Algebra II

Lesson \#2 Unit 7
Class Worksheet \#2
For Worksheet \#2

Given any two points in a plane,

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Before we start we will name the two given points F_{1} and F_{2}.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Before we start we will name the two given points F_{1} and F_{2}.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance	Distance
From F $_{1}$	From F $_{2}$

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $_{2}$
7	3

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From F_{1}	Distance From F_{2}
7	$\mathbf{3}$

Their sum is 10.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $_{2}$
7	3

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $_{2}$
7	3

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From F_{1}	Distance From F_{2}
7	3

All points on this circle are 7 units from F_{1}.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From F_{1}	Distance From F_{2}
7	3

All points on this circle are 7 units from F_{1}.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From F_{1}	Distance From F_{2}
7	3

All points on this circle are 3 units from F_{2}.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From F_{1}	Distance From F_{2}
7	3

All points on this circle are 3 units from F_{2}.

We need the $\mathbf{2}$ points where these circles intersect.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From F_{1}	Distance From F_{2}
7	3

All points on this circle are 3 units from F_{2}.

We need the $\mathbf{2}$ points where these circles intersect.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From $_{1}$	Distance From $_{2}$
7	3

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From \mathbf{F}_{1}	Distance From $_{2}$
$\mathbf{7}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{7}$

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $_{2}$
$\mathbf{7}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{7}$

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $_{2}$
$\mathbf{7}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{7}$

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From \mathbf{F}_{2}
7	3
3	7

All points on this circle are 3 units from F_{1}.

All points on this circle are 7 units from F_{2}.

We need the 2 points where these circles intersect.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From \mathbf{F}_{2}
7	3
3	7

All points on this circle are 3 units from F_{1}.
We need the 2 points where these circles intersect.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $_{2}$
$\mathbf{7}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{7}$

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From \mathbf{F}_{1}	Distance From $\mathbf{F}_{\mathbf{2}}$
7	3
3	7
8	2

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

| Distance
 From F_{1} | Distance
 From F_{2} |
| :---: | :---: | :---: | :---: |
| 7 | 3 |
| 3 | |$\quad 2$

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

These 2 circles only intersect at one point.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From \mathbf{F}_{1}	Distance From $\mathbf{F}_{\mathbf{2}}$
7	3
3	7
8	2

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From \mathbf{F}_{1}	Distance From $\mathbf{F}_{\mathbf{2}}$
7	3
3	7
8	2
2	8

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From \mathbf{F}_{2}
$\mathbf{7}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{7}$
$\mathbf{8}$	$\mathbf{2}$
$\mathbf{2}$	$\mathbf{8}$

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From F $_{1}$	Distance From F_{2}
7	$\mathbf{3}$
3	7
8	2
2	8

These 2 circles only intersect at one point.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From \mathbf{F}_{1}	Distance From $\mathbf{F}_{\mathbf{2}}$
7	3
3	7
8	2
2	8

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From \mathbf{F}_{2}
7	3
3	7
8	2
2	8
9	1

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

These 2 circles do not intersect!

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Distance From \mathbf{F}_{1}	Distance From $\mathbf{F}_{\mathbf{2}}$
7	3
3	7
8	2
2	8

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $\mathbf{F}_{\mathbf{2}}$
7	3
3	7
8	2
2	8
6	4

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From \mathbf{F}_{2}
7	3
3	7
8	2
2	8
6	4

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $\mathbf{F}_{\mathbf{2}}$
7	3
3	7
8	2
2	8
6	4
4	6

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $_{2}$
7	$\mathbf{3}$
3	7
8	2
2	8
6	4
4	6

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $_{2}$
7	$\mathbf{3}$
3	7
8	2
2	8
6	4
4	6

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From \mathbf{F}_{1}	Distance From $\mathbf{F}_{\mathbf{2}}$
7	3
3	7
8	2
2	8
6	4
4	6

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From F $_{1}$	Distance From F $_{2}$
7	3
3	7
8	2
2	8
6	4
4	6
5	5

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

Distance From F $_{1}$	Distance From F $_{2}$
7	3
3	7
8	2
2	8
6	4
4	6
5	5

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

The complete graph of all points in the plane such that the sum of their distances from F_{1} and F_{2} is 10 units

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

The complete graph of all points in the plane such that the sum of their distances from F_{1} and F_{2} is 10 units looks like this.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

The complete graph of all points in the plane such that the sum of their distances from F_{1} and F_{2} is 10 units looks like this.

