here is an example.

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

As you can see, this function uses variables t and h instead of x and y.

In this unit we will apply $2^{\text {nd }}$ degree functions. Here is an example.

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

As you can see, this function uses variables t and h instead of x and y. This is done in many applications in order to give more meaning to the variables.

In this unit we will apply $2^{\text {nd }}$ degree functions. Here is an example.

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

As you can see, this function uses variables t and h instead of x and y. This is done in many applications in order to give more meaning to the variables. h represents the height of the ball (in feet) above the ground after t seconds.

In this unit we will apply $2^{\text {nd }}$ degree functions. Here is an example.

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

As you can see, this function uses variables t and h instead of x and y. This is done in many applications in order to give more meaning to the variables. h represents the height of the ball (in feet) above the ground after t seconds. It is important to know that the steel ball is 'fired' straight up and that we are ignoring any effect due to air resistance.

In this unit we will apply $2^{\text {nd }}$ degree functions. Here is an example.

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

As you can see, this function uses variables t and h instead of x and y. This is done in many applications in order to give more meaning to the variables. h represents the height of the ball (in feet) above the ground after t seconds. It is important to know that the steel ball is 'fired' straight up and that we are ignoring any effect due to air resistance. Of course, as it moves up, the force of gravity causes it to slow down until it reaches its maximum height.

In this unit we will apply $2^{\text {nd }}$ degree functions. Here is an example.

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

As you can see, this function uses variables t and h instead of x and y. This is done in many applications in order to give more meaning to the variables. h represents the height of the ball (in feet) above the ground after t seconds. It is important to know that the steel ball is 'fired' straight up and that we are ignoring any effect due to air resistance. Of course, as it moves up, the force of gravity causes it to slow down until it reaches its maximum height. Then, gravity causes it to fall back down to the ground, speeding up as it moves downward.

In this unit we will apply $2^{\text {nd }}$ degree functions. Here is an example.

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0}$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

As you can see, this function uses variables t and h instead of x and y. This is done in many applications in order to give more meaning to the variables. h represents the height of the ball (in feet) above the ground after t seconds. It is important to know that the steel ball is 'fired' straight up and that we are ignoring any effect due to air resistance. Of course, as it moves up, the force of gravity causes it to slow down until it reaches its maximum height. Then, gravity causes it to fall back down to the ground, speeding up as it moves downward.

Now we will do class worksheet \#1.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after $\mathbf{2}$ seconds?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after $\mathbf{2}$ seconds?

Find h , if $\mathrm{t}=\mathbf{2}$.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
h=-16 t^{2}+160 t+500
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after $\mathbf{2}$ seconds?

Find h , if $\mathrm{t}=\mathbf{2}$.

$$
h=-16 t^{2}+160 t+500
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h. Step 1: Substitute the given value of t into the equation. Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after $\mathbf{2}$ seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h. Step 1: Substitute the given value of t into the equation. Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after $\mathbf{2}$ seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h. Step 1: Substitute the given value of t into the equation. Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500 \\
& h=
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500 \\
& h=-64
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500 \\
& h=-64+320
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} \\
& h=-16(2)^{2}+160(2)+500 \\
& h=-64+320+500
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500 \\
& h=-64+320+500=
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500 \\
& h=-64+320+500=756
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500 \\
& h=-64+320+500=756
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500 \\
& h=-64+320+500=756
\end{aligned}
$$

It will be $\mathbf{7 5 6}$ feet above the ground after $\mathbf{2}$ seconds.

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).

1. What is the height of the ball after 2 seconds?

Find \mathbf{h}, if $\mathbf{t}=\mathbf{2}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(2)^{2}+160(2)+500 \\
& h=-64+320+500=756
\end{aligned}
$$

It will be $\mathbf{7 5 6}$ feet above the ground after $\mathbf{2}$ seconds.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h, if $t=6 . \quad h=-16 t^{2}+160 t+500$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h, if $t=6 . \quad h=-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0}$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+\mathbf{5 0 0}
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h, if $t=6$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+\mathbf{5 0 0}
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+\mathbf{5 0 0}
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+500 \\
& h=
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+500 \\
& h=-576
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h, if $t=6$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+500 \\
& h=-576+960
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h, if $t=6$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+500 \\
& h=-576+960+500
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h, if $t=6$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+500 \\
& h=-576+960+500=
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h, if $t=6$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+500 \\
& h=-576+960+500=884
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+500 \\
& h=-576+960+500=884
\end{aligned}
$$

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h, if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+500 \\
& h=-576+960+500=884
\end{aligned}
$$

It will be $\mathbf{8 8 4}$ feet above the ground after $\mathbf{6}$ seconds.

This is the most basic type of problem.
You are given a value of t and are asked to find h.
Step 1: Substitute the given value of t into the equation.
Step 2: Evaluate the expression to find the value of h.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
2. What is the height of the ball after $\mathbf{6}$ seconds?

