Algebra II
 Lesson \#3 Unit 7 Class Worksheet \#3
 For Worksheet \#4

Given any two points in a plane,

Given any two points in a plane,

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is a constant.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is a constant.

Once again, the two given points will be labeled F_{1} and F_{2}.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is a constant.

Once again, the two given points will be labeled F_{1} and F_{2}.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is a constant.

Once again, the two given points will be labeled F_{1} and F_{2}. We will find points such that the difference of their distances from F_{1} and F_{2} is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Once again, the two given points will be labeled F_{1} and F_{2}. We will find points such that the difference of their distances from F_{1} and F_{2} is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

All points on this circle
These circles only intersect at one point.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

All points on this circle
These circles only intersect at one point.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

We need the 2 points where these circles intersect.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

We need the 2 points where these circles intersect.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the tyo given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is 6 units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment,

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment, connecting the two branches of the hyperbola,

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment, connecting the two branches of the hyperbola, is called the transverse axis.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment, connecting the two branches of the hyperbola, is called the transverse axis. The length of the transverse axis is 2 a .

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment, connecting the two branches of the hyperbola, is called the transverse axis. The length of the transverse axis is 2 a . In this case $\mathbf{2 a}=\mathbf{6}$,

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment, connecting the two branches of the hyperbola, is called the transverse axis. The length of the transverse axis is 2 a . In this case $\mathbf{2 a}=\mathbf{6}$, so
 $\mathbf{a}=3$.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment, connecting the two branches of the hyperbola, is called the transverse axis. The length of the transverse axis is $\mathbf{2 a}$. In this case $\mathbf{2 a}=\mathbf{6}$, so
 $\mathbf{a}=3$. The midpoint of the transverse axis is the 'center' of the hyperbola.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment, connecting the two branches of the hyperbola, is called the transverse axis. The length of the transverse axis is $\mathbf{2 a}$. In this case $\mathbf{2 a}=\mathbf{6}$, so
 $\mathbf{a}=3$. The midpoint of the transverse axis is the 'center' of the hyperbola. The distance from the center of the hyperbola to each focus is c.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment, connecting the two branches of the hyperbola, is called the transverse axis. The length of the transverse axis is 2 a . In this case $2 \mathrm{a}=6$, so
 $\mathbf{a}=\mathbf{3}$. The midpoint of the transverse axis is the 'center' of the hyperbola. The distance from the center of the hyperbola to each focus is c. In this case $c=5$.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
The graph of all points
in the plane such that the difference of their distances from F_{1} and F_{2} is 6 units looks like this. This shape is called a hyperbola. F_{1} and F_{2} are foci of the hyperbola. This segment, connecting the two branches of the hyperbola, is called the transverse axis. The length of the transverse axis is 2 a . In this case $2 \mathrm{a}=6$, so
 $\mathbf{a}=3$. The midpoint of the transverse axis is the 'center' of the hyperbola. The distance from the center of the hyperbola to each focus is c. In this case $c=5$. Each endpoint of the transverse axis is called a vertex of the hyperbola.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola,

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola,

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathbf{P F}_{2}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathbf{P F}_{2}-
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathbf{P F}_{2}-\mathbf{P F} \mathbf{F}_{1}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

If point $P(x, y)$ represents any point
 on the 'right branch' of the hyperbola,

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

If point $P(x, y)$ represents any point
 on the 'right branch' of the hyperbola,

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

If point $P(x, y)$ represents any point on the 'right branch' of the hyperbola, then

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

If point $P(x, y)$ represents any point on the 'right branch' of the hyperbola, then

$$
\mathbf{P F}_{2}-\mathbf{P F}_{1}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

If point $P(x, y)$ represents any point on the 'right branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=-6
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

If point $\mathbf{P}(x, y)$ represents any point
 on the 'right branch' of the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}=-6$ Therefore, if $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
This hyperbola has two branches.
For now we will treat them separately. If point $\mathbf{P}(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathbf{P F}_{2}-\mathrm{PF}_{1}=6
$$

If point $\mathbf{P}(x, y)$ represents any point

on the 'right branch' of the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}=-6$ Therefore, if $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then

$$
\mathbf{P F}_{2}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
This hyperbola has two branches.
For now we will treat them separately. If point $\mathbf{P}(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

If point $\mathbf{P}(x, y)$ represents any point

on the 'right branch' of the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}=-6$ Therefore, if $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then

$$
\mathbf{P F}_{2}-\mathbf{P F} \mathbf{F}_{1}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
This hyperbola has two branches.
For now we will treat them separately. If point $\mathbf{P}(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

If point $\mathbf{P}(x, y)$ represents any point

on the 'right branch' of the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}=-6$ Therefore, if $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then

$$
\mathbf{P F}_{2}-\mathbf{P F}_{1}=
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola. This hyperbola has two branches. For now we will treat them separately. If point $P(x, y)$ represents any point on the 'left branch' of the hyperbola, then

$$
\mathrm{PF}_{2}-\mathrm{PF}_{1}=6
$$

If point $\mathbf{P}(x, y)$ represents any point

on the 'right branch' of the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}=-6$ Therefore, if $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then

$$
\mathbf{P F}_{2}-\mathbf{P F}_{1}= \pm 6
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then
$\mathrm{PF}_{2}=$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then
$\mathbf{P F}_{2}=\sqrt{ }$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathbf{P F}_{2}=\sqrt{(x-5)^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then
$\mathbf{P F}_{2}=\sqrt{(\mathbf{x}-5)^{2}+}$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(x-5)^{2}+(y-0)^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\begin{aligned}
P F_{2} & =\sqrt{(x-5)^{2}+(y-0)^{2}}= \\
& =
\end{aligned}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\begin{aligned}
\mathbf{P F}_{2} & =\sqrt{(x-5)^{2}+(y-0)^{2}}= \\
& =\sqrt{ }
\end{aligned}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\begin{aligned}
\mathbf{P F}_{2} & =\sqrt{(x-5)^{2}+(y-0)^{2}}= \\
& =\sqrt{(x-5)^{2}}
\end{aligned}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\begin{aligned}
\mathbf{P F}_{2} & =\sqrt{(x-5)^{2}+(y-0)^{2}}= \\
& =\sqrt{(x-5)^{2}+}
\end{aligned}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\begin{aligned}
\mathbf{P F}_{2} & =\sqrt{(x-5)^{2}+(y-0)^{2}}= \\
& =\sqrt{(x-5)^{2}+y^{2}}
\end{aligned}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
P_{2}=\sqrt{(x-5)^{2}+y^{2}}
$$

The coordinates of F_{1} are $(-5,0)$.

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathbf{P F}_{1}=
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathbf{P F}_{1}=\sqrt{ }
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{1}=\sqrt{(\mathrm{x}--5)^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
P F_{1}=\sqrt{(x--5)^{2}+}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
P F_{1}=\sqrt{(x--5)^{2}+(y-0)^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
P F_{1}=\sqrt{(x--5)^{2}+(y-0)^{2}}=
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
P F_{1}=\sqrt{(x--5)^{2}+(y-0)^{2}}=\sqrt{ }
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
P F_{1}=\sqrt{(x--5)^{2}+(y-0)^{2}}=\sqrt{(x+5)^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
P F_{1}=\sqrt{(x--5)^{2}+(y-0)^{2}}=\sqrt{(x+5)^{2}+}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
P F_{1}=\sqrt{(x--5)^{2}+(y-0)^{2}}=\sqrt{(x+5)^{2}+y^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$
The coordinates of F_{2} are $(5,0)$.
If point $P(x, y)$ represents any point on the hyperbola, then

$$
P F_{2}=\sqrt{(x-5)^{2}+y^{2}}
$$

The coordinates of F_{1} are $(-5,0)$. If point $P(x, y)$ represents any point on the hyperbola, then

$$
\mathbf{P F}_{1}=\sqrt{(x+5)^{2}+y^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\begin{aligned}
& \mathbf{P F}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathbf{y}^{2}} \\
& \text { and } \\
& \mathbf{P F}_{1}=\sqrt{(\mathrm{x}+5)^{2}+\mathbf{y}^{2}}
\end{aligned}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\begin{aligned}
& \mathbf{P F}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathbf{y}^{2}} \\
& \text { and } \\
& \mathbf{P F _ { 1 }}=\sqrt{(\mathrm{x}+5)^{2}+\mathbf{y}^{2}}
\end{aligned}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\mathbf{P F}_{2}=\sqrt{(x-5)^{2}+y^{2}}
$$

and

$$
P F_{1}=\sqrt{(x+5)^{2}+y^{2}}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\mathbf{P F}_{2}=\sqrt{(x-5)^{2}+y^{2}}
$$

and

$$
P F_{1}=\sqrt{(x+5)^{2}+y^{2}}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\mathbf{P F}_{2}=\sqrt{(x-5)^{2}+y^{2}}
$$

and

$$
P F_{1}=\sqrt{(x+5)^{2}+y^{2}}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\mathbf{P F}_{2}=\sqrt{(x-5)^{2}+y^{2}}
$$

and

$$
P F_{1}=\sqrt{(x+5)^{2}+y^{2}}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\begin{gathered}
\mathbf{P F}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}} \\
\text { and } \\
\mathbf{P F}_{1}=\sqrt{(\mathrm{x}+5)^{2}+\mathrm{y}^{2}}
\end{gathered}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\begin{gathered}
\mathbf{P F}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}} \\
\text { and } \\
\mathbf{P F}_{1}=\sqrt{(\mathrm{x}+5)^{2}+\mathrm{y}^{2}}
\end{gathered}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\begin{gathered}
\mathbf{P F}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathbf{y}^{2}} \\
\text { and } \\
\mathbf{P F}_{1}=\sqrt{(\mathrm{x}+5)^{2}+\mathrm{y}^{2}}
\end{gathered}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}=
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\begin{gathered}
\mathbf{P F}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathbf{y}^{2}} \\
\text { and } \\
\mathbf{P F}_{1}=\sqrt{(\mathrm{x}+5)^{2}+\mathrm{y}^{2}}
\end{gathered}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}=
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.
Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathbf{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\begin{gathered}
\mathbf{P F}_{2}=\sqrt{(\mathrm{x}-5)^{2}+\mathrm{y}^{2}} \\
\text { and } \\
\mathbf{P F}_{1}=\sqrt{(\mathrm{x}+5)^{2}+\mathrm{y}^{2}}
\end{gathered}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathrm{y})$ represents any point on the hyperbola, then $\mathrm{PF}_{2}-\mathrm{PF}_{1}= \pm 6$

$$
\mathbf{P F}_{2}=\sqrt{(x-5)^{2}+y^{2}}
$$

and

$$
P F_{1}=\sqrt{(x+5)^{2}+y^{2}}
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{\mathbf{x}^{2}}{9}-
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $\mathbf{P}(\mathbf{x}, \mathrm{y})$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Once again, the process is difficult

Given any two points in a plane, we want to consider all points in the plane such that the difference of their distances from the two given points is $\mathbf{6}$ units.