This shape is called an ellipse.

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is $\mathbf{1 0}$ units.

The complete graph of all points in the plane such that the sum of their distances from F_{1} and F_{2} is 10 units looks like this.

This shape is called an ellipse. Next we will add the x and y axes

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

The complete graph of all points in the plane such that the sum of their distances from F_{1} and F_{2} is 10 units looks like this.

This shape is called an ellipse. Next we will add the x and y axes

Given any two points in a plane, we want to consider all points in the plane such that the sum of their distances from the two given points is a constant.
The points we will use are 6 units apart on a horizontal line. We will find points such that the sum of their distances from these two given points is 10 units.

The complete graph of all points in the plane such that the sum of their distances from F_{1} and F_{2} is 10 units looks like this.

This shape is called an ellipse. Next we will add the x and y axes and determine the 'standard' form equation for this ellipse.

Ellipse Notation

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus).

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$,

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$. The minor axis is the line segment that goes through the center of the ellipse,

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$. The minor axis is the line segment that goes through the center of the ellipse, is perpendicular to the major axis,

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$. The minor axis is the line segment that goes through the center of the ellipse, is perpendicular to the major axis, and has both endpoints on the ellipse.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$. The minor axis is the line segment that goes through the center of the ellipse, is perpendicular to the major axis, and has both endpoints on the ellipse.

The length of the minor axis is $\underline{2 b}$ units.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$. The minor axis is the line segment that goes through the center of the ellipse, is perpendicular to the major axis, and has both endpoints on the ellipse.

The length of the minor axis is $\underline{2 b}$ units. In this case, $2 \mathrm{~b}=8$,

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$. The minor axis is the line segment that goes through the center of the ellipse, is perpendicular to the major axis, and has both endpoints on the ellipse.

The length of the minor axis is $\underline{2 b}$ units. In this case, $2 \mathrm{~b}=8$, so $b=4$.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$. The minor axis is the line segment that goes through the center of the ellipse, is perpendicular to the major axis, and has both endpoints on the ellipse.

The length of the minor axis is $\underline{2 b}$ units. In this case, $2 \mathrm{~b}=8$, so $b=4$.

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$. The minor axis is the line segment that goes through the center of the ellipse, is perpendicular to the major axis, and has both endpoints on the ellipse.

The length of the minor axis is $\underline{2 b}$ units. In this case, $2 b=8$, so $b=4$. For every ellipse,

Ellipse Notation

Each of the two points F_{1} and F_{2} is a focus of the ellipse. The origin is the center of this ellipse. The letter \underline{c} is used to represent the distance from the center of the ellipse to each focus. In this case, $c=3$. The major axis is the line segment that goes from one end of the ellipse to the other through the foci (plural of focus). The length of the major axis is 2a units. In this case, $2 \mathrm{a}=10$, so $\mathrm{a}=5$. The minor axis is the line segment that goes through the center of the ellipse, is perpendicular to the major axis, and has both endpoints on the ellipse.

The length of the minor axis is $\underline{2 b}$ units. In this case, $2 b=8$, so $b=4$. For every ellipse, $c^{2}=a^{2}-b^{2}$.

Equations of an Ellipse

Equations of an Ellipse

The Standard Form Equation

Equations of an Ellipse

The Standard Form Equation

Let $\mathbf{P}(\mathbf{x}, \mathrm{y})$ represent any point on the ellipse.

Equations of an Ellipse

The Standard Form Equation

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units.

Equations of an Ellipse

The Standard Form Equation

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($\mathbf{(- 3 , 0)}$.

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are $(-3,0)$.
The coordinates of F_{2} are $(\mathbf{3 , 0})$.

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$).
The coordinates of F_{2} are $(\mathbf{3 , 0})$.
Applying the distance formula ...

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are $(-3,0)$.
The coordinates of F_{2} are $(\mathbf{3 , 0})$.
Applying the distance formula ...

