Algebra II Notes \#1 Unit 7 page 1

The Distance Formula
Given points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, the distance from P to Q, denoted as $P Q$, can be found using the formula below. This formula is called the distance formula.

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example 1: Given $\mathbf{P}(\mathbf{3}, 2)$ and $\mathbf{Q}(-1,5)$

$$
\begin{array}{ccc}
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
x_{1}=3 & y_{1}=2 & P Q=\sqrt{(-1-3)^{2}+(5-2)^{2}} \\
x_{2}=-1 & y_{2}=5 & P Q=\sqrt{(-4)^{2}+(3)^{2}}=\sqrt{16+9} \\
& & P Q=\sqrt{25}=5
\end{array}
$$

Therefore, the distance from $(3,2)$ to $(-1,5)$ is 5 units.
Example 2: Given $\mathbf{P}(-3,4)$ and $\mathbf{Q}(3,4)$

$$
\begin{array}{cc}
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
x_{1}=-3 & y_{1}=4 \\
x_{2}=3 & y_{2}=4 \\
& \\
& \\
& \\
& P Q=\sqrt{(3--3)^{2}+(4-4)^{2}}=\sqrt{(6)^{2}+(0)^{2}}=\sqrt{36+0} \\
36 & =6
\end{array}
$$

Therefore, the distance from $(-3,4)$ to $(3,4)$ is 6 units.
Example 3: Given $\mathbf{P}(4,1)$ and $\mathbf{Q}(-3,3)$

$$
\begin{array}{ccc}
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
x_{1}=4 & y_{1}=1 & P Q=\sqrt{(-3-4)^{2}+(3-1)^{2}} \\
x_{2}=-3 & y_{2}=3 & P Q=\sqrt{(-7)^{2}+(2)^{2}}=\sqrt{49+4} \\
& & P Q=\sqrt{53} \approx 7.3
\end{array}
$$

Therefore, the distance from $(4,1)$ to $(-3,3)$ is about 7.3 units.

Algebra II Notes \#1 Unit 7 page 2

The Equations of a Circle
General Form: $\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$
Standard Form: $(\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathbf{r}^{\mathbf{2}}$ where r is the radius measure and (h, k) is the center.
Example 1: Given the circle with center $(2,5)$ and radius measure 3.
Find the standard form equation and the general form equation.
$h=2 ; k=5 ; r=3$
Standard Form: $(x-2)^{2}+(y-5)^{2}=9$

$$
\begin{aligned}
& x^{2}-4 x+4+y^{2}-10 y+25=9 \\
& x^{2}+y^{2}-4 x-10 y+29=9
\end{aligned}
$$

General Form: $\quad x^{2}+y^{2}-4 x-10 y+20=0$
Example 2: Given the circle with center $(-5,0)$ and radius measure 5.
Find the standard form equation and the general form equation.
$h=-5 ; k=0 ; r=5$

$$
(x--5)^{2}+(y-0)^{2}=25
$$

Standard Form: $(x+5)^{2}+y^{2}=25$

$$
\begin{aligned}
& x^{2}+10 x+25+y^{2}=25 \\
& x^{2}+y^{2}+10 x+25=25
\end{aligned}
$$

General Form: $\quad x^{2}+y^{2}+10 x=0$
Example 3: Given: A circle has general form equation $x^{2}+y^{2}-6 x+4 y-3=0$.
Find the standard form equation and graph the circle.

$$
\begin{gathered}
x^{2}+y^{2}-6 x+4 y-3=0 \\
\left(x^{2}-6 x\right)+\left(y^{2}+4 y\right)=3 \\
\left(x^{2}-6 x+9\right)+\left(y^{2}+4 y+4\right)=3+9+4
\end{gathered}
$$

Standard Form Equation

$$
\begin{aligned}
& (x-3)^{2}+(y+2)^{2}=16 \\
& h=3 ; k=-2 ; r^{2}=16 \\
& \text { center }(3,-2) \text { radius } 4
\end{aligned}
$$