Find h , if $\mathrm{t}=\mathbf{6}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h=-16(6)^{2}+160(6)+500 \\
& h=-576+960+500=884
\end{aligned}
$$

It will be 884 feet above the ground after 6 seconds.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{6 4 4}$.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{6 4 4}$.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
h=-16 t^{2}+160 t+500
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
h=-16 t^{2}+160 t+500
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
h=-16 t^{2}+160 t+500
$$

$644=$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500
\end{aligned}
$$

Subtract 644 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500
\end{aligned}
$$

0
Subtract 644 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =
\end{aligned}
$$

Subtract 644 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}
\end{aligned}
$$

Subtract 644 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

Subtract 644 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

Subtract 644 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathrm{h}=644$.
0

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
0=
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\mathbf{0}=\mathbf{t}^{2}
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
0=t^{2}-10 t
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
0=t^{2}-10 t+9
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
0=t^{2}-10 t+9
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
0=t^{2}-10 t+9
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
0=t^{2}-10 t+9
$$

$$
h=-16 t^{2}+160 t+500
$$

$$
0=
$$

$$
644=-16 t^{2}+160 t+500
$$

$$
0=-16 t^{2}+160 t-144
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
h=-16 t^{2}+160 t+500
$$

$$
\begin{aligned}
0 & =t^{2}-10 t+9 \\
0 & =(t-1)(
\end{aligned}
$$

$$
644=-16 t^{2}+160 t+500
$$

$$
0=-16 t^{2}+160 t-144
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
0=t^{2}-10 t+9
$$

$$
h=-16 t^{2}+160 t+500
$$

$$
0=(t-1)(t-9)
$$

$$
644=-16 t^{2}+160 t+500
$$

$$
0=-16 t^{2}+160 t-144
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.
$h=-16 t^{2}+160 t+500$

$$
\begin{gathered}
0=t^{2}-10 t+9 \\
0=(t-1)(t-9)
\end{gathered}
$$

$$
644=-16 t^{2}+160 t+500
$$

$$
0=-16 t^{2}+160 t-144
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.
$h=-16 t^{2}+160 t+500$

$$
\begin{gathered}
0=t^{2}-10 t+9 \\
0=(t-1)(t-9)
\end{gathered}
$$

$$
644=-16 t^{2}+160 t+500
$$

$$
0=-16 t^{2}+160 t-144
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

$$
\begin{aligned}
& \text { Find } \mathbf{t} \text {, if } \mathbf{h}=644 \text {. } \\
& h=-16 t^{2}+160 t+500 \\
& 644=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t-144 \\
& 0=\mathbf{t}^{2}-10 t+9 \\
& 0=(t-1)(t-9) \\
& \mathrm{t}-\mathbf{1}=\mathbf{0}
\end{aligned}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
0=-16 t^{2}+160 t-144
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 644=-16 t^{2}+160 t+500 \\
& 0=(t-1)(t-9) \\
& \text { t-1=0 or }
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{array}{rlrl}
\text { ind } t, \text { if } h=644 . & 0 & =t^{2}-10 t+9 \\
h & =-16 t^{2}+160 t+500 & 0 & =(t-1)(t-9) \\
644 & =-16 t^{2}+160 t+500 & t-1 & =0 \text { or } t-9=0
\end{array}
$$

$$
0=-16 t^{2}+160 t-144
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{array}{rlrl}
\text { ind } t, \text { if } h & =644 . & 0 & =t^{2}-10 t+9 \\
h & =-16 t^{2}+160 t+500 & 0 & =(t-1)(t-9) \\
644 & =-16 t^{2}+160 t+500 & t-1 & =0 \text { or } t-9=0
\end{array}
$$

$$
0=-16 t^{2}+160 t-144
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{array}{rlrl}
\text { ind } t, \text { if } h & =644 . & 0 & =t^{2}-10 t+9 \\
h & =-16 t^{2}+160 t+500 & 0 & =(t-1)(t-9) \\
644 & =-16 t^{2}+160 t+500 & t-1 & =0 \text { or } t-9=0 \\
0 & =-16 t^{2}+160 t-144 & &
\end{array}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 644=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t-144
\end{aligned}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{array}{lc}
\text { ind } t, \text { if } h=644 . & 0=t^{2}-10 t+9 \\
h=-16 t^{2}+160 t+500 & 0=(t-1)(t-9) \\
644=-16 t^{2}+160 t+500 & t-1=0 \text { or } t-9=0 \\
0=-16 t^{2}+160 t-144 & t=1
\end{array}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 644=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t-144
\end{aligned}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

$$
\begin{array}{rlrl}
\text { Find } t, \text { if } h=644 . & 0 & =t^{2}-10 t+9 \\
h & =-16 t^{2}+160 t+500 & 0 & =(t-1)(t-9) \\
644 & =-16 t^{2}+160 t+500 & t-1 & =0 \text { or } t-9=0 \\
0 & =-16 t^{2}+160 t-144 & t & =1 \text { or } t=9
\end{array}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=644$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
644 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t-144
\end{aligned}
$$

$$
\begin{aligned}
0 & =t^{2}-10 t+9 \\
0 & =(t-1)(t-9) \\
t-1 & =0 \text { or } t-9=0 \\
t=1 & \text { or } t=9
\end{aligned}
$$

It will be $\mathbf{6 4 4}$ feet above the ground after $\underline{\mathbf{1} \text { second and again after } \underline{9} \text { seconds. } ~}$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
3. When will the ball be $\mathbf{6 4 4}$ feet above the ground?