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are $(-3,0)$.
The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\mathbf{P F}_{1}=\sqrt{ }
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are $(-3,0)$.
The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
P F_{1}=\sqrt{(x--3)^{2}}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are $(-3,0)$.
The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
P F_{1}=\sqrt{(x--3)^{2}+}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$).
The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& P F_{1}=
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}--3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathrm{PF}_{1}=\sqrt{ }
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& P F_{1}=\sqrt{(x+3)^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are $(-3,0)$. The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& P F_{1}=\sqrt{(x+3)^{2}+y^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$).
The coordinates of F_{2} are $(\mathbf{3 , 0})$.
Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& P F_{1}=\sqrt{(x+3)^{2}+y^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$).
The coordinates of F_{2} are $(\mathbf{3 , 0})$.
Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& P F_{1}=\sqrt{(x+3)^{2}+y^{2}} \\
& \text { and }
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}--3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}+3)^{2}+\mathrm{y}^{2}} \\
& \quad \text { and } \\
& \mathrm{PF}_{2}=
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& P F_{1}=\sqrt{(x+3)^{2}+y^{2}} \\
& \text { and } \\
& P F_{2}=\sqrt{ }
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& \mathbf{P F}_{1}=\sqrt{(x+3)^{2}+y^{2}} \\
& \text { and } \\
& P F_{2}=\sqrt{(x-3)^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& \mathbf{P F}_{1}=\sqrt{(x+3)^{2}+y^{2}} \\
& \text { and } \\
& P F_{2}=\sqrt{(x-3)^{2}+}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& \mathbf{P F}_{1}=\sqrt{(x+3)^{2}+y^{2}} \\
& \text { and } \\
& P F_{2}=\sqrt{(x-3)^{2}+(y-0)^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are $(-3,0)$. The coordinates of F_{2} are $(3,0)$. Applying the distance formula ...

$$
\begin{aligned}
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}--3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}+3)^{2}+\mathrm{y}^{2}} \\
& \text { and } \\
& \mathrm{PF}_{2}=\sqrt{(\mathrm{x}-3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathrm{PF}_{2}=
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(3,0)$. Applying the distance formula ...

$$
\begin{aligned}
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}--3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}+3)^{2}+\mathrm{y}^{2}} \\
& \text { and } \\
& \mathrm{PF}_{2}=\sqrt{(\mathrm{x}-3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathrm{PF}_{2}=\sqrt{ }
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(3,0)$. Applying the distance formula ...

$$
\begin{aligned}
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}--3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}+3)^{2}+\mathrm{y}^{2}} \\
& \text { and } \\
& \mathrm{PF}_{2}=\sqrt{(\mathrm{x}-3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathrm{PF}_{2}=\sqrt{(\mathrm{x}-3)^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $P(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$). The coordinates of F_{2} are $(3,0)$. Applying the distance formula ...

$$
\begin{aligned}
& P F_{1}=\sqrt{(x--3)^{2}+(y-0)^{2}} \\
& \mathrm{PF}_{1}=\sqrt{(x+3)^{2}+y^{2}} \\
& \text { and } \\
& P F_{2}=\sqrt{(x-3)^{2}+(y-0)^{2}} \\
& \mathrm{PF}_{2}=\sqrt{(x-3)^{2}+y^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units. The coordinates of F_{1} are ($-3,0$).
The coordinates of F_{2} are $(\mathbf{3 , 0})$. Applying the distance formula ...

$$
\begin{aligned}
& \mathbf{P F}_{1}=\sqrt{(\mathrm{x}--3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathrm{PF}_{1}=\sqrt{(\mathrm{x}+3)^{2}+\mathrm{y}^{2}} \\
& \text { and } \\
& \mathrm{PF}_{2}=\sqrt{(\mathrm{x}-3)^{2}+(\mathrm{y}-0)^{2}} \\
& \mathbf{P F}_{2}=\sqrt{(\mathrm{x}-3)^{2}+\mathrm{y}^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units.

$$
\begin{aligned}
& \mathbf{P} F_{1}=\sqrt{(x+3)^{2}+y^{2}} \\
& \mathbf{P F} F_{2}=\sqrt{(x-3)^{2}+y^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $\mathbf{P}(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units.