Next, we will add the coordinate axes to the diagram and derive an equation for this hyperbola.
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Once again, the process is difficult - but no magic math here.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

Add $\sqrt{(x+5)^{2}+y^{2}}$ to both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6 \\
& \sqrt{(x-5)^{2}+y^{2}}
\end{aligned}
$$

Add $\sqrt{(x+5)^{2}+y^{2}}$ to both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6 \\
& \sqrt{(x-5)^{2}+y^{2}}=
\end{aligned}
$$

Add $\sqrt{(x+5)^{2}+y^{2}}$ to both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6 \\
& \sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}}
\end{aligned}
$$

Add $\sqrt{(x+5)^{2}+y^{2}}$ to both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6 \\
& \sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm
\end{aligned}
$$

Add $\sqrt{(x+5)^{2}+y^{2}}$ to both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6 \\
& \sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm 6
\end{aligned}
$$

Add $\sqrt{(x+5)^{2}+y^{2}}$ to both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6 \\
& \sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm 6
\end{aligned}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm 6
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm 6
$$

Square both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \quad \sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm 6 \\
& (x-5)^{2}+y^{2}=
\end{aligned}
$$

Square both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm 6 \\
& (x-5)^{2}+y^{2}=(x+5)^{2}+y^{2}
\end{aligned}
$$

Square both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
\sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm 6 \\
(x-5)^{2}+y^{2}=(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}
\end{gathered}
$$

Square both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
\sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm 6 \\
(x-5)^{2}+y^{2}=(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
\end{gathered}
$$

Square both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
\sqrt{(x-5)^{2}+y^{2}}=\sqrt{(x+5)^{2}+y^{2}} \pm 6 \\
(x-5)^{2}+y^{2}=(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
\end{gathered}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(x-5)^{2}+y^{2}=(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(x-5)^{2}+y^{2}=(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& (x-5)^{2}+y^{2}=(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
& \quad(x-5)^{2}
\end{aligned}
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2}+y^{2} & =(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
(x-5)^{2} & =
\end{aligned}
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2}+y^{2} & =(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
(x-5)^{2} & =(x+5)^{2}
\end{aligned}
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2}+y^{2} & =(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
(x-5)^{2} & =(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}
\end{aligned}
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2}+y^{2} & =(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
(x-5)^{2} & =(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
\end{aligned}
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2}+y^{2} & =(x+5)^{2}+y^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
(x-5)^{2} & =(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
\end{aligned}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(x-5)^{2}=(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(x-5)^{2}=(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(x-5)^{2}=(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(x-5)^{2}=(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

\mathbf{X}^{2}

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(x-5)^{2}=(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

$$
\mathbf{x}^{2}-10 x
$$

Square the binomials.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(x-5)^{2}=(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

$$
x^{2}-10 x+25
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2} & =(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
x^{2}-10 x+25 & =
\end{aligned}
$$

Square the binomials.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2} & =(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
x^{2}-10 x+25 & =
\end{aligned}
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2} & =(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
x^{2}-10 x+25 & =x^{2}
\end{aligned}
$$

Square the binomials.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2} & =(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
x^{2}-10 x+25 & =x^{2}+10 x
\end{aligned}
$$

Square the binomials.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2} & =(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
x^{2}-10 x+25 & =x^{2}+10 x+25
\end{aligned}
$$

Square the binomials.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
(x-5)^{2} & =(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
x^{2}-10 x+25 & =x^{2}+10 x+25
\end{aligned}
$$

Square the binomials.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
(x-5)^{2}=(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
x^{2}-10 x+25=x^{2}+10 x+25 \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
\end{gathered}
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
(x-5)^{2}=(x+5)^{2} \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
x^{2}-10 x+25=x^{2}+10 x+25 \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
\end{gathered}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
x^{2}-10 x+25=x^{2}+10 x+25 \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
x^{2}-10 x+25=x^{2}+10 x+25 \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

Subtract $\mathbf{x}^{\mathbf{2}}+\mathbf{2 5}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
x^{2}-10 x+25=x^{2}+10 x+25 \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

$$
-10 x
$$

Subtract $\mathbf{x}^{2}+\mathbf{2 5}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
x^{2}-10 x+25 & =x^{2}+10 x+25 \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
-10 x & =
\end{aligned}
$$

Subtract $\mathbf{x}^{\mathbf{2}}+\mathbf{2 5}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
x^{2}-10 x+25 & =x^{2}+10 x+25 \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
-10 x & =10 x
\end{aligned}
$$

Subtract $\mathbf{x}^{\mathbf{2}}+\mathbf{2 5}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
x^{2}-10 x+25 & =x^{2}+10 x+25 \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
-10 x & =10 x \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
\end{aligned}
$$

Subtract $\mathbf{x}^{\mathbf{2}}+\mathbf{2 5}$ from both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
x^{2}-10 x+25 & =x^{2}+10 x+25 \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
-10 x & =10 x \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
\end{aligned}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
-10 x=10 x \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
-10 x=10 x \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

Subtract $10 x+36$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
-10 x=10 x \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

$$
-20 x
$$

Subtract $10 x+36$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
-10 x=10 x \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36
$$

$$
-20 x-36
$$

Subtract $10 x+36$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& -10 x=10 x \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
& \quad-20 x-36=
\end{aligned}
$$

Subtract $10 x+36$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& -10 x=10 x \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
& -20 x-36= \pm 12 \sqrt{(x+5)^{2}+y^{2}}
\end{aligned}
$$

Subtract $10 x+36$ from both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& -10 x=10 x \pm 12 \sqrt{(x+5)^{2}+y^{2}}+36 \\
& -20 x-36= \pm 12 \sqrt{(x+5)^{2}+y^{2}}
\end{aligned}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
-20 x-36= \pm 12 \sqrt{(x+5)^{2}+y^{2}}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
-20 x-36= \pm 12 \sqrt{(x+5)^{2}+y^{2}}
$$

Divide both sides by -4.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& -20 x-36= \pm 12 \sqrt{(x+5)^{2}+y^{2}} \\
& 5 x
\end{aligned}
$$

Divide both sides by -4.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& -20 x-36= \pm 12 \sqrt{(x+5)^{2}+y^{2}} \\
& 5 x+9
\end{aligned}
$$

Divide both sides by -4.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
-20 x-36 & = \pm 12 \sqrt{(x+5)^{2}+y^{2}} \\
5 x+9 & =
\end{aligned}
$$

Divide both sides by -4.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
-20 x-36 & = \pm 12 \sqrt{(x+5)^{2}+y^{2}} \\
5 x+9 & = \pm 3 \sqrt{(x+5)^{2}+y^{2}}
\end{aligned}
$$

Divide both sides by -4.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
-20 x-36 & = \pm 12 \sqrt{(x+5)^{2}+y^{2}} \\
5 x+9 & = \pm 3 \sqrt{(x+5)^{2}+y^{2}}
\end{aligned}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
5 x+9= \pm 3 \sqrt{(x+5)^{2}+y^{2}}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
5 x+9= \pm 3 \sqrt{(x+5)^{2}+y^{2}}
$$

Square both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& 5 x+9= \pm 3 \sqrt{(x+5)^{2}+y^{2}} \\
& (5 x+9)^{2}
\end{aligned}
$$

Square both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$5 x+9= \pm 3 \sqrt{(x+5)^{2}+y^{2}}$
$(5 x+9)^{2}=$
Square both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& 5 x+9= \pm 3 \sqrt{(x+5)^{2}+y^{2}} \\
& (5 x+9)^{2}=9[
\end{aligned}
$$

Square both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& 5 x+9= \pm 3 \sqrt{(x+5)^{2}+y^{2}} \\
& (5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
\end{aligned}
$$

Square both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& 5 x+9= \pm 3 \sqrt{(x+5)^{2}+y^{2}} \\
& (5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
\end{aligned}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

$25 x^{2}$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

$25 x^{2}+90 x$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

$25 x^{2}+90 x+81$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

$25 x^{2}+90 x+81=$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

$$
25 x^{2}+90 x+81=9[
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

$$
25 x^{2}+90 x+81=9[
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

$$
25 x^{2}+90 x+81=9\left[x^{2}\right.
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]
$$

$$
25 x^{2}+90 x+81=9\left[x^{2}+10 x\right.
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right] \\
25 x^{2}+90 x+81=9\left[x^{2}+10 x+25\right.
\end{gathered}
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right] \\
25 x^{2}+90 x+81=9\left[x^{2}+10 x+25\right.
\end{gathered}
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right] \\
25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right]
\end{gathered}
$$

Square the binomials.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$(5 x+9)^{2}=9\left[(x+5)^{2}+y^{2}\right]$
$25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right]$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right]
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right]$

Perform the indicated multiplication.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right]$
$25 x^{2}+90 x+81=$

Perform the indicated multiplication.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right]$
$\mathbf{2 5} \mathrm{x}^{2}+\mathbf{9 0 x}+81=9 \mathrm{x}^{2}$

Perform the indicated multiplication.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right]$
$25 x^{2}+90 x+81=9 x^{2}+90 x$

Perform the indicated multiplication.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right]$
$\mathbf{2 5} x^{2}+90 x+81=9 x^{2}+90 x+225$

Perform the indicated multiplication.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right]$
$25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}$

Perform the indicated multiplication.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& 25 x^{2}+90 x+81=9\left[x^{2}+10 x+25+y^{2}\right] \\
& 25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}
\end{aligned}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}
$$

Subtract $90 \mathrm{x}+\mathbf{8 1}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}
$$