$$
\begin{array}{rlrl}
\text { Find } t, \text { if } h & =644 . & 0 & =t^{2}-\mathbf{1 0 t}+9 \\
h & =-16 t^{2}+160 t+500 & 0 & =(t-1)(t-9) \\
644 & =-16 t^{2}+160 t+500 & t-1 & =0 \text { or } t-9=0 \\
0=-16 t^{2}+160 t-144 & t & =1 \text { or } t=9
\end{array}
$$

It will be 644 feet above the ground after 1 second and again after 9 seconds.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
h=-16 t^{2}+160 t+500
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
h=-16 t^{2}+160 t+500
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500
\end{aligned}
$$

Subtract 500 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500
\end{aligned}
$$

0
Subtract 500 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =
\end{aligned}
$$

Subtract 500 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}
\end{aligned}
$$

Subtract 500 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} \\
\mathbf{5 0 0} & =-\mathbf{1 6} t^{2}+\mathbf{1 6 0 t}+500 \\
0 & =-\mathbf{- 1 6 t}
\end{aligned}
$$

Subtract 500 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} \\
\mathbf{5 0 0} & =-\mathbf{1 6} t^{2}+\mathbf{1 6 0 t}+500 \\
0 & =-\mathbf{- 1 6 t}
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.
0

$$
\begin{aligned}
h & =\mathbf{- 1 6 t} \\
\mathbf{5 0 0} & =\mathbf{1 6 0 t}+\mathbf{5 0 0} \\
0 & =\mathbf{- 1 6 t} \mathbf{t}^{2}+\mathbf{1 6 0 t}
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
0=
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\mathbf{0}=\mathbf{t}^{2}
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
0=t^{2}-10 t
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

Divide each side by -16.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
0=t^{2}-10 t
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
0=t^{2}-10 t
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
0=t^{2}-10 t
$$

$$
\begin{aligned}
h & =-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} \\
\mathbf{5 0 0} & =-\mathbf{1 6} t^{2}+\mathbf{1 6 0 t}+500 \\
0 & =-\mathbf{- 1 6 t}
\end{aligned}
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
h=-16 t^{2}+160 t+500
$$

$$
500=-16 t^{2}+160 t+500
$$

$$
0=-16 t^{2}+160 t
$$

$$
0=t^{2}-10 t
$$

$$
0=
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
h=-16 t^{2}+160 t+500
$$

$$
500=-16 t^{2}+160 t+500
$$

$$
0=-16 t^{2}+160 t
$$

$$
\begin{aligned}
& 0=\mathbf{t}^{2}-\mathbf{1 0 t} \\
& 0=\mathbf{t}(
\end{aligned}
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} \\
\mathbf{5 0 0} & =-\mathbf{1 6} t^{2}+\mathbf{1 6 0 t}+500 \\
0 & =-\mathbf{- 1 6 t}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\mathbf{t}^{2}-\mathbf{1 0 t} \\
& 0=\mathbf{t}(\mathbf{t}
\end{aligned}
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
h=-16 t^{2}+160 t+500
$$

$500=-16 t^{2}+160 t+500$
$0=\mathbf{- 1 6 t} t^{2}+160 t$

$$
0=t^{2}-10 t
$$

$$
\mathbf{0}=\mathbf{t}(\mathbf{t}-
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
h=-16 t^{2}+160 t+500
$$

$500=-16 t^{2}+160 t+500$
$0=\mathbf{- 1 6 t} t^{2}+160 t$

$$
\begin{aligned}
& 0=t^{2}-10 t \\
& 0=t(t-10)
\end{aligned}
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
h=-16 t^{2}+160 t+500
$$

$$
\begin{aligned}
& 0=t^{2}-10 t \\
& 0=t(t-10)
\end{aligned}
$$

$$
500=-16 t^{2}+160 t+500
$$

$$
0=-16 t^{2}+160 t
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
h=-16 t^{2}+160 t+500
$$

$$
500=-16 t^{2}+160 t+500
$$

$$
0=-16 t^{2}+160 t
$$

$$
\begin{aligned}
& 0=t^{2}-10 t \\
& 0=t(t-10)
\end{aligned}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+\mathbf{1 6 0 t}
\end{aligned}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

$$
\begin{array}{rr}
\text { Find } t, \text { if } h=500 . & 0=t^{2}-\mathbf{1 0 t} \\
h=-\mathbf{1 6 t}+\mathbf{1 6 0 t}+\mathbf{5 0 0} & 0=t(t-\mathbf{1 0}) \\
\mathbf{5 0 0}=-\mathbf{1 6 t}+\mathbf{1 6 0 t}+\mathbf{5 0 0} & \mathbf{t}=\mathbf{0} \\
0=-16 \mathbf{t}^{2}+\mathbf{1 6 0 t} &
\end{array}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{array}{rlr}
\text { ind } t, \text { if } h=500 . & 0=t^{2}-\mathbf{1 0 t} \\
h=-\mathbf{1 6 t}+\mathbf{1 6 0 t}+\mathbf{5 0 0} & 0=t(t-\mathbf{1 0}) \\
\mathbf{5 0 0}=\mathbf{- 1 6 t}+\mathbf{1 6 0 t}+\mathbf{5 0 0} & t=0 \text { or } \\
0=-16 t^{2}+\mathbf{1 6 0 t} &
\end{array}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

$$
\begin{gathered}
0=t^{2}-10 t \\
0=t(t-10) \\
\mathbf{t}=\mathbf{0} \text { or } \mathbf{t}-\mathbf{1 0}=
\end{gathered}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+\mathbf{1 6 0 t}
\end{aligned}
$$