$$
\begin{aligned}
& \mathbf{P F} F_{1}=\sqrt{(x+3)^{2}+y^{2}} \\
& \mathbf{P F} F_{2}=\sqrt{(x-3)^{2}+y^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units.

$$
P F_{1}=\sqrt{(x+3)^{2}+y^{2}}
$$

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-3)^{2}+\mathrm{y}^{2}}
$$

Equations of an Ellipse

The Standard Form Equation

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units.

$$
\begin{array}{r}
P F_{1}= \\
\sqrt{(x+3)^{2}+y^{2}} \\
\sqrt{(x+3)^{2}+y^{2}}
\end{array}
$$

$$
\mathrm{PF}_{2}=\sqrt{(\mathrm{x}-3)^{2}+\mathrm{y}^{2}}
$$

Equations of an Ellipse

The Standard Form Equation

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units.

$$
\begin{aligned}
P F_{1}= & \sqrt{(x+3)^{2}+y^{2}} \\
& \sqrt{(x+3)^{2}+y^{2}}+
\end{aligned}
$$

$$
\mathbf{P F}_{2}=\sqrt{(x-3)^{2}+y^{2}}
$$

Equations of an Ellipse

The Standard Form Equation

Let $\mathbf{P}(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units.

$$
\begin{gathered}
\mathbf{P F}_{1}=\sqrt{(x+3)^{2}+y^{2}} \quad \quad \mathbf{P F}_{2}=\sqrt{(x-3)^{2}+y^{2}} \\
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

Let $\mathbf{P}(x, y)$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units.

$$
\begin{gathered}
P F_{1}=\sqrt{(x+3)^{2}+y^{2}} \quad P F_{2}=\sqrt{(x-3)^{2}+y^{2}} \\
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ represent any point on the ellipse. For this ellipse, the sum of the distances from point P to each focus is $\mathbf{1 0}$ units.

$$
\begin{gathered}
P F_{1}=\sqrt{(x+3)^{2}+y^{2}} \quad P F_{2}=\sqrt{(x-3)^{2}+y^{2}} \\
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

This equation is equivalent to the equation

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

This equation is equivalent to the equation

$$
\frac{\mathbf{x}^{2}}{25}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

This equation is equivalent to the equation

$$
\frac{x^{2}}{25}+
$$

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

This equation is equivalent to the equation

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

This equation is equivalent to the equation

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=
$$

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

This equation is equivalent to the equation

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated. We don't want any 'magic' math.

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

The process used to derive this equation is complicated. We don't want any 'magic' math. Although this process is more like college math,

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

The process used to derive this equation is complicated. We don't want any 'magic' math. Although this process is more like college math, try your best to follow the discussion.

Equations of an Ellipse

The Standard Form Equation

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

The process used to derive this equation is complicated.
We don't want any 'magic' math. Although this process is more like college math, try your best to follow the discussion. It is important that you have an opportunity to see how the second equation above was derived.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10
$$

Subtract $\sqrt{(x-3)^{2}+y^{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}
\end{aligned}
$$

Subtract $\sqrt{(x-3)^{2}+y^{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}=
\end{aligned}
$$

Subtract $\sqrt{(x-3)^{2}+y^{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}=10
\end{aligned}
$$

Subtract $\sqrt{(x-3)^{2}+y^{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}=10-
\end{aligned}
$$

Subtract $\sqrt{(x-3)^{2}+y^{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}=10-\sqrt{(x-3)^{2}+y^{2}}
\end{aligned}
$$

Subtract $\sqrt{(x-3)^{2}+y^{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}=10-\sqrt{(x-3)^{2}+y^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}=10-\sqrt{(x-3)^{2}+y^{2}}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}=10-\sqrt{(x-3)^{2}+y^{2}} \\
& (x+3)^{2}+y^{2}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}=10-\sqrt{(x-3)^{2}+y^{2}} \\
& (x+3)^{2}+y^{2}=
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \sqrt{(x+3)^{2}+y^{2}}=10-\sqrt{(x-3)^{2}+y^{2}} \\
& (x+3)^{2}+y^{2}=100
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{array}{r}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\sqrt{(x+3)^{2}+y^{2}}=10-\sqrt{(x-3)^{2}+y^{2}} \\
(x+3)^{2}+y^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}
\end{array}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\sqrt{(x+3)^{2}+y^{2}}=10-\sqrt{(x-3)^{2}+y^{2}} \\
(x+3)^{2}+y^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}+y^{2}
\end{gathered}
$$