$25 x^{2}$

Subtract $90 \mathrm{x}+\mathbf{8 1}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}
$$

$$
\mathbf{2 5} \mathrm{x}^{2}=
$$

Subtract $90 x+81$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}
$$

$$
25 x^{2}=9 x^{2}
$$

Subtract $90 x+81$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}$

$$
25 x^{2}=9 x^{2}+144
$$

Subtract $90 x+81$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}$

$$
25 x^{2}=9 x^{2}+144+9 y^{2}
$$

Subtract $90 \mathrm{x}+\mathbf{8 1}$ from both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
25 x^{2}+90 x+81=9 x^{2}+90 x+225+9 y^{2}
$$

$$
25 x^{2}=9 x^{2}+144+9 y^{2}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
25 x^{2}=9 x^{2}+144+9 y^{2}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
25 x^{2}=9 x^{2}+144+9 y^{2}
$$

Subtract $9 \mathrm{x}^{\mathbf{2}}+\mathbf{9} \mathrm{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& 25 x^{2}=9 x^{2}+144+9 y^{2} \\
& 16 x^{2}
\end{aligned}
$$

Subtract $\mathbf{9} \mathbf{x}^{\mathbf{2}}+\mathbf{9} \mathrm{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& 25 x^{2}=9 x^{2}+144+9 y^{2} \\
& 16 x^{2}-9 y^{2}
\end{aligned}
$$

Subtract $\mathbf{9} \mathbf{x}^{\mathbf{2}}+\mathbf{9} \mathrm{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& 25 x^{2}=9 x^{2}+144+9 y^{2} \\
& 16 x^{2}-9 y^{2}=
\end{aligned}
$$

Subtract $\mathbf{9} \mathbf{x}^{\mathbf{2}}+\mathbf{9} \mathrm{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
25 x^{2}=9 x^{2}+144+9 y^{2} \\
16 x^{2}-9 y^{2}=144
\end{gathered}
$$

Subtract $\mathbf{9} \mathbf{x}^{\mathbf{2}}+\mathbf{9} \mathrm{y}^{\mathbf{2}}$ from both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
25 x^{2}=9 x^{2}+144+9 y^{2} \\
16 x^{2}-9 y^{2}=144
\end{gathered}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$16 x^{2}-9 y^{2}=144$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$16 x^{2}-9 y^{2}=144$

Divide both sides by 144 and reduce to lowest terms.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\frac{16 x^{2}}{144}-\frac{9 y^{2}}{144}=\frac{144}{144}
$$

Divide both sides by 144 and reduce to lowest terms.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \frac{16 x^{2}}{144}-\frac{9 y^{2}}{144}=\frac{144}{144} \\
& \frac{x^{2}}{9}
\end{aligned}
$$

Divide both sides by 144 and reduce to lowest terms.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \frac{16 x^{2}}{144}-\frac{9 y^{2}}{144}=\frac{144}{144} \\
& \frac{x^{2}}{9}-
\end{aligned}
$$

Divide both sides by 144 and reduce to lowest terms.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \frac{16 x^{2}}{144}-\frac{9 y^{2}}{144}=\frac{144}{144} \\
& \frac{x^{2}}{9}-\frac{y^{2}}{16}
\end{aligned}
$$

Divide both sides by 144 and reduce to lowest terms.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \frac{16 x^{2}}{144}-\frac{9 y^{2}}{144}=\frac{144}{144} \\
& \frac{x^{2}}{9}-\frac{y^{2}}{16}=
\end{aligned}
$$

Divide both sides by 144 and reduce to lowest terms.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{gathered}
\frac{16 x^{2}}{144}-\frac{9 y^{2}}{144}=\frac{144}{144} \\
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
\end{gathered}
$$

Divide both sides by 144 and reduce to lowest terms.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then
$\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6$
This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\begin{aligned}
& \frac{16 x^{2}}{144}-\frac{9 y^{2}}{144}=\frac{144}{144} \\
& \frac{x^{2}}{9}-\frac{y^{2}}{16}=1
\end{aligned}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\sqrt{(x-5)^{2}+y^{2}}-\sqrt{(x+5)^{2}+y^{2}}= \pm 6
$$

This equation is equivalent to

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

This is the standard form equation of this hyperbola.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

Multiply both sides by 144 (which is 9 times 16).

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
16 x^{2}
$$

Multiply both sides by 144 (which is 9 times 16).

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
16 \mathbf{x}^{2}-
$$

Multiply both sides by 144 (which is 9 times 16).

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
16 x^{2}-9 y^{2}
$$

Multiply both sides by 144 (which is 9 times 16).

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
16 x^{2}-9 y^{2}=
$$

Multiply both sides by 144 (which is 9 times 16).

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
16 x^{2}-9 y^{2}=144
$$

Multiply both sides by 144 (which is 9 times 16).

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
16 x^{2}-9 y^{2}=144
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
16 x^{2}-9 y^{2}=144
$$

Subtract 144 from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
\begin{aligned}
& 16 x^{2}-9 y^{2}=144 \\
& 16 x^{2}
\end{aligned}
$$

Subtract 144 from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
\begin{aligned}
& 16 x^{2}-9 y^{2}=144 \\
& 16 x^{2}-9 y^{2}
\end{aligned}
$$

Subtract 144 from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
\begin{gathered}
16 x^{2}-9 y^{2}=144 \\
16 x^{2}-9 y^{2}-144
\end{gathered}
$$

Subtract 144 from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
\begin{gathered}
16 x^{2}-9 y^{2}=144 \\
16 x^{2}-9 y^{2}-144=
\end{gathered}
$$

Subtract 144 from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
\begin{gathered}
16 x^{2}-9 y^{2}=144 \\
16 x^{2}-9 y^{2}-144=0
\end{gathered}
$$

Subtract 144 from both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
\begin{gathered}
16 x^{2}-9 y^{2}=144 \\
16 x^{2}-9 y^{2}-144=0
\end{gathered}
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Consider these equations which are equivalent to the standard form equation.

$$
\begin{gathered}
16 x^{2}-9 y^{2}=144 \\
16 x^{2}-9 y^{2}-144=0
\end{gathered}
$$

This is the general form equation of this hyperbola.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

We still have more to do to connect the standard form equation to the graph.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

We still have more to do to connect the standard form equation to the graph. We will start by solving the general form equation for \mathbf{y}.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

We still have more to do to connect the standard form equation to the graph. We will start by solving the general form equation for \mathbf{y}.

$$
16 x^{2}-9 y^{2}-144=0
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for $y: \quad 16 x^{2}-9 y^{2}-144=0$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for $y: \quad 16 x^{2}-9 y^{2}-144=0$

Add $9 \mathbf{y}^{\mathbf{2}}$ to both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$
$16 x^{2}$

Add $9 \mathbf{y}^{\mathbf{2}}$ to both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
16 x^{2}-144
$$

Add $9 \mathbf{y}^{\mathbf{2}}$ to both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$
$16 x^{2}-144=$

Add $9 \mathbf{y}^{\mathbf{2}}$ to both sides.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
16 x^{2}-144=9 y^{2}
$$

Add $9 \mathbf{y}^{\mathbf{2}}$ to both sides.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
16 x^{2}-144=9 y^{2}
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
16 x^{2}-144=9 y^{2}
$$

Factor the left side of the equation.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$
$16 x^{2}-144=9 y^{2}$

Factor the left side of the equation. Factor out $16 x^{2}$!

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
16 x^{2}-144=9 y^{2}
$$

$16 x^{2}($
Factor the left side of the equation. Factor out $16 x^{2}$!

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
16 x^{2}-144=9 y^{2}
$$

$16 x^{2}(1$
Factor the left side of the equation. Factor out $16 x^{2}$!

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$
$16 x^{2}-144=9 y^{2}$
$16 x^{2}(1-$
Factor the left side of the equation. Factor out $16 \mathbf{x}^{\mathbf{2}}$!

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{aligned}
& 16 x^{2}-144=9 y^{2} \\
& 16 x^{2}\left(1-\frac{9}{x^{2}}\right)
\end{aligned}
$$

Factor the left side of the equation. Factor out $16 x^{2}$!

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{gathered}
16 x^{2}-144=9 y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=
\end{gathered}
$$

Factor the left side of the equation. Factor out $16 x^{2}$!

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{gathered}
16 x^{2}-144=9 y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2}
\end{gathered}
$$

Factor the left side of the equation. Factor out $16 x^{2}$!

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{gathered}
16 x^{2}-144=9 y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2}
\end{gathered}
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{gathered}
16 x^{2}-144=9 y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2}
\end{gathered}
$$

Multiply both sides of the equation by $1 / 9$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{aligned}
16 x^{2}-144 & =9 y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right) & =9 y^{2}
\end{aligned}
$$

Multiply both sides of the equation by $1 / 9$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{aligned}
16 x^{2}-144 & =9 y^{2} \quad \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right) \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right) & =9 y^{2}
\end{aligned}
$$

Multiply both sides of the equation by $1 / 9$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{aligned}
16 x^{2}-144 & =9 y^{2} \quad \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)= \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right) & =9 y^{2}
\end{aligned}
$$

Multiply both sides of the equation by $1 / 9$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{aligned}
16 x^{2}-144 & =9 y^{2} \quad \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right) & =9 y^{2}
\end{aligned}
$$

Multiply both sides of the equation by $1 / 9$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{aligned}
16 x^{2}-144 & =9 y^{2} \quad \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right) & =9 y^{2}
\end{aligned}
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{aligned}
16 x^{2}-144 & =9 y^{2} \quad \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right) & =9 y^{2}
\end{aligned}
$$

Apply the square root property to solve for y.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{aligned}
16 x^{2}-144 & =9 y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2}
\end{aligned}
$$

Apply the square root property to solve for y.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{aligned}
16 x^{2}-144 & =9 y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & \frac{16}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2}
\end{aligned}
$$

Apply the square root property to solve for y.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{array}{cl}
16 x^{2}-144=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & y= \pm \sqrt{ }
\end{array}
$$

Apply the square root property to solve for y.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{array}{cl}
16 x^{2}-144=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & y= \pm \sqrt{\frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)}
\end{array}
$$

Apply the square root property to solve for y.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{array}{cl}
16 x^{2}-144=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & y= \pm \sqrt{\frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)}
\end{array}
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{array}{cl}
16 x^{2}-144=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & y= \pm \sqrt{\frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)}
\end{array}
$$

Simplify the square root.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{array}{cl}
16 x^{2}-144=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & y= \pm \sqrt{\frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)}=
\end{array}
$$

Simplify the square root.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{array}{ll}
16 x^{2}-144=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & y= \pm \sqrt{\frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)}= \pm
\end{array}
$$

Simplify the square root.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{array}{ll}
16 x^{2}-144=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & y= \pm \sqrt{\frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)}= \pm \frac{4 x}{3}
\end{array}
$$

Simplify the square root.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{array}{ll}
16 x^{2}-144=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & y= \pm \sqrt{\frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)}= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
\end{array}
$$

Simplify the square root.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

Solve for y : $\quad 16 x^{2}-9 y^{2}-144=0$

$$
\begin{array}{cl}
16 x^{2}-144=9 y^{2} & \frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)=y^{2} \\
16 x^{2}\left(1-\frac{9}{x^{2}}\right)=9 y^{2} & y= \pm \sqrt{\frac{16 x^{2}}{9}\left(1-\frac{9}{x^{2}}\right)}= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
\end{array}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
16 x^{2}-9 y^{2}-144=0
$$

General Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of
 this hyperbola.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of this hyperbola.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of
 this hyperbola. As you move to the right,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of
 this hyperbola. As you move to the right, the value of x increases

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of
 this hyperbola. As you move to the right, the value of x increases and the value of x^{2} increases.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of
 this hyperbola. As you move to the right, the value of x increases and the value of x^{2} increases. The value of the fraction $\frac{9}{x^{2}}$ gets closer to 0

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of
 this hyperbola. As you move to the right, the value of x increases and the value of x^{2} increases. The value of the fraction $\frac{9}{x^{2}}$ gets closer to 0 and the value of y approaches the value of $\pm \frac{4 x}{3}$!