$$
\begin{aligned}
0 & =t^{2}-10 t \\
0 & =t(t-10) \\
\mathbf{t}=\mathbf{0} & \text { or } \mathbf{t}-\mathbf{1 0}=\mathbf{0}
\end{aligned}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

$$
\begin{aligned}
0 & =t^{2}-10 t \\
0 & =t(t-10) \\
\mathbf{t}=\mathbf{0} & \text { or } \mathbf{t}-\mathbf{1 0}=\mathbf{0}
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

$$
\begin{aligned}
0 & =t^{2}-10 t \\
0 & =t(t-10) \\
\mathbf{t}=\mathbf{0} & \text { or } \mathbf{t}-\mathbf{1 0}=\mathbf{0}
\end{aligned}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

$$
\begin{aligned}
& 0=t^{2}-10 t \\
& 0=t(t-10) \\
& t=0 \text { or } t-10=0 \\
& t=0
\end{aligned}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

$$
\begin{aligned}
0 & =t^{2}-10 t \\
0 & =t(t-10) \\
t=0 & \text { or } t-10=0 \\
t=0 & \text { or }
\end{aligned}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

$$
\begin{aligned}
0 & =t^{2}-10 t \\
0 & =t(t-10) \\
t=0 & \text { or } t-10=0 \\
t=0 & \text { or } t=
\end{aligned}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

$$
\begin{aligned}
0 & =t^{2}-10 t \\
0 & =t(t-10) \\
t=0 & \text { or } t-10=0 \\
t=0 & \text { or } t=10
\end{aligned}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

$$
\begin{aligned}
0 & =t^{2}-10 t \\
0 & =t(t-10) \\
t=0 & \text { or } t-10=0 \\
t=0 & \text { or } t=10
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be $\mathbf{5 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=500$.

$$
\begin{aligned}
h & =-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} \\
\mathbf{5 0 0} & =-\mathbf{1 6} t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} \\
0 & =\mathbf{- 1 6 t ^ { 2 }}+\mathbf{1 6 0 t}
\end{aligned}
$$

$$
\begin{gathered}
0=t^{2}-10 t \\
0=t(t-10) \\
t=0 \text { or } t-10=0 \\
t=0 \text { or } t=10
\end{gathered}
$$

It will be $\mathbf{5 0 0}$ feet above the ground again after $\mathbf{1 0}$ seconds.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
4. When will the ball again be 500 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{5 0 0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
500 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

$$
\begin{aligned}
0 & =t^{2}-10 t \\
0 & =t(t-10) \\
t=0 & \text { or } t-10=0 \\
t=0 & \text { or } t=10
\end{aligned}
$$

It will be $\mathbf{5 0 0}$ feet above the ground again after $\mathbf{1 0}$ seconds.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
h=-16 t^{2}+160 t+500
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
h=-16 t^{2}+160 t+500
$$

400

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500
\end{aligned}
$$

Subtract 400 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 400=-16 t^{2}+160 t+500 \\
& 0
\end{aligned}
$$

Subtract 400 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =
\end{aligned}
$$

Subtract 400 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}
\end{aligned}
$$

Subtract 400 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t
\end{aligned}
$$

Subtract 400 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

Subtract 400 from each side.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =\mathbf{- 1 6 t}
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

Divide each side by -4 .

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\mathbf{0}=
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

Divide each side by -4.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\mathbf{0}=4 \mathbf{t}^{2}
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

Divide each side by -4.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

Divide each side by -4.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

Divide each side by -4.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
t=\underline{40}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be 400 feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
t=\underline{40 \pm}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$h=-16 t^{2}+160 t+500$
$t=40 \pm \sqrt{ }$
$400=-16 \mathbf{t}^{2}+\mathbf{1 6 0 t}+500$
$0=-16 t^{2}+160 t+100$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$h=-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0}$
$t=\underline{40 \pm \sqrt{1600}}$
$400=-16 \mathbf{t}^{2}+\mathbf{1 6 0 t}+500$
$0=-16 t^{2}+160 t+100$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$h=-16 t^{2}+\mathbf{1 6 0 t}+500$
$400=-16 \mathbf{t}^{2}+\mathbf{1 6 0 t}+500$
$0=-16 t^{2}+160 t+100$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$h=-16 t^{2}+\mathbf{1 6 0 t}+500$
$400=-16 \mathbf{t}^{2}+\mathbf{1 6 0 t}+500$
$0=-16 t^{2}+160 t+100$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$h=-16 t^{2}+160 t+500$
$400=-16 \mathbf{t}^{2}+\mathbf{1 6 0 t}+500$
$t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}$
$0=-16 t^{2}+160 t+100$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$h=-16 t^{2}+160 t+500$
$400=-16 \mathbf{t}^{2}+\mathbf{1 6 0 t}+500$
$t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=$
$0=-16 t^{2}+160 t+100$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
0=4 t^{2}-40 t-25
$$

$$
t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm}{}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
0=4 t^{2}-40 t-25
$$

$$
t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
0=4 t^{2}-40 t-25
$$

$$
t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{8}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{8}
$$

$$
t \approx
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{8}
$$

$$
t \approx 10.6
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{8}
$$

$$
t \approx 10.6 \text { or }
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{8} \\
& t \approx 10.6 \text { or } t \approx
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
\begin{gathered}
t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{8} \\
t \approx 10.6 \text { or } t \approx-0.6
\end{gathered}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
0=4 t^{2}-40 t-25
$$