'Square' both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\sqrt{(x+3)^{2}+y^{2}}=10-\sqrt{(x-3)^{2}+y^{2}} \\
(x+3)^{2}+y^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}+y^{2}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}+y^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}+y^{2}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}+y^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}+y^{2}
\end{gathered}
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}+y^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}+y^{2} \\
(x+3)^{2}
\end{gathered}
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& (x+3)^{2}+y^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}+y^{2} \\
& (x+3)^{2}=
\end{aligned}
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}+y^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}+y^{2} \\
(x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}
\end{gathered}
$$

Subtract $\mathbf{y}^{\mathbf{2}}$ from both sides of the equation.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}+y^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}+y^{2} \\
(x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& (x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& (x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2}
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \quad \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& (x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2} \\
& x^{2}
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& (x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2} \\
& x^{2}+6 x
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \quad(x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2} \\
& x^{2}+6 x+9
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2} \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2} \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}
\end{gathered}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2} \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x
\end{gathered}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2} \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x+9
\end{gathered}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(x+3)^{2}=100-20 \sqrt{(x-3)^{2}+y^{2}}+(x-3)^{2} \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x+9
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x+9
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x+9
\end{gathered}
$$

Subtract $x^{2}+9$ from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x+9
\end{gathered}
$$

Subtract $\mathbf{x}^{2}+9$ from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x+9 \\
6 x=
\end{gathered}
$$

Subtract $\mathbf{x}^{2}+9$ from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x+9 \\
6 x=100-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Subtract $\mathbf{x}^{2}+9$ from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x+9 \\
6 x=100-20 \sqrt{(x-3)^{2}+y^{2}}-6 x
\end{gathered}
$$

Subtract $x^{2}+9$ from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
x^{2}+6 x+9=100-20 \sqrt{(x-3)^{2}+y^{2}}+x^{2}-6 x+9 \\
6 x=100-20 \sqrt{(x-3)^{2}+y^{2}}-6 x
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
6 x=100-20 \sqrt{(x-3)^{2}+y^{2}}-6 x
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
6 x=100-20 \sqrt{(x-3)^{2}+y^{2}}-6 x
\end{gathered}
$$

Add 6x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
6 x=100-20 \sqrt{(x-3)^{2}+y^{2}}-6 x
\end{gathered}
$$

12x

Add 6x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 6 x=100-20 \sqrt{(x-3)^{2}+y^{2}}-6 x \\
& 12 x=
\end{aligned}
$$

Add 6x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
6 x=100-20 \sqrt{(x-3)^{2}+y^{2}}-6 x \\
12 x=100-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Add 6x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
6 x=100-20 \sqrt{(x-3)^{2}+y^{2}}-6 x \\
12 x=100-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x=100-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x=100-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Subtract 100 from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x=100-20 \sqrt{(x-3)^{2}+y^{2}} \\
12 x
\end{gathered}
$$

Subtract 100 from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x=100-20 \sqrt{(x-3)^{2}+y^{2}} \\
12 x-100
\end{gathered}
$$

Subtract 100 from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x=100-20 \sqrt{(x-3)^{2}+y^{2}} \\
12 x-100=
\end{gathered}
$$

Subtract 100 from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x=100-20 \sqrt{(x-3)^{2}+y^{2}} \\
12 x-100=-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Subtract 100 from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x=100-20 \sqrt{(x-3)^{2}+y^{2}} \\
12 x-100=-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x-100=-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x-100=-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x-100=-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

$$
\mathbf{3 x}
$$

Divide both sides by 4.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x-100=-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

$$
3 x-25
$$

Divide both sides by 4.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x-100=-20 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

$$
3 x-25=
$$

Divide both sides by 4.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x-100=-20 \sqrt{(x-3)^{2}+y^{2}} \\
3 x-25=-5 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Divide both sides by 4 .