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of this hyperbola. As you move to the
 right, the value of x increases and the value of x^{2} increases. The value of the fraction $\frac{9}{x^{2}}$ gets closer to 0 and the value of y approaches the value of $\pm \frac{4 x}{3}$! Here are the graphs of the equations $y=(4 / 3) x$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of this hyperbola. As you move to the
 right, the value of x increases and the value of x^{2} increases. The value of the fraction $\frac{9}{x^{2}}$ gets closer to 0 and the value of y approaches the value of $\pm \frac{4 x}{3}$! Here are the graphs of the equations $y=(4 / 3) x$ and $y=(-4 / 3) x$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

First consider the 'right branch' of
 this hyperbola. As you move to the right, the value of x increases and the value of x^{2} increases. The value of the fraction $\frac{9}{x^{2}}$ gets closer to 0 and the value of y approaches the value of $\pm \frac{4 x}{3}$! Here are the graphs of the equations $y=(4 / 3) x$ and $y=(-4 / 3) x$.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Next consider the 'left branch' of
 this hyperbola.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Next consider the 'left branch' of
 this hyperbola.

Equations of a Hyperbola
If $\mathbf{P}(\mathbf{x}, \mathrm{y})$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Next consider the 'left branch' of
 this hyperbola. As you move to the left,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Next consider the 'left branch' of
 this hyperbola. As you move to the left, the value of x decreases,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Next consider the 'left branch' of
 this hyperbola. As you move to the left, the value of x decreases, but the value of x^{2} increases!

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Next consider the 'left branch' of
 this hyperbola. As you move to the left, the value of x decreases, but the value of x^{2} increases! Again, the value of the fraction $\frac{9}{x^{2}}$ gets closer to 0

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

$$
y= \pm \frac{4 x}{3} \sqrt{\left(1-\frac{9}{x^{2}}\right)}
$$

Next consider the 'left branch' of
 this hyperbola. As you move to the left, the value of x decreases, but the value of x^{2} increases! Again, the value of the fraction $\frac{9}{x^{2}}$ gets closer to 0 and the value of y approaches the value of $\pm \frac{4 x}{3}$!

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
The line $y=(4 / 3) x$ and the line $y=(-4 / 3) x$ are called asymptotes of the curve.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
The line $y=(4 / 3) x$ and the line $y=(-4 / 3) x$ are called asymptotes of the curve. In each case, as the value of $|\mathbf{x}|$ increases,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
The line $y=(4 / 3) x$ and the line $y=(-4 / 3) x$ are called asymptotes of the curve. In each case, as the value of $|\mathbf{x}|$ increases, points on
 the curve get closer to the lines.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
The line $y=(4 / 3) x$ and the line $y=(-4 / 3) x$ are called asymptotes of the curve. In each case, as the value of $|\mathbf{x}|$ increases, points on
 the curve get closer to the lines. The asymptotes can easily be determined from the standard form equation

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
The line $y=(4 / 3) x$ and the line $y=(-4 / 3) x$ are called asymptotes of the curve. In each case, as the value of $|\mathbf{x}|$ increases, points on
 the curve get closer to the lines. The asymptotes can easily be determined from the standard form equation and can be used as a graphing aid.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
The line $y=(4 / 3) x$ and the line $y=(-4 / 3) x$ are called asymptotes of the curve. In each case, as the value of $|\mathbf{x}|$ increases, points on
 the curve get closer to the lines. The asymptotes can easily be determined from the standard form equation and can be used as a graphing aid. Let's see how.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ', hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

This is the standard form equation for a type 1 hyperbola with center at (h, k).

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

This is the standard form equation for a type 1 hyperbola with center at (h, k). In this particular example, the center is the origin, so $h=0$ and $k=0$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{2}-\frac{(y-k)^{2}}{h}=1 \text { As we have said previously, }
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \begin{aligned}
& \text { As we have said previously, the transverse } \\
& \text { axis }
\end{aligned}
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \begin{aligned}
& \text { As we have said previously, the transverse } \\
& \text { axis is the horizontal line segment through }
\end{aligned}
$$

the center

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \begin{aligned}
& \text { As we have said previously, the transverse } \\
& \text { axis is the horizontal line segment through }
\end{aligned}
$$

the center with each endpoint on the hyperbola.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \begin{aligned}
& \text { As we have said previously, the transverse } \\
& \text { axis is the horizontal line segment through }
\end{aligned}
$$

the center with each endpoint on the hyperbola. The length of the transverse axis is represented by 2 a .

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \begin{aligned}
& \text { As we have said previously, the transverse } \\
& \text { axis is the horizontal line segment through }
\end{aligned}
$$

the center with each endpoint on the hyperbola. The length of the transverse axis is represented by 2 a . In this case, $2 \mathrm{a}=6$,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

As we have said previously, the transverse axis is the horizontal line segment through the center with each endpoint on the hyperbola. The length of the transverse axis is represented by 2 a . In this case, $2 \mathrm{a}=6$, so $\mathrm{a}=3$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\xrightarrow{(x-h)^{2}} \mathbf{a}^{2}-\frac{(y-k)^{2}}{b^{2}}=1 \begin{aligned}
& \text { As we have said previously, the transverse } \\
& \text { axis is the horizontal line segment through }
\end{aligned}
$$

the center with each endpoint on the hyperbola. The length of the transverse axis is represented by 2 a . In this case, $2 \mathrm{a}=6$, so $\mathbf{a}=3$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbolas have a second axis,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbolas have a second axis, called the conjugate axis.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbolas have a second axis, called the conjugate axis. This axis is goes through the center,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbolas have a second axis, called the conjugate axis. This axis is goes through the center, is perpendicular to the transverse axis,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbolas have a second axis, called the conjugate axis. This axis is goes through the center, is perpendicular to the transverse axis, and is $\mathbf{2 b}$ units long.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbolas have a second axis, called the conjugate axis. This axis is goes through the center, is perpendicular to the transverse axis, and is $\mathbf{2 b}$ units long. In this example,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbolas have a second axis, called the conjugate axis. This axis is goes through the center, is perpendicular to the transverse axis, and is 2 b units long. In this example, $b^{2}=\mathbf{1 6}$,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbolas have a second axis, called the conjugate axis. This axis is goes through the center, is perpendicular to the transverse axis, and is 2 b units long. In this example, $b^{2}=16$, so $b=4$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Hyperbolas have a second axis, called the conjugate axis. This axis is goes through the center, is perpendicular to the transverse axis, and is 2 b units long. In this example, $b^{2}=16$, so $b=4$ and $2 b=8$.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $c=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

This rectangle is very useful when graphing hyperbolas.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

This rectangle is very useful when graphing hyperbolas. The 'center' of the rectangle is the same point as the center of the hyperbola.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

This rectangle is very useful when graphing hyperbolas. The 'center' of the rectangle is the same point as the center of the hyperbola. Its width is 2 a ,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

This rectangle is very useful when graphing hyperbolas. The 'center' of the rectangle is the same point as the center of the hyperbola. Its width is 2 a , the length of the transverse axis.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

This rectangle is very useful when graphing hyperbolas. The 'center' of the rectangle is the same point as the center of the hyperbola. Its width is 2 a , the length of the transverse axis. Its length is $\mathbf{2 b}$,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

This rectangle is very useful when graphing hyperbolas. The 'center' of the rectangle is the same point as the center of the hyperbola. Its width is 2 a , the length of the transverse axis. Its length is 2 b , the length of the conjugate axis.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $c=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Most importantly,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Most importantly, the diagonals of this rectangle can be used to draw in the two lines that are the asymptotes of the hyperbola.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Most importantly, the diagonals of this rectangle can be used to draw in the two lines that are the asymptotes of the hyperbola. They determine the 'shape' of the hyperbola

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation
This is an example of a 'type 1 ' hyperbola. The foci are on a horizontal line, c units from the center. In this case, $\mathbf{c}=5$.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Most importantly, the diagonals of this rectangle can be used to draw in the two lines that are the asymptotes of the hyperbola. They determine the 'shape' of the hyperbola which helps when graphing.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson.