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
\begin{aligned}
t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{8} \\
t \approx 10.6 \text { or } t \approx-0 . K
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

$$
\begin{array}{lc}
\text { Find } t, \text { if } h=400 . & 0=4 t^{2}-40 t-25 \\
h=-16 t^{2}+160 t+500 & t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{8} \\
400=-16 t^{2}+160 t+500 & t \approx 10.6 \text { or } t \approx-0, k
\end{array}
$$

It will be $\mathbf{4 0 0}$ feet above the ground after about $\mathbf{1 0 . 6}$ seconds.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
5. When will the ball be $\mathbf{4 0 0}$ feet above the ground?

Find \mathbf{t}, if $\mathbf{h}=400$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
400 & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+100
\end{aligned}
$$

$$
\begin{gathered}
0=4 t^{2}-40 t-25 \\
t=\frac{40 \pm \sqrt{1600-(4)(4)(-25)}}{8}=\frac{40 \pm \sqrt{2000}}{8} \\
t \approx 10.6 \text { or } t \approx-0, x
\end{gathered}
$$

It will be 400 feet above the ground after about 10.6 seconds.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
h=-16 t^{2}+160 t+500
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
h=-16 t^{2}+160 t+500
$$

0

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
h=-16 t^{2}+160 t+500
$$

$0=$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500
\end{aligned}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500
\end{aligned}
$$

Divide each side by -4.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t . You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500 \\
& 0=
\end{aligned}
$$

Divide each side by -4.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500 \\
& 0=4 t^{2}
\end{aligned}
$$

Divide each side by -4.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500 \\
& 0=4 t^{2}-40 t
\end{aligned}
$$

Divide each side by -4.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500 \\
& 0=4 t^{2}-40 t-125
\end{aligned}
$$

Divide each side by -4.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{gathered}
h=-16 t^{2}+160 t+500 \\
0=-16 t^{2}+160 t+500 \\
0=4 t^{2}-40 t-125
\end{gathered}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{gathered}
h=-16 t^{2}+160 t+500 \\
0=-16 t^{2}+160 t+500 \\
0=4 t^{2}-40 t-125
\end{gathered}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for \mathbf{t}. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{gathered}
h=-16 t^{2}+160 t+500 \\
0=-16 t^{2}+160 t+500 \\
0=4 t^{2}-40 t-125
\end{gathered}
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} \quad 0= \\
& 0=-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} \\
& 0=4 t^{2}-\mathbf{4 0 t} \mathbf{- 1 2 5}
\end{aligned}
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
h & =-16 t^{2}+160 t+500 \\
0 & =-16 t^{2}+160 t+500 \\
0 & =4 t^{2}-40 t-125
\end{aligned}
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{ll}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0 & =-16 t^{2}+160 t+500 \\
0 & =4 t^{2}-40 t-125
\end{array}
$$

Factor.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{ll}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0 & =-16 t^{2}+160 t+500 \\
0 & =4 t^{2}-40 t-125
\end{array}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500 \\
& 0=4 t^{2}-40 t-125
\end{aligned}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{lc}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0=-16 t^{2}+160 t+500 & 2 t-25 \\
0=4 t^{2}-40 t-125 &
\end{array}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{ll}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0=-16 t^{2}+160 t+500 & 2 t-25=0 \\
0=4 t^{2}-40 t-125 &
\end{array}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{ll}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0=-16 t^{2}+160 t+500 & 2 t-25=0 \text { or } \\
0=4 t^{2}-40 t-125 &
\end{array}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{rlr}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5 \\
0 & =-16 t^{2}+160 t+500 & 2 t-25=0 \text { or } 2 t+5 \\
0 & =4 t^{2}-\mathbf{4 0 t}-\mathbf{1 2 5} &
\end{array}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0=-16 t^{2}+160 t+500 & 2 t-25=0 \text { or } 2 t+5=0 \\
0=4 t^{2}-40 t-125 &
\end{array}
$$

Apply the zero property of multiplication.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0=-16 t^{2}+160 t+500 & 2 t-25=0 \text { or } 2 t+5=0 \\
0=4 t^{2}-40 t-125 &
\end{array}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{lr}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0=-16 t^{2}+160 t+500 & 2 t-\mathbf{2 5}=0 \text { or } 2 t+5= \\
0=4 t^{2}-\mathbf{4 0 t}-\mathbf{1 2 5} &
\end{array}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0=-16 t^{2}+160 t+500 & 2 t-25=0 \text { or } 2 t+5=0 \\
0=4 t^{2}-40 t-125 & t=
\end{array}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0=-16 t^{2}+160 t+500 & 2 t-25=0 \text { or } 2 t+5=0 \\
0=4 t^{2}-40 t-125 & t=12.5
\end{array}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500 \\
& 0=4 \mathbf{t}^{2}-\mathbf{4 0 t} \mathbf{- 1 2 5} \\
& 0=(2 t-25)(2 t+5) \\
& 2 t-25=0 \text { or } 2 t+5=0 \\
& t=12.5 \text { or }
\end{aligned}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{rlrl}
h & =-16 t^{2}+160 t+500 & 0 & =(2 t-25)(2 t+5) \\
0 & =-16 t^{2}+160 t+500 & 2 t-25 & =0 \text { or } 2 t+5=0 \\
0 & =4 t^{2}-40 t-125 & t=12.5 \text { or } t=
\end{array}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& 0=-16 t^{2}+160 t+500 \\
& 0=4 t^{2}-40 t-125
\end{aligned}
$$

$$
\begin{gathered}
0=(2 t-25)(2 t+5) \\
2 t-25=0 \text { or } 2 t+5=0 \\
t=12.5 \text { or } t=-2.5
\end{gathered}
$$