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
12 x-100=-20 \sqrt{(x-3)^{2}+y^{2}} \\
3 x-25=-5 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
3 x-25=-5 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
3 x-25=-5 \sqrt{(x-3)^{2}+y^{2}}
\end{gathered}
$$

Square both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
3 x-25=-5 \sqrt{(x-3)^{2}+y^{2}} \\
(3 x-25)^{2}
\end{gathered}
$$

Square both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
3 x-25=-5 \sqrt{(x-3)^{2}+y^{2}} \\
(3 x-25)^{2}=
\end{gathered}
$$

Square both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 3 x-25=-5 \sqrt{(x-3)^{2}+y^{2}} \\
& (3 x-25)^{2}=25
\end{aligned}
$$

Square both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
3 x-25=-5 \sqrt{(x-3)^{2}+y^{2}} \\
(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right]
\end{gathered}
$$

Square both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
3 x-25=-5 \sqrt{(x-3)^{2}+y^{2}} \\
(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right]
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right]
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right]
\end{gathered}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right]
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right]
\end{gathered}
$$

$$
9 \mathbf{x}^{2}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \quad(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \quad(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x+625
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \quad(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x+625=
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \quad(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x+625=25[
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \quad(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x+625=25[
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& \quad(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x+625=25\left[x^{2}\right.
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& (3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x\right.
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
(3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
9 x^{2}-150 x+625=25\left[x^{2}-6 x+9\right.
\end{gathered}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& (3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+\right.
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& (3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right]
\end{aligned}
$$

Square the binomials.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& (3 x-25)^{2}=25\left[(x-3)^{2}+y^{2}\right] \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right]
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right]
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right]
\end{aligned}
$$

Perform the indicated multiplication.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right] \\
& 9 x^{2}-150 x+625
\end{aligned}
$$

Perform the indicated multiplication.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right] \\
& 9 x^{2}-150 x+625=
\end{aligned}
$$

Perform the indicated multiplication.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right] \\
& 9 x^{2}-150 x+625=25 x^{2}
\end{aligned}
$$

Perform the indicated multiplication.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right] \\
& 9 x^{2}-150 x+625=25 x^{2}-150 x
\end{aligned}
$$

Perform the indicated multiplication.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right] \\
& 9 x^{2}-150 x+625=25 x^{2}-150 x+225
\end{aligned}
$$

Perform the indicated multiplication.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right] \\
& 9 x^{2}-150 x+625=25 x^{2}-150 x+225+25 y^{2}
\end{aligned}
$$

Perform the indicated multiplication.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25\left[x^{2}-6 x+9+y^{2}\right] \\
& 9 x^{2}-150 x+625=25 x^{2}-150 x+225+25 y^{2}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}-150 x+625=25 x^{2}-150 x+225+25 y^{2}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}-150 x+625=25 x^{2}-150 x+225+25 y^{2}
\end{gathered}
$$

Add 150x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}-150 x+625=25 x^{2}-150 x+225+25 y^{2} \\
9 x^{2}
\end{gathered}
$$

Add 150x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25 x^{2}-150 x+225+25 y^{2} \\
& 9 x^{2}+625
\end{aligned}
$$

Add 150x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 x^{2}-150 x+625=25 x^{2}-150 x+225+25 y^{2} \\
& 9 x^{2}+625=
\end{aligned}
$$

Add 150x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
\sqrt{(x+3)^{2}+y^{2}} & +\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}-150 x+625 & =25 x^{2}-150 x+225+25 y^{2} \\
9 x^{2}+625 & =25 x^{2}
\end{aligned}
$$

Add 150x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
\sqrt{(x+3)^{2}+y^{2}} & +\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}-150 x+625 & =25 x^{2}-150 x+225+25 y^{2} \\
9 x^{2}+625 & =25 x^{2}+225
\end{aligned}
$$

Add 150x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\left.\begin{array}{c}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}-150 x+625
\end{array}=25 x^{2}-150 x+225+25 y^{2}\right)
$$