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$ units long. This distance is a.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is 2 a
 units long. This distance is a.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long. This distance is a. The conjugate axis is 2 b units long.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is 2 a
 units long. This distance is a. The conjugate axis is 2 b units long. So this distance is \mathbf{b}.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is 2 a
 units long. This distance is a. The conjugate axis is 2 b units long. So this distance is b.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long. This distance is a. The conjugate axis is 2 b units long. So this distance is \mathbf{b}. Consider this right triangle.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long. This distance is a. The conjugate axis is $2 b$ units long. So this distance is b. Consider this right triangle. Since $a=3$ and $b=4$,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long. This distance is a. The conjugate axis is 2 b units long. So this distance is b. Consider this right triangle. Since $a=3$ and $b=4$, using the Pythagorean Theorem,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long. This distance is a. The conjugate axis is 2 b units long. So this distance is b. Consider this right triangle. Since $a=3$ and $b=4$, using the Pythagorean Theorem, the length of the hypotenuse is $\sqrt{\mathbf{a}^{2}+b^{2}}$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long. This distance is a. The conjugate axis is 2 b units long. So this distance is b. Consider this right triangle. Since $a=3$ and $b=4$, using the Pythagorean Theorem, the length of the hypotenuse is $\sqrt{a^{2}+b^{2}}=\sqrt{3^{2}+4^{2}}$

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long. This distance is a. The conjugate axis is 2 b units long. So this distance is b. Consider this right triangle. Since $a=3$ and $b=4$, using the Pythagorean Theorem, the length of the hypotenuse is $\sqrt{a^{2}+b^{2}}=\sqrt{3^{2}+4^{2}}=5$,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long. This distance is a. The conjugate axis is 2 b units long. So this distance is b. Consider this right triangle. Since $a=3$ and $b=4$, using the Pythagorean Theorem, the length of the hypotenuse is $\sqrt{\mathbf{a}^{2}+b^{2}}=\sqrt{3^{2}+4^{2}}=5$, which is equal to c ,

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c . The transverse axis is $\mathbf{2 a}$
 units long. This distance is a. The conjugate axis is 2 b units long. So this distance is b. Consider this right triangle. Since $a=3$ and $b=4$, using the Pythagorean Theorem, the length of the hypotenuse is $\sqrt{a^{2}+b^{2}}=\sqrt{3^{2}+4^{2}}=5$, which is equal to c, the distance from the center of the hyperbola to each focus !!

Equations of a Hyperbola

If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and c.

Equations of a Hyperbola
If $P(x, y)$ represents any point on the hyperbola, then

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

Standard Form Equation

There is one more relationship to consider in this lesson. That is the relationship between the distances a, b, and $c . \quad c^{2}=a^{2}+b^{2}$

Equations of a Hyperbola

Equations of a Hyperbola

Type 1
Transverse Axis Horizontal

Equations of a Hyperbola

Type 1

Transverse Axis Horizontal

Transverse Axis 2a units long

Equations of a Hyperbola

Type 1

Transverse Axis Horizontal

Transverse Axis 2a units long
Conjugate Axis 2b units long

Equations of a Hyperbola

Type 1

Transverse Axis Horizontal

Transverse Axis 2a units long
Conjugate Axis 2b units long
Each focus is c units from the center.

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

Equations of a Hyperbola

Type 1

Transverse Axis Horizontal

Transverse Axis 2a units long

Conjugate Axis 2b units long

Each focus is c units from the center.

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of a Hyperbola

Type 1

Transverse Axis Horizontal

Transverse Axis 2a units long
Conjugate Axis 2b units long
Each focus is c units from the center.

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of a Hyperbola

Equations of a Hyperbola

Type 2
Transverse Axis Vertical

Equations of a Hyperbola

Type 2
Transverse Axis Vertical

Equations of a Hyperbola

Type 2
Transverse Axis Vertical

Equations of a Hyperbola

Type 2
Transverse Axis Vertical

Equations of a Hyperbola

Type 2
Transverse Axis Vertical

Equations of a Hyperbola

Type 2
Transverse Axis Vertical

Equations of a Hyperbola

Type 1
Transverse Axis Horizontal

Type 2
Transverse Axis Vertical

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

General Form Equation

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

$$
\mathbf{A C}<0
$$

Transverse Axis 2a units long
Conjugate Axis 2b units long

Each focus is c units from the center.

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and }
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is $\mathbf{4}$ units long.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

The conjugate axis

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

The conjugate axis is $\mathbf{8}$ units long.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Longrightarrow
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-{\underline{(y--3)^{2}}}^{2}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1 \Longrightarrow
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1 \Rightarrow \underline{(x-4)^{2}}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1 \Longrightarrow \frac{(x-4)^{2}}{4}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Rightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1 \Longrightarrow \frac{(x-4)^{2}}{4}-
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1 \Longrightarrow \frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1 \Rightarrow \frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1 \Rightarrow \frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1 \Rightarrow \frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

The center is the point $(4,-3)$.

$$
h=4 \text { and } k=-3
$$

The transverse axis is 4 units long.

$$
2 a=4 \Longrightarrow a=2
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(x-4)^{2}}{2^{2}}-\frac{(y--3)^{2}}{4^{2}}=1 \Longrightarrow \frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

Clear the fractions. Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$4($

Clear the fractions.
Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$4(x-4)^{2}$

Clear the fractions.
Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$4(x-4)^{2}-1($

Clear the fractions.

Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathrm{AC}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}
$$

Clear the fractions.
Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=
$$

Clear the fractions.
Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

Clear the fractions.
Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

Square the binomials

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}\right.
$$

Square the binomials

General Form Equation
$A x^{2}+\mathbf{C y}$ 2 $\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$
AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x\right.
$$

Square the binomials

General Form Equation
$A x^{2}+\mathbf{C y}$ 2 $\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$
AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathrm{AC}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1(
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1(
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}\right.
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y\right.
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

Square the binomials

General Form Equation

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola. (The transverse axis is horizontal.)

Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$4 x^{2}$
Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x
$$

Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64
$$

Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64
$$

Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}
$$

Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y
$$

Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9
$$

Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=
$$

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
\begin{aligned}
& \text { General Form Equation } \\
& \mathbf{A x}^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
& \mathbf{A C}<0
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

Rearrange and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}
$$

Rearrange and combine like terms.

$$
\begin{aligned}
& \text { General Form Equation } \\
& \mathbf{A x}^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
& \mathbf{A C}<0
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}
$$

Rearrange and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x
$$

Rearrange and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y
$$

Rearrange and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y
$$

Rearrange and combine like terms.

$$
\begin{aligned}
& \text { General Form Equation } \\
& \mathbf{A x}^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
& \mathbf{A C}<0
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55
$$

Rearrange and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=
$$

Rearrange and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=16
$$

Rearrange and combine like terms.

$$
\begin{aligned}
& \text { General Form Equation } \\
& \mathbf{A x}^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
& \mathbf{A C}<0
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=16
$$

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola. (The transverse axis is horizontal.)

Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=16
$$

Subtract 16 from both sides.

> General Form Equation
> $\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ $\mathbf{A C}<0$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$4(x-4)^{2}-1(y+3)^{2}=16$
$4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16$
$4 x^{2}-32 x+64-1 y^{2}-6 y-9=16$
$4 x^{2}-1 y^{2}-32 x-6 y+55=16$
$4 x^{2}$
Subtract 16 from both sides.

> General Form Equation
> $\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ $\mathbf{A C}<\mathbf{0}$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$4(x-4)^{2}-1(y+3)^{2}=16$
$4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16$
$4 x^{2}-32 x+64-1 y^{2}-6 y-9=16$
$4 x^{2}-1 y^{2}-32 x-6 y+55=16$
$4 x^{2}-1 y^{2}$
Subtract 16 from both sides.

$$
\begin{gathered}
\text { General Form Equation } \\
\begin{array}{c}
\mathbf{x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<0
\end{array}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=16
$$

$$
4 x^{2}-1 y^{2}-32 x
$$

Subtract 16 from both sides.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y
$$

Subtract 16 from both sides.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C y} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+39
$$

Subtract 16 from both sides.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C y} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+39=
$$

Subtract 16 from both sides.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+39=0
$$

Subtract 16 from both sides.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<0
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

$$
4(x-4)^{2}-1(y+3)^{2}=16
$$

$$
4\left(x^{2}-8 x+16\right)-1\left(y^{2}+6 y+9\right)=16
$$

$$
4 x^{2}-32 x+64-1 y^{2}-6 y-9=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+55=16
$$

$$
4 x^{2}-1 y^{2}-32 x-6 y+39=0
$$

$$
\begin{aligned}
& \text { General Form Equation } \\
& \mathbf{A x}^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
& \mathbf{A C}<0
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{aligned}
& \mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2} \\
& \mathbf{a}^{2}=
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{aligned}
& \mathbf{c}^{2}=\mathbf{a}^{2}+b^{2} \\
\mathbf{a}^{2}= & 4
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{aligned}
& \quad \mathbf{c}^{2}=\mathbf{a}^{2}+b^{2} \\
& \mathbf{a}^{2}=4 \quad \text { and }
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=4 \quad \text { and } \quad b^{2}=
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=4 \quad \text { and } \quad b^{2}=16
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{aligned}
& \mathbf{c}^{2}=\mathbf{a}^{2}+b^{2} \\
& \mathbf{a}^{2}=4 \quad \text { and } \quad b^{2}=16 \\
& \mathbf{c}^{2}=
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is \mathbf{c} units from the center where

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& \mathbf{a}^{2}=4 \quad \text { and } \quad b^{2}=16 \\
& \mathbf{c}^{2}=4
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
& c^{2}=4+
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
& c^{2}=4+16
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=20
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=20 \\
c=
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } b^{2}=16 \\
c^{2}=4+16=20 \\
c=\sqrt{20}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=20 \\
c=\sqrt{20} \approx
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=20 \\
c=\sqrt{20} \approx 4.5
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where
The center of this hyperbola is $(4,-3)$.

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=20 \\
c=\sqrt{20} \approx 4.5
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where
The center of this hyperbola is $(4,-3)$. F_{1} is c units left of the center.

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=20 \\
c=\sqrt{20} \approx 4.5
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where
The center of this hyperbola is $(4,-3)$. F_{1} is c units left of the center.

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=20 \\
c=\sqrt{20} \approx 4.5
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where
The center of this hyperbola is $(4,-3)$.
F_{1} is c units left of the center.
F_{2} is \mathbf{c} units right of the center.

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=20 \\
c=\sqrt{20} \approx 4.5
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

The center of this hyperbola is $(4,-3)$. F_{1} is c units left of the center. F_{2} is \mathbf{c} units right of the center.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=4 \quad \text { and } \quad b^{2}=16 \\
c^{2}=4+16=20 \\
c=\sqrt{20} \approx 4.5
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
1.

This a type 1 Hyperbola.
(The transverse axis is horizontal.)
Standard Form Equation

$$
\frac{(x-4)^{2}}{4}-\frac{(y+3)^{2}}{16}=1
$$

General Form Equation

$$
4 x^{2}-y^{2}-32 x-6 y+39=0
$$

Each focus is c units from the center where
The center of this hyperbola is $(4,-3)$.
F_{1} is c units left of the center.
F_{2} is \mathbf{c} units right of the center.

$$
\begin{gathered}
\mathbf{c}^{2}=\mathbf{a}^{2}+b^{2} \\
\mathbf{a}^{2}=4 \quad \text { and } \quad b^{2}=16 \\
\mathbf{c}^{2}=4+\mathbf{1 6}=20 \\
\mathbf{c}=\sqrt{20} \approx 4.5
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and }
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is 8 units long.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is 8 units long.

$$
2 a=8
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is 8 units long.

$$
2 a=8 \Rightarrow
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is 8 units long.

$$
2 a=8 \Rightarrow a=4
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is $\mathbf{8}$ units long.