Solve each equation.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{crl}
h & =-16 t^{2}+160 t+500 & 0 \\
0 & =-16 t^{2}+160 t+500 & 2 t-25=0 \\
0 & =4 t^{2}-40 t-125 & t=12.5 \text { or } 2 t+5=0 \\
t & t=-2.5
\end{array}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{rlrl}
h & =-16 t^{2}+160 t+500 & 0 & =(2 t-25)(2 t+5) \\
0 & =-16 t^{2}+160 t+500 & 2 t-25=0 \text { or } 2 t+5=0 \\
0 & =4 t^{2}-40 t-125 & t=12.5 \text { or } t=-2.5
\end{array}
$$

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{ccc}
h=-16 t^{2}+160 t+500 & 0=(2 t-25)(2 t+5) \\
0=-16 t^{2}+160 t+500 & 2 t-25=0 \text { or } 2 t+5=0 \\
0=4 t^{2}-40 t-125 & t=12.5 \text { or } t=-2.5
\end{array}
$$

It will hit the ground after 12.5 seconds.

This time you are given a value of h and are asked to find t.
Step 1: Substitute the given value of h into the equation.
Step 2: Solve for t. You may be able to use the factoring method to solve for t. If that 'won't work', use the quadratic formula.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
6. When will the ball hit the ground?

Find \mathbf{t}, if $\mathbf{h}=\mathbf{0}$.

$$
\begin{array}{rlrl}
h & =-16 t^{2}+160 t+500 & 0 & =(2 t-25)(2 t+5) \\
0 & =-16 t^{2}+160 t+500 & 2 t-25=0 \text { or } 2 t+5=0 \\
0 & =4 t^{2}-40 t-125 & t=12.5 \text { or } t=-2.55
\end{array}
$$

It will hit the ground after 12.5 seconds.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500
$$

Subtract 500 from each side.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500
$$

h

Subtract 500 from each side.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500
\end{aligned}
$$

Subtract 500 from each side.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=
\end{aligned}
$$

Subtract 500 from each side.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}
\end{aligned}
$$

Subtract 500 from each side.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t
\end{aligned}
$$

Subtract 500 from each side.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t
\end{aligned}
$$

Factor.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{gathered}
h=-16 t^{2}+160 t+500 \\
h-500=-16 t^{2}+160 t
\end{gathered}
$$

Factor.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t \\
& h-500
\end{aligned}
$$

Factor.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t \\
& h-500=
\end{aligned}
$$

Factor.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t \\
& h-500=-16(
\end{aligned}
$$

Factor.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t \\
& h-500=-16\left(t^{2}\right.
\end{aligned}
$$

Factor.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t \\
& h-500=-16\left(t^{2}-10 t\right)
\end{aligned}
$$

Factor.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t \\
& h-500=-16\left(t^{2}-10 t\right)
\end{aligned}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{aligned}
& h=-16 t^{2}+160 t+500 \\
& h-500=-16 t^{2}+160 t \\
& h-500=-16\left(t^{2}-10 t\right)
\end{aligned}
$$

Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500 \quad h-500 \quad=-16\left(t^{2}-10 t \quad\right)
$$

$h-500=-16 t^{2}+160 t$
$h-500=-16\left(\mathbf{t}^{2}-10 t\right)$
Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500 \quad h-500 \quad=-16\left(t^{2}-10 t\right.
$$

$h-500=-16 t^{2}+160 t$
$h-500=-16\left(\mathbf{t}^{2}-10 t\right)$
Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500 \quad h-500 \quad=-16\left(t^{2}-10 t+25\right)
$$

$h-500=-16 t^{2}+160 t$
$h-500=-16\left(t^{2}-10 t\right)$
Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500 \quad h-500 \quad=-16\left(t^{2}-10 t+25\right)
$$

$h-500=-16 t^{2}+160 t$
$h-500=-16\left(\mathbf{t}^{2}-10 t\right)$
Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500
$$

$$
h-500-400=-16\left(t^{2}-10 t+25\right)
$$

$h-500=-16 t^{2}+160 t$
$h-500=-16\left(t^{2}-10 t\right)$
Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=\mathbf{A}\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500 \quad h-500-400=-16\left(t^{2}-10 t+25\right)
$$

$h-500=-16 t^{2}+160 t$
$h-500=-16\left(\mathbf{t}^{2}-10 t\right)$
Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
h=-16 t^{2}+160 t+500
$$

$$
h-500-400=-16\left(t^{2}-10 t+25\right)
$$

$h-500=-16 t^{2}+160 t$
$h-500=-16\left(\mathbf{t}^{2}-10 t\right)$
Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{lc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h \\
h-500=-16\left(t^{2}-10 t\right) &
\end{array}
$$

Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cr}
h=-16 t^{2}+160 t+500 & h-500-. \\
h-500=-16 t^{2}+\mathbf{1 6 0 t} & h- \\
h-500=-\mathbf{1 6}\left(t^{2}-10 t\right) &
\end{array}
$$

$$
h-500-400=-16\left(t^{2}-10 t+25\right)
$$

Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900 \\
h-500=-16\left(t^{2}-10 t\right) &
\end{array}
$$

Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{lr}
h=-16 t^{2}+\mathbf{1 6 0 t}+\mathbf{5 0 0} & h-\mathbf{5 0 0}-\mathbf{4 0 0}=\mathbf{- 1 6 (t t ^ { 2 } - 1 0 t + 2 5)} \\
h-500=-16 t^{2}+\mathbf{1 6 0 t} & h-\mathbf{9 0 0}= \\
h-500=-16\left(t^{2}-10 t\right) &
\end{array}
$$

Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900= \\
h-500=-16\left(t^{2}-10 t\right) &
\end{array}
$$

Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(\\
h-500=-16\left(t^{2}-10 t\right) &
\end{array}
$$

Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) &
\end{array}
$$

Complete the square.

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{lr}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) &
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(5,
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(5,900) .
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)$!!!

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(\mathbf{5}, \mathbf{9 0 0}) .
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(5,900) .
\end{array}
$$

Express the function in 'vertex form'.
Given any 2 nd degree function with one variable, $\mathbf{y}=\mathbf{f}(\mathbf{x})=\mathbf{A} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}$, the 'vertex form' of the equation is $y-y_{1}=A\left(x-x_{1}\right)^{2}$.

The vertex of the function is $\left(x_{1}, y_{1}\right)!!!$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{rl}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(5,900) .
\end{array}
$$

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(5,900) .
\end{array}
$$

The maximum height is $\mathbf{9 0 0}$ feet.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-\mathbf{1 6}\left(\mathbf{t}^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-\mathbf{1 6}(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(\underset{5}{\mathbf{5}, 900}) . \\
& t
\end{array}
$$

The maximum height is $\mathbf{9 0 0}$ feet.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{rl}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(5,900) .
\end{array}
$$

The maximum height is $\mathbf{9 0 0}$ feet.
How long did it take the ball to reach its maximum height?

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
h-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(5,900) .
\end{array}
$$

The maximum height is $\mathbf{9 0 0}$ feet.
How long did it take the ball to reach its maximum height?
It took the ball 5 seconds to reach its maximum height.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
7. What is the maximum height reached by the ball?

Find the vertex !!

$$
\begin{array}{cc}
h=-16 t^{2}+160 t+500 & h-500-400=-16\left(t^{2}-10 t+25\right) \\
h-500=-16 t^{2}+160 t & h-900=-16(t-5)^{2} \\
1-500=-16\left(t^{2}-10 t\right) & \text { The vertex is }(5,900) .
\end{array}
$$

The maximum height is $\mathbf{9 0 0}$ feet.
How long did it take the ball to reach its maximum height?
It took the ball 5 seconds to reach its maximum height.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	
6	

\mathbf{t}	h
7	
8	
9	
10	
11	
12	
12.5	

We have determined that the ball hits the ground in $\mathbf{1 2 . 5}$ seconds.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We have determined that the ball hits the ground in $\mathbf{1 2 . 5}$ seconds.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We have determined that the ball reaches its maximum height of 900 feet in 5 seconds.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We have determined that the ball reaches its maximum height of 900 feet in 5 seconds.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We have determined that the ball reaches its maximum height of 900 feet in 5 seconds.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We will use these 3 points to determine the scale we will use for the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We will use these 3 points to determine the scale we will use for the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We will use these 3 points to determine the scale we will use for the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We will use these 3 points to determine the scale we will use for the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We will use these 3 points to determine the scale we will use for the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We will use these 3 points to determine the scale we will use for the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

We will use these 3 points to determine the scale we will use for the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	900
6	

\mathbf{t}	h
7	
8	
9	
10	
11	
12	
12.5	0

We will use these 3 points to determine the scale we will use for the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	900
6	

\mathbf{t}	h
7	
8	
9	
10	
11	
12	
12.5	0

We will use these 3 points to determine the scale we will use for the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	644
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	644
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	644
2	
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	644
2	756
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of $\mathbf{1 6 0}$ feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	644
2	756
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	644
2	756
3	
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	644
2	756
3	836
4	
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	$\mathbf{6 4 4}$
2	756
3	836
4	884
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	$\mathbf{6 4 4}$
2	756
3	836
4	884
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
1	644
2	756
3	836
4	884
5	900
6	

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	$\mathbf{6 4 4}$
2	756
3	836
4	884
5	900
6	884

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	$\mathbf{6 4 4}$
2	756
3	836
4	884
5	900
6	884

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	$\mathbf{5 0 0}$
$\mathbf{1}$	$\mathbf{6 4 4}$
2	756
3	836
4	884
5	900
6	884

t	h
7	
8	
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	$\mathbf{5 0 0}$
$\mathbf{1}$	$\mathbf{6 4 4}$
2	756
3	$\mathbf{8 3 6}$
4	$\mathbf{8 8 4}$
5	900
6	884