Add 150x to both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{aligned}
& \sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
& 9 \mathrm{x}^{2}-150 \mathrm{x}+625=25 \mathrm{x}^{2}-150 \mathrm{x}+225+25 \mathrm{y}^{2} \\
& 9 x^{2}+625=25 x^{2}+225+25 y^{2}
\end{aligned}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}+625=25 x^{2}+225+25 y^{2}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}+625=25 x^{2}+225+25 y^{2}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}+625=25 x^{2}+225+25 y^{2} \\
400
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}+625=25 x^{2}+225+25 y^{2} \\
400=
\end{gathered}
$$

Subtract $9 x^{2}+225$ from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}+625=25 x^{2}+225+25 y^{2} \\
400=16 x^{2}
\end{gathered}
$$

Subtract $9 \mathrm{x}^{2}+\mathbf{2 2 5}$ from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}+625=25 x^{2}+225+25 y^{2} \\
400=16 x^{2}+
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}+625= \\
400=16 x^{2}+225+25 y^{2}+25 y^{2}
\end{gathered}
$$

Subtract $9 \mathrm{x}^{2}+\mathbf{2 2 5}$ from both sides.

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
9 x^{2}+625=25 x^{2}+225+25 y^{2} \\
400=16 x^{2}+25 y^{2}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
400=16 x^{2}+25 y^{2}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
400=16 x^{2}+25 y^{2}
\end{gathered}
$$

Divide both sides of the equation by 400 (and reduce).

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{400}{400}=\frac{16 x^{2}}{400}+\frac{\mathbf{2 5 y ^ { 2 }}}{\mathbf{4 0 0}}
\end{gathered}
$$

Divide both sides of the equation by 400 (and reduce).

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{400}{400}=\frac{16 x^{2}}{400}+\frac{25 y^{2}}{400}
\end{gathered}
$$

1

Divide both sides of the equation by 400 (and reduce).

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{400}{400}=\frac{16 x^{2}}{400}+{\frac{25 y^{2}}{400}}_{1}=
\end{gathered}
$$

Divide both sides of the equation by 400 (and reduce).

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{400}{400}=\frac{16 x^{2}}{400}+\frac{25 y^{2}}{400} \\
1=\frac{x^{2}}{25}
\end{gathered}
$$

Divide both sides of the equation by 400 (and reduce).

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{400}{400}=\frac{16 x^{2}}{400}+\frac{25 y^{2}}{400} \\
1=\frac{x^{2}}{25}+
\end{gathered}
$$

Divide both sides of the equation by 400 (and reduce).

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{400}{400}=\frac{16 x^{2}}{400}+\frac{25 y^{2}}{400} \\
1=\frac{x^{2}}{25}+\frac{y^{2}}{16}
\end{gathered}
$$

Divide both sides of the equation by 400 (and reduce).

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{400}{400}=\frac{16 x^{2}}{400}+\frac{25 y^{2}}{400} \\
1=\frac{x^{2}}{25}+\frac{y^{2}}{16}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
1=\frac{x^{2}}{25}+\frac{y^{2}}{16}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
1=\frac{x^{2}}{25}+\frac{y^{2}}{16}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{gathered}
$$

The process used to derive this equation is complicated.

$$
\begin{gathered}
\sqrt{(x+3)^{2}+y^{2}}+\sqrt{(x-3)^{2}+y^{2}}=10 \\
1=\frac{x^{2}}{25}+\frac{y^{2}}{16}
\end{gathered}
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

We will be studying two types of ellipses.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow \frac{(x-0)^{2}}{5^{2}}
$$

We will be studying two types of ellipses. This type, type 1, has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Rightarrow \frac{(x-0)^{2}}{5^{2}}+
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}
$$

We will be studying two types of ellipses. This type, type 1, has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=
$$

We will be studying two types of ellipses. This type, type 1, has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1 \Rightarrow \begin{aligned}
& h=0 \\
& k=0
\end{aligned}
$$