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Longrightarrow
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Longrightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Longrightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1 \Rightarrow
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1 \Rightarrow \underline{(y-1)^{2}}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1 \Rightarrow \frac{(y-1)^{2}}{16}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1 \Longrightarrow \frac{(y-1)^{2}}{16}-
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1 \Rightarrow \frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1 \Rightarrow \frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1 \Rightarrow \frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1 \Longrightarrow \frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center is the point $(5,1)$.

$$
h=5 \text { and } k=1
$$

The transverse axis is $\mathbf{8}$ units long.

$$
2 a=8 \Rightarrow a=4
$$

The conjugate axis is 8 units long.

$$
2 b=8 \Rightarrow b=4
$$

$$
\frac{(y-1)^{2}}{4^{2}}-\frac{(x-5)^{2}}{4^{2}}=1 \Longrightarrow \frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

Standard Form Equation

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

1(

Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}$

Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-$

Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1($

Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}$

Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=$

Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

Multiply both sides by 16.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$

$$
1(y-1)^{2}-1(x-5)^{2}=16
$$

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$

$$
1(y-1)^{2}-1(x-5)^{2}=16
$$

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$

$$
1(y-1)^{2}-1(x-5)^{2}=16
$$

1(

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
1(

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}\right.$

Square the binomials.

General Form Equation
$A x^{2}+\mathbf{C y}$ 2 $\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$
AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y\right.$

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)$

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-$

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1($

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1($

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}\right.$

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x\right.$

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)$

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=$

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$

Square the binomials.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

General Form Equation

$$
A x^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 \mathbf{y}^{2}
$$

Perform the indicated multiplication.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 } + \mathbf { C } \mathbf { y } ^ { 2 } + \mathbf { D x } + \mathbf { E y } + \mathbf { F } = \mathbf { 0 }} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

Perform the indicated multiplication.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

Reorder and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}
$$

Reorder and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 } + \mathbf { C } \mathbf { y } ^ { 2 } + \mathbf { D x } + \mathbf { E y } + \mathbf { F } = \mathbf { 0 }} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}+1 y^{2}
$$

Reorder and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}+1 y^{2}+10 x
$$

Reorder and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}+1 y^{2}+10 x-2 y
$$

Reorder and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}+1 y^{2}+10 x-2 y-24
$$

Reorder and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}+1 y^{2}+10 x-2 y-24=
$$

Reorder and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}+1 y^{2}+10 x-2 y-24=16
$$

Reorder and combine like terms.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x ^ { 2 }}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}+1 y^{2}+10 x-2 y-24=16
$$

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}+1 y^{2}+10 x-2 y-24=16
$$

Subtract 16 from both sides.
General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 \mathrm{x}^{2}$
Subtract 16 from both sides.
General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}$
Subtract 16 from both sides.
General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x$
Subtract 16 from both sides.
General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y$
Subtract 16 from both sides.
General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40$
Subtract 16 from both sides.
General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=$
Subtract 16 from both sides.
General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
Subtract 16 from both sides.
General Form Equation
$A x^{2}+\mathbf{C y}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$

$$
1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16
$$

$$
1 y^{2}-2 y+1-1 x^{2}+10 x-25=16
$$

$$
-1 x^{2}+1 y^{2}+10 x-2 y-24=16
$$

$$
-1 x^{2}+1 y^{2}+10 x-2 y-40=0
$$

General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$
$1 y^{2}-2 y+1-1 x^{2}+10 x-25=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
Although this equation is correct, it is more common to start off with a positive coefficient.

General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$
$1 y^{2}-2 y+1-1 x^{2}+10 x-25=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
Although this equation is correct, it is more common to start off with a positive coefficient.

Multiply both sides by $\mathbf{- 1}$.

General Form Equation

$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$
$1 y^{2}-2 y+1-1 x^{2}+10 x-25=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
$1 \mathbf{x}^{2}$

General Form Equation
$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

Although this equation is correct, it is more common to start off with a positive coefficient.

Multiply both sides by $\mathbf{- 1}$.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$
$1 y^{2}-2 y+1-1 x^{2}+10 x-25=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
$1 x^{2}-1 y^{2}$

General Form Equation

$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

Although this equation is correct, it is more common to start off with a positive coefficient.

Multiply both sides by $\mathbf{- 1}$.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$
$1 y^{2}-2 y+1-1 x^{2}+10 x-25=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
$1 \mathrm{x}^{2}-1 \mathrm{y}^{2}-10 \mathrm{x}$

General Form Equation

$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$
$1 y^{2}-2 y+1-1 x^{2}+10 x-25=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
$1 x^{2}-1 y^{2}-10 x+2 y$

General Form Equation

$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$
$1 y^{2}-2 y+1-1 x^{2}+10 x-25=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
$1 x^{2}-1 y^{2}-10 x+2 y+40$

General Form Equation

$A x^{2}+\mathbf{C y} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$
$1 y^{2}-2 y+1-1 x^{2}+10 x-25=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
$1 x^{2}-1 y^{2}-10 x+2 y+40=0$

General Form Equation

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

Although this equation is correct, it is more common to start off with a positive coefficient.

Multiply both sides by $\mathbf{- 1}$.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation $\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1$
$1(y-1)^{2}-1(x-5)^{2}=16$
$1\left(y^{2}-2 y+1\right)-1\left(x^{2}-10 x+25\right)=16$
$1 y^{2}-2 y+1-1 x^{2}+10 x-25=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-24=16$
$-1 x^{2}+1 y^{2}+10 x-2 y-40=0$
$1 x^{2}-1 y^{2}-10 x+2 y+40=0$

General Form Equation

$A x^{2}+\mathbf{C y}{ }^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ AC <0

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation
$x^{2}-y^{2}-10 x+2 y+40=0$

Each focus is \mathbf{c} units from the center

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$$
\begin{aligned}
& \text { General Form Equation } \\
& x^{2}-y^{2}-10 x+2 y+40=0
\end{aligned}
$$

Each focus is \mathbf{c} units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is \mathbf{c} units from the center where

$$
\mathbf{a}^{2}=
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

$$
\begin{aligned}
& \text { General Form Equation } \\
& x^{2}-y^{2}-10 x+2 y+40=0
\end{aligned}
$$

Each focus is c units from the center where

$$
\begin{aligned}
& \quad \mathbf{c}^{2}=\mathbf{a}^{2}+b^{2} \\
& \mathbf{a}^{2}=16
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is \mathbf{c} units from the center where

$$
\begin{aligned}
& c^{2}=\mathbf{a}^{2}+b^{2} \\
& \mathbf{a}^{2}=16 \quad \text { and }
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation
$x^{2}-y^{2}-10 x+2 y+40=0$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=\mathbf{a}^{2}+b^{2} \\
\mathbf{a}^{2}=16 \quad \text { and } b^{2}=
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=16 \quad \text { and } \quad b^{2}=16
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& \mathbf{a}^{2}=16 \quad \text { and } b^{2}=16 \\
& \mathbf{c}^{2}=
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\begin{aligned}
& \mathbf{c}^{2}=\mathbf{a}^{2}+b^{2} \\
& \mathbf{a}^{2}=16 \quad \text { and } b^{2}=16 \\
& \mathbf{c}^{2}=16
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\begin{aligned}
& \mathbf{c}^{2}=\mathbf{a}^{2}+b^{2} \\
& \mathbf{a}^{2}=16 \quad \text { and } b^{2}=16 \\
& \mathbf{c}^{2}=16+
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus in \mathbf{c} units from the center where

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& \mathbf{a}^{2}=16 \quad \text { and } b^{2}=16 \\
& \mathbf{c}^{2}=16+16
\end{aligned}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus in \mathbf{c} units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=16 \quad \text { and } b^{2}=16 \\
\mathbf{c}^{2}=16+16=
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=16 \quad \text { and } b^{2}=16 \\
c^{2}=16+16=32
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus in \mathbf{c} units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=16 \quad \text { and } b^{2}=16 \\
\mathbf{c}^{2}=16+16=32 \\
c=
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=16 \quad \text { and } b^{2}=16 \\
\mathbf{c}^{2}=16+16=32 \\
c=\sqrt{32}
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus in \mathbf{c} units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=16 \quad \text { and } \quad b^{2}=16 \\
\mathbf{c}^{2}=16+16=32 \\
c=\sqrt{32} \approx
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=16 \quad \text { and } \quad b^{2}=16 \\
\mathbf{c}^{2}=16+16=32 \\
c=\sqrt{32} \approx 5.7
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\mathbf{a}^{2}=16 \quad \text { and } \quad b^{2}=16 \\
\mathbf{c}^{2}=16+16=32 \\
c=\sqrt{32} \approx 5.7
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

The center of this hyperbola is $(5,1)$.
This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

$$
\begin{gathered}
a^{2}=16 \quad \text { and } \quad b^{2}=16 \\
c^{2}=16+16=32 \\
c=\sqrt{32} \approx 5.7
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

The center of this hyperbola is $(5,1)$.
F_{1} is c units above the center.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

$$
\begin{gathered}
a^{2}=16 \quad \text { and } \quad b^{2}=16 \\
c^{2}=16+16=32 \\
c=\sqrt{32} \approx 5.7
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

The center of this hyperbola is $(5,1)$.
F_{1} is c units above the center.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

$$
\begin{gathered}
a^{2}=16 \quad \text { and } \quad b^{2}=16 \\
c^{2}=16+16=32 \\
c=\sqrt{32} \approx 5.7
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

The center of this hyperbola is $(5,1)$.
F_{1} is c units above the center.
F_{2} is \mathbf{c} units below the center.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

$$
\begin{gathered}
a^{2}=16 \quad \text { and } \quad b^{2}=16 \\
c^{2}=16+16=32 \\
c=\sqrt{32} \approx 5.7
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

The center of this hyperbola is $(5,1)$.
F_{1} is c units above the center.
F_{2} is c units below the center.

This a type 2 Hyperbola. (The transverse axis is vertical.)

Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

$$
\begin{gathered}
a^{2}=16 \quad \text { and } \quad b^{2}=16 \\
c^{2}=16+16=32 \\
c=\sqrt{32} \approx 5.7
\end{gathered}
$$

Class Worksheet \#3

Write the equation in standard form and the equation in general form for each hyperbola. Then locate and label the foci F_{1} and F_{2}.
2.

The center of this hyperbola is $(5,1)$.
F_{1} is c units above the center.
F_{2} is c units below the center.

This a type 2 Hyperbola.
(The transverse axis is vertical.)
Standard Form Equation

$$
\frac{(y-1)^{2}}{16}-\frac{(x-5)^{2}}{16}=1
$$

General Form Equation

$$
x^{2}-y^{2}-10 x+2 y+40=0
$$

Each focus is c units from the center where

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
$$

$$
\begin{gathered}
a^{2}=16 \quad \text { and } \quad b^{2}=16 \\
c^{2}=16+16=32 \\
c=\sqrt{32} \approx 5.7
\end{gathered}
$$

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

This is the general form equation of a hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

This is the general form equation of a hyperbola.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

This is the general form equation of a hyperbola.

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

This is the general form equation of a hyperbola. We can tell this because the value of $A, 9$, is positive,

$$
\begin{gathered}
\text { General Form Equation } \\
\mathbf{A x}^{2}+\mathbf{C y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

This is the general form equation of a hyperbola. We can tell this because the value of $A, 9$, is positive, and the value of $C,-16$, is negative.

$$
\begin{gathered}
\text { General Form Equation } \\
\begin{array}{c}
\mathbf{x x}^{2}+\mathbf{C y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{array}
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

This is the general form equation of a hyperbola. We can tell this because the value of $A, 9$, is positive, and the value of $C,-16$, is negative. It is customary, although not required, for $\mathbf{A}>0$,

$$
\begin{gathered}
\text { General Form Equation } \\
\begin{array}{c}
\mathbf{A x}^{2}+\mathbf{C} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{array}
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

This is the general form equation of a hyperbola. We can tell this because the value of $A, 9$, is positive, and the value of $C,-16$, is negative. It is customary, although not required, for $A>0$, so we will see a minus sign, - ,

$$
\begin{gathered}
\text { General Form Equation } \\
\begin{array}{c}
\mathbf{A x} \mathbf{x}^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<\mathbf{0}
\end{array}
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph. \downarrow
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

This is the general form equation of a hyperbola. We can tell this because the value of $A, 9$, is positive, and the value of $C,-16$, is negative. It is customary, although not required, for $A>0$, so we will see a minus sign, - , between the first two terms in the general form equation.

$$
\begin{gathered}
\text { General Form Equation } \\
\begin{array}{c}
\mathbf{x x}^{2}+\mathbf{C y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<0
\end{array}
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 \mathbf{x}^{2}$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x
$$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}
$$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y
$$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y$

Rearrange the terms in the equation. (Add 463 to each side.)

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=
$$

Rearrange the terms in the equation. (Add 463 to each side.)

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

Rearrange the terms in the equation. (Add 463 to each side.)

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

9(

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

9(\mathbf{x}^{2}

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(\mathbf{x}^{2}+\right.
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(x^{2}+6 x\right)
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(x^{2}+6 x\right)
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(x^{2}+6 x\right)
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(x^{2}+6 x\right)-16(
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(x^{2}+6 x\right)-16\left(y^{2}\right.
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{aligned}
& 9 x^{2}+54 x-16 y^{2}+160 y=463 \\
& 9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)
\end{aligned}
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
9 x^{2}+54 x-16 y^{2}+160 y=463
$$

$$
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463
$$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{array}{r}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463
\end{array}
$$

$$
9\left(x^{2}+6 x \quad\right)-16\left(y^{2}-10 y \quad\right)=463
$$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x \quad\right)-16\left(y^{2}-10 y \quad\right)=463$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{gathered}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y \quad\right)=463
\end{gathered}
$$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y \quad\right)=463+81$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y \quad\right)=463+81$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{aligned}
9 x^{2}+54 x-16 y^{2}+160 y & =463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right) & =463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y\right. & +25)=463+81-400
\end{aligned}
$$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400$
$9($

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400$ $9(x+3)^{2}$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400$
$9(x+3)^{2}$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400$
$9(x+3)^{2}-16($

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$
$9 x^{2}+54 x-16 y^{2}+160 y=463$
$9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463$
$9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400$ $9(x+3)^{2}-16(y-5)^{2}$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{aligned}
& 9 x^{2}+54 x-16 y^{2}+160 y=463 \\
& 9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
& 9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
& 9(x+3)^{2}-16(y-5)^{2}=
\end{aligned}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{aligned}
& 9 x^{2}+54 x-16 y^{2}+160 y=463 \\
& 9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
& 9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
& 9(x+3)^{2}-16(y-5)^{2}=
\end{aligned}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{gathered}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
9(x+3)^{2}-16(y-5)^{2}=144
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{gathered}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
9(x+3)^{2}-16(y-5)^{2}=144
\end{gathered}
$$

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{gathered}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
9(x+3)^{2}-16(y-5)^{2}=144
\end{gathered}
$$

Divide both sides by 144 .

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{gathered}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
\frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144}
\end{gathered}
$$

Divide both sides by 144 .

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{gathered}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
\frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144}
\end{gathered}
$$

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{gathered}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
\frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144}
\end{gathered}
$$

Reduce to lowest terms.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{aligned}
& 9 x^{2}+54 x-16 y^{2}+160 y=463 \\
& 9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
& 9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
& \frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144} \\
& \frac{(x+3)^{2}}{16}
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{aligned}
& 9 x^{2}+54 x-16 y^{2}+160 y=463 \\
& 9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
& 9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
& \frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144} \\
& \frac{(x+3)^{2}}{16}-
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{aligned}
& 9 x^{2}+54 x-16 y^{2}+160 y=463 \\
& 9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
& 9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
& \frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144} \\
& \frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{aligned}
& 9 x^{2}+54 x-16 y^{2}+160 y=463 \\
& 9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
& 9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
& \frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144} \\
& \frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{gathered}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
\frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144} \\
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
\end{gathered}
$$

Reduce to lowest terms.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{aligned}
& 9 x^{2}+54 x-16 y^{2}+160 y=463 \\
& 9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
& 9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
& \frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144} \\
& \frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
\end{aligned}
$$

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

$$
\begin{gathered}
9 x^{2}+54 x-16 y^{2}+160 y=463 \\
9\left(x^{2}+6 x\right)-16\left(y^{2}-10 y\right)=463 \\
9\left(x^{2}+6 x+9\right)-16\left(y^{2}-10 y+25\right)=463+81-400 \\
\frac{9(x+3)^{2}}{144}-\frac{16(y-5)^{2}}{144}=\frac{144}{144} \\
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$ and

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$ and

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.

$$
h=-3 \text { and } k=
$$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$ and $k=5$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center:

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3$,

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation
$\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ \mathbf{a}^{2}

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$ $\mathbf{a}^{2}=$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$\mathrm{a}^{2}=16$ and

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$\mathrm{a}^{2}=16$ and

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and b^{2}

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$\mathrm{a}^{2}=16$ and $\mathrm{b}^{2}=$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \Rightarrow a=$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \Rightarrow a=4$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$\mathrm{a}^{2}=16$ and $\mathrm{b}^{2}=9 \Rightarrow \mathrm{a}=4$ and

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$ The transverse axis is $2 \mathrm{a}=\mathbf{8}$ units long.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$ The transverse axis is $2 \mathrm{a}=\mathbf{8}$ units long.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
The transverse axis is $2 \mathrm{a}=\mathbf{8}$ units long. The conjugate axis is $2 \mathrm{~b}=\mathbf{6}$ units long.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
The transverse axis is $2 \mathrm{a}=\mathbf{8}$ units long. The conjugate axis is $2 \mathrm{~b}=\mathbf{6}$ units long.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
The transverse axis is $2 \mathrm{a}=\mathbf{8}$ units long.
The conjugate axis is $2 \mathrm{~b}=\mathbf{6}$ units long.

Each endpoint of the transverse axis

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
The transverse axis is $2 \mathrm{a}=\mathbf{8}$ units long.
The conjugate axis is $2 \mathrm{~b}=\mathbf{6}$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
The transverse axis is $2 \mathrm{a}=\mathbf{8}$ units long.
The conjugate axis is $2 \mathrm{~b}=\mathbf{6}$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola.
The diagonals of this rectangle

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
The transverse axis is $2 \mathrm{a}=\mathbf{8}$ units long.
The conjugate axis is $2 \mathrm{~b}=\mathbf{6}$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola.
The diagonals of this rectangle

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
The transverse axis is $2 \mathrm{a}=8$ units long. The conjugate axis is $2 \mathrm{~b}=\mathbf{6}$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola. The diagonals of this rectangle determine the asymptotes of the hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$\mathrm{h}=-3$ and $\mathrm{k}=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
The transverse axis is $2 \mathrm{a}=8$ units long.
The conjugate axis is $2 \mathrm{~b}=\mathbf{6}$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola.
The diagonals of this rectangle determine the asymptotes of the hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is \mathbf{c} units from the center

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+b^{2}$.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is \mathbf{c} units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
\mathbf{c}^{2}=
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \Rightarrow a=4$ and $b=3$
Each focus is \mathbf{c} units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
c^{2}=16
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
c^{2}=16+
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
c^{2}=16+9
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
c^{2}=16+9=
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola.
$h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$
$a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
c^{2}=16+9=25
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{\mathbf{2}}$.

$$
\begin{gathered}
c^{2}=16+9=25 \\
c=
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is c units from the center where $c^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
\begin{gathered}
c^{2}=16+9=25 \\
c=5
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{\mathbf{2}}$.

$$
\begin{gathered}
c^{2}=16+9=25 \\
c=5
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
3. $9 x^{2}-16 y^{2}+54 x+160 y-463=0$

Standard Form Equation

$$
\frac{(x+3)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

This a type 1 Hyperbola. $h=-3$ and $k=5 \Rightarrow$ Center: $(-3,5)$ $a^{2}=16$ and $b^{2}=9 \square a=4$ and $b=3$
Each focus is \mathbf{c} units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
\begin{gathered}
\mathrm{c}^{2}=16+9=25 \\
c=5
\end{gathered}
$$

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

This is the general form equation of a hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

This is the general form equation of a hyperbola.

General Form Equation

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

$$
\mathbf{A C}<0
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

This is the general form equation of a hyperbola.