\mathbf{t}	h
7	836
8	
9	
$\mathbf{1 0}$	
$\mathbf{1 1}$	
$\mathbf{1 2}$	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	$\mathbf{5 0 0}$
$\mathbf{1}$	$\mathbf{6 4 4}$
2	756
3	$\mathbf{8 3 6}$
4	$\mathbf{8 8 4}$
5	900
6	884

\mathbf{t}	h
7	836
8	
9	
$\mathbf{1 0}$	
$\mathbf{1 1}$	
12	
$\mathbf{1 2 . 5}$	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	884
5	900
6	884

t	h
7	836
8	
9	
10	
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	$\mathbf{5 0 0}$
$\mathbf{1}$	$\mathbf{6 4 4}$
2	756
3	836
4	884
5	900
6	884

\mathbf{t}	h
7	836
8	756
9	
$\mathbf{1 0}$	
$\mathbf{1 1}$	
12	
$\mathbf{1 2 . 5}$	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	884
5	900
6	884

\mathbf{t}	h
7	836
8	756
9	
$\mathbf{1 0}$	
$\mathbf{1 1}$	
12	
$\mathbf{1 2 . 5}$	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	884
5	900
6	884

t	h
7	836
8	756
9	
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	884
5	900
6	884

t	h
7	836
8	756
9	644
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	884
5	900
6	884

t	h
7	836
8	756
9	644
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
$\mathbf{1}$	$\mathbf{6 4 4}$
2	756
3	836
4	884
5	900
6	884

t	h
7	$\mathbf{8 3 6}$
8	756
9	644
10	
11	
12	
12.5	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	884
5	900
6	884

\mathbf{t}	h
7	836
8	756
9	644
10	500
$\mathbf{1 1}$	
$\mathbf{1 2}$	
$\mathbf{1 2 . 5}$	0

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	884
5	900
6	884

\mathbf{t}	h
7	836
8	756
9	644
10	500
$\mathbf{1 1}$	
$\mathbf{1 2}$	
$\mathbf{1 2 . 5}$	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	$\mathbf{5 0 0}$
1	$\mathbf{6 4 4}$
2	756
3	836
4	$\mathbf{8 8 4}$
5	900
6	884

t	h
7	836
8	756
9	644
10	500
11	
12	
12.5	0

Now we will add the other points to complete the graph.

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	884
5	900
6	884

t	h	
7	836	Now we will add the other points to complete the graph.
8	756	
9	644	
10	500	
11	324	
12		
12.5	0	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	$\mathbf{5 0 0}$
1	$\mathbf{6 4 4}$
2	756
3	836
4	$\mathbf{8 8 4}$
5	900
6	884

t	h	
7	836	Now we will add the other points to complete the graph.
8	756	
9	644	
10	500	
11	324	
12		
12.5	0	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	884
5	900
6	884

t	h	
7	836	Now we will add the other points to complete the graph.
8	756	
9	644	
10	500	
11	324	
12		
12.5	0	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	$\mathbf{8 8 4}$
5	900
6	884

t	h	
7	836	Now we will add the other points to complete the graph.
8	756	
9	644	
10	500	
11	324	
12	116	
12.5	0	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	500
1	644
2	756
3	836
4	$\mathbf{8 8 4}$
5	900
6	884

t	h	
7	836	Now we will add the other points to complete the graph.
8	756	
9	644	
10	500	
11	324	
12	116	
12.5	0	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	$\mathbf{5 0 0}$
1	$\mathbf{6 4 4}$
2	756
3	836
4	$\mathbf{8 8 4}$
5	900
6	884

t	h	
7	836	Now we will add the other points to complete the graph.
8	756	
9	644	
10	500	
11	324	
12	116	
12.5	0	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	$\mathbf{5 0 0}$
1	$\mathbf{6 4 4}$
2	756
3	836
4	$\mathbf{8 8 4}$
5	900
6	884

t	h	
7	836	Now we will add the other points to complete the graph.
8	756	
9	644	
10	500	
11	324	
12	116	
12.5	0	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8

A steel ball is propelled upward from a point that is $\mathbf{5 0 0}$ feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
$\mathbf{0}$	$\mathbf{5 0 0}$
1	$\mathbf{6 4 4}$
2	756
3	836
4	$\mathbf{8 8 4}$
5	900
6	884

t	h	
7	836	Now we will add the other points to complete the graph.
8	756	
9	644	
10	500	
11	324	
12	116	
12.5	0	

Graphing a Second Degree Function
Step 1: Fill out a table of values.
Step 2: Plot the points and draw the graph.

Algebra II Class Worksheet \#1 Unit 8
A steel ball is propelled upward from a point that is 500 feet above the ground with an initial velocity of 160 feet per second. The equation $h=-16 t^{2}+160 t+500$ expresses the height of the ball, h, (in feet) as a function of the time, t, (in seconds).
8. Sketch a graph of this function from $t=0$ until the ball hits the ground.

t	h
0	500
$\mathbf{1}$	$\mathbf{6 4 4}$
2	756
3	$\mathbf{8 3 6}$
4	884
5	900
6	884

t	h
7	836
$\mathbf{8}$	756
9	644
$\mathbf{1 0}$	500
$\mathbf{1 1}$	324
$\mathbf{1 2}$	116
$\mathbf{1 2 . 5}$	0