General Form Equation

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

$$
\mathbf{A C}<\mathbf{0}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

This is the general form equation of a hyperbola. We can tell this because the value of A,

General Form Equation

$$
\begin{gathered}
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathrm{F}=0 \\
\mathbf{A C}<0
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

This is the general form equation of a hyperbola. We can tell this because the value of $\mathbf{A}, \mathbf{9}$,

General Form Equation

$$
\begin{gathered}
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathrm{F}=0 \\
\mathbf{A C}<0
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

This is the general form equation of a hyperbola. We can tell this because the value of $A, 9$, is positive

General Form Equation

$$
\begin{gathered}
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathrm{F}=0 \\
\mathbf{A C}<0
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

This is the general form equation of a hyperbola. We can tell this because the value of $A, 9$, is positive and the value of C

General Form Equation

$$
\begin{gathered}
A x^{2}+\mathbf{C y} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \\
\mathbf{A C}<0
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

This is the general form equation of a hyperbola. We can tell this because the value of $A, 9$, is positive and the value of $\mathrm{C},-16$,

General Form Equation

$$
\begin{gathered}
A x^{2}+C y^{2}+D x+E y+F=0 \\
A C<0
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

This is the general form equation of a hyperbola. We can tell this because the value of $A, 9$, is positive and the value of $C,-16$, is negative.

General Form Equation

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E} y+\mathbf{F}=0
$$

$$
\mathbf{A C}<\mathbf{0}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 \mathbf{x}^{2}$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}
$$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y
$$

Rearrange the terms in the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y
$$

Rearrange the terms in the equation. (Subtract 164 from each side.)

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=$

Rearrange the terms in the equation. (Subtract $\mathbf{1 6 4}$ from each side.)

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$

Rearrange the terms in the equation. (Subtract $\mathbf{1 6 4}$ from each side.)

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y=-164
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y=-164
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
9(

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y=-164
$$

9(\mathbf{x}^{2}

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y=-164
$$

$9\left(\mathrm{x}^{2}+\right.$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y=-164
$$

$$
9\left(x^{2}+4 x\right)
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y=-164
$$

$$
9\left(x^{2}+4 x\right)
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16($

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}\right.$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x \quad\right)-16\left(y^{2}+2 y \quad\right)=-164$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{gathered}
9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
9\left(x^{2}+4 x \quad\right)-16\left(y^{2}+2 y \quad\right)=-164
\end{gathered}
$$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{gathered}
9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y \quad\right)=-164
\end{gathered}
$$

Complete the square.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y \quad\right)=-164+36$

Complete the square.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y \quad\right)=-164+36$

Complete the square.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y \quad\right)=-164+36$

Complete the square.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36$

Complete the square.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$

Complete the square.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$
9(

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$
9(x

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$
$9(x+2)$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$
$9(x+2)^{2}$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{gathered}
9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16
\end{gathered}
$$

$$
9(x+2)^{2}-
$$

Factor.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$
$9(x+2)^{2}-$

Factor.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{gathered}
9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16
\end{gathered}
$$

$$
9(x+2)^{2}-16(
$$

Factor.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& 9(x+2)^{2}-16(y
\end{aligned}
$$

Factor.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& 9(x+2)^{2}-16(y+
\end{aligned}
$$

Factor.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y=-164
$$

$$
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164
$$

$$
9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16
$$

$$
9(x+2)^{2}-16(y+1)
$$

Factor.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
9 x^{2}+36 x-16 y^{2}-32 y=-164
$$

$$
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164
$$

$$
9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16
$$

$$
9(x+2)^{2}-16(y+1)^{2}
$$

Factor.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& 9(x+2)^{2}-16(y+1)^{2}=
\end{aligned}
$$

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$
$9 x^{2}+36 x-16 y^{2}-32 y=-164$
$9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164$
$9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16$
$9(x+2)^{2}-16(y+1)^{2}=$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& 9(x+2)^{2}-16(y+1)^{2}=-144
\end{aligned}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& 9(x+2)^{2}-16(y+1)^{2}=-144
\end{aligned}
$$

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& 9(x+2)^{2}-16(y+1)^{2}=-144
\end{aligned}
$$

Divide both sides by $\mathbf{- 1 4 4}$.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144}
\end{aligned}
$$

Divide both sides by -144.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144}
\end{aligned}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144}
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
& \frac{-1(x+2)^{2}}{16}
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
& \frac{-1(x+2)^{2}}{16}+
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
& \frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
& \frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}=
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
& \frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}=1
\end{aligned}
$$

Reduce to lowest terms.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
& \frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}=1
\end{aligned}
$$

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{gathered}
9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
\frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
\frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}=1
\end{gathered}
$$

Reorder the terms of the equation.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
& \frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}=1 \\
& \frac{(y+1)^{2}}{9}
\end{aligned}
$$

Reorder the terms of the equation.

Class Worksheet \#3
Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{aligned}
& 9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
& 9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
& 9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
& \frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
& \frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}=1 \\
& \frac{(y+1)^{2}}{9}-
\end{aligned}
$$

Reorder the terms of the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{gathered}
9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
\frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
\frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}=1 \\
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}
\end{gathered}
$$

Reorder the terms of the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{gathered}
9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
\frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
\frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}=1 \\
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
\end{gathered}
$$

Reorder the terms of the equation.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

$$
\begin{gathered}
9 x^{2}+36 x-16 y^{2}-32 y=-164 \\
9\left(x^{2}+4 x\right)-16\left(y^{2}+2 y\right)=-164 \\
9\left(x^{2}+4 x+4\right)-16\left(y^{2}+2 y+1\right)=-164+36-16 \\
\frac{9(x+2)^{2}}{-144}-\frac{16(y+1)^{2}}{-144}=\frac{-144}{-144} \\
\frac{-1(x+2)^{2}}{16}+\frac{(y+1)^{2}}{9}=1 \\
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.
$h=-2$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.
$h=-2$ and

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.
$h=-2$ and $k=-1$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.

$$
h=-2 \text { and } k=-1 \quad \square
$$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.
$h=-2$ and $k=-1 \square$ Center:

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.
$h=-2$ and $k=-1 \square$ Center: $(-2$,

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.
$h=-2$ and $k=-1 \square$ Center: $(-2,-1)$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \square$ Center: $(-2,-1)$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $\mathbf{a}^{2}=$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$ $\mathbf{a}^{2}=9$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \square$ Center: $(-2,-1)$ $\mathrm{a}^{2}=9$ and $\mathrm{b}^{2}=16 \square$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Longrightarrow$ Center: $(-2,-1)$
$a^{2}=9$ and $b^{2}=16 \Rightarrow a=$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$
$a^{2}=9$ and $b^{2}=16 \Rightarrow a=3$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Longrightarrow$ Center: $(-2,-1)$
$\mathrm{a}^{2}=9$ and $\mathrm{b}^{2}=16 \Rightarrow \mathrm{a}=3$ and

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Longrightarrow$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$
$a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$

Standard Form Equation

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$
$a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \Rightarrow a=3$ and $b=4$ The transverse axis is $2 \mathrm{a}=\mathbf{6}$ units long.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \Rightarrow a=3$ and $b=4$ The transverse axis is $2 \mathrm{a}=\mathbf{6}$ units long.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \Rightarrow a=3$ and $b=4$ The transverse axis is $2 \mathrm{a}=\mathbf{6}$ units long. The conjugate axis is $\mathbf{2 b}=\mathbf{8}$ units long.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \Rightarrow a=3$ and $b=4$ The transverse axis is $2 \mathrm{a}=\mathbf{6}$ units long. The conjugate axis is $\mathbf{2 b}=\mathbf{8}$ units long.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
The transverse axis is $2 \mathrm{a}=\mathbf{6}$ units long.
The conjugate axis is $\mathbf{2 b}=\mathbf{8}$ units long.

Each endpoint of the transverse axis

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \Rightarrow a=3$ and $b=4$
The transverse axis is $2 \mathrm{a}=\mathbf{6}$ units long.
The conjugate axis is $2 \mathrm{~b}=\mathbf{8}$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
The transverse axis is $2 \mathrm{a}=\mathbf{6}$ units long.
The conjugate axis is $2 \mathrm{~b}=\mathbf{8}$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola.
The diagonals of this rectangle

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \square$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
The transverse axis is $2 \mathrm{a}=\mathbf{6}$ units long.
The conjugate axis is $2 \mathrm{~b}=8$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola.
The diagonals of this rectangle

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \square$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
The transverse axis is $2 \mathrm{a}=6$ units long.
The conjugate axis is $2 \mathrm{~b}=8$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola.
The diagonals of this rectangle determine the asymptotes of the hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \Rightarrow a=3$ and $b=4$
The transverse axis is $2 \mathrm{a}=\mathbf{6}$ units long.
The conjugate axis is $2 \mathrm{~b}=\mathbf{8}$ units long.

Each endpoint of the transverse axis is a vertex of the hyperbola.
The diagonals of this rectangle determine the asymptotes of the hyperbola.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \Rightarrow a=3$ and $b=4$ Each focus is c units from the center

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is c units from the center where $c^{2}=\mathbf{a}^{2}+b^{2}$.

$$
\mathbf{c}^{2}=
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola.
$h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$
$a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is \mathbf{c} units from the center where $c^{2}=\mathbf{a}^{2}+b^{2}$.

$$
\mathbf{c}^{2}=9
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
\mathbf{c}^{2}=9+
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Longrightarrow$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
c^{2}=9+16
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
c^{2}=9+16=
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
c^{2}=9+16=25
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
\begin{gathered}
c^{2}=9+16=25 \\
c=
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
\begin{gathered}
c^{2}=9+16=25 \\
c=5
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \quad$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is c units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
\begin{gathered}
c^{2}=9+16=25 \\
c=5
\end{gathered}
$$

Class Worksheet \#3

Express each equation using 'standard form' and sketch a graph.
4. $9 x^{2}-16 y^{2}+36 x-32 y+164=0$

Standard Form Equation

$$
\frac{(y+1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1
$$

This a type 2 Hyperbola. $h=-2$ and $k=-1 \Rightarrow$ Center: $(-2,-1)$ $a^{2}=9$ and $b^{2}=16 \square a=3$ and $b=4$
Each focus is \mathbf{c} units from the center where $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$.

$$
\begin{gathered}
\mathrm{c}^{2}=9+16=25 \\
c=5
\end{gathered}
$$