We will be studying two types of ellipses. This type, type 1, has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\begin{aligned}
& \frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow \frac{(x-0)^{2}}{5^{2}} \\
& \text { e will be studying two types }
\end{aligned}
$$ of ellipses. This type, type 1, has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).
The major axis of the ellipse is 2 a units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1 \Rightarrow a=5
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).
The major axis of the ellipse is 2 a units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1 \Rightarrow a=5
$$

major axis
We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).
The major axis of the ellipse is 2 a units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1 \Rightarrow a=5
$$

major axis
We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).
The major axis of the ellipse is 2 a units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Longrightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).
The major axis of the ellipse is 2 a units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).
The major axis of the ellipse is 2 a units long.
The minor axis of the ellipse is 2 b units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1 \Rightarrow b=4
$$

We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).
The major axis of the ellipse is 2 a units long.
The minor axis of the ellipse is 2 b units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \quad \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1 \Rightarrow b=4
$$

minor axis
We will be studying two types of ellipses. This type, type 1 , has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).
The major axis of the ellipse is 2 a units long.
The minor axis of the ellipse is 2 b units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow \frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{4^{2}}=1 \Rightarrow b=4
$$

minor axis
We will be studying two types of ellipses. This type, type 1, has its major axis horizontal. The standard form equation for this type of ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

The center of the ellipse is the point (h, k).
The major axis of the ellipse is 2 a units long.
The minor axis of the ellipse is 2 b units long.

Equations of an Ellipse

Equations of an Ellipse

The Standard Form Equation of an Ellipse

Equations of an Ellipse

The Standard Form Equation of an Ellipse

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis:

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long Minor Axis:

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long Minor Axis: 2b units long

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2},

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P_{1}+\mathbf{P F}_{2}=\mathbf{a}$ constant.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $\mathbf{P F}_{1}+\mathbf{P F}_{2}=$ a constant.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center,

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center,

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$!

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore,

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathbf{P F}_{1}+\mathbf{P F}_{2}$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathrm{PF}_{1}+\mathrm{PF}_{2}=$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathbf{P F}_{1}+\mathbf{P F}_{2}=\mathbf{P F} \mathbf{F}_{1}+\mathbf{Q F}_{1}$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then
$P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathbf{P F}_{1}+\mathbf{P F} \mathbf{F}_{2}=\mathbf{P} F_{1}+\mathbf{Q F} \mathbf{F}_{1} \Leftarrow$ Please find this in the diagram.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathbf{P F}_{1}+\mathbf{P F}_{2}=\mathbf{P F} \mathbf{F}_{1}+\mathbf{Q F}_{1}$

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathbf{P F}_{1}+\mathbf{P F}_{2}=\mathbf{P F}+\mathbf{Q F}=\mathbf{2 a}$,

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathrm{PF}_{1}+\mathrm{PF}_{2}=\mathrm{PF}_{1}+\mathrm{QF}_{1}=\mathbf{2 a}$, the length of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathrm{PF}_{1}+\mathrm{PF}_{2}=\mathrm{PF}_{1}+\mathrm{QF}_{1}=\mathbf{2 a}$, the length of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathrm{PF}_{1}+\mathrm{PF}_{2}=\mathrm{PF}_{1}+\mathrm{QF}_{1}=\mathbf{2 a}$, the length of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=$ a constant. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathrm{PF}_{1}+\mathrm{PF}_{2}=\mathrm{PF}_{1}+\mathrm{QF}_{1}=2 \mathrm{a}$, the length of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then
$P F_{1}+P F_{2}=2 a$. Suppose point P is at one end of the major axis. Let point Q be the 'other endpoint' of the major axis. Since each focus is \mathbf{c} units from the center, $\mathrm{PF}_{2}=\mathrm{QF}_{1}$! Therefore, $\mathrm{PF}_{1}+\mathrm{PF}_{2}=\mathrm{PF}_{1}+\mathrm{QF}_{1}=2 \mathrm{a}$, the length of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $\mathbf{P F}_{1}+\mathbf{P F}_{2}=2 \mathrm{a}$.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=\mathbf{2 a}$, the length of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=2 a$, the length of the major axis.
Now, suppose point P is at one end of the minor axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=\mathbf{2 a}$, the length of the major axis.
Now, suppose point P is at one end of the minor axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=\mathbf{2 a}$, the length of the major axis.
Now, suppose point P is at one end of the minor axis. Points P, F_{1} and F_{2} form an isosceles triangle with $P_{1}=P F_{2}$.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then
$P F_{1}+P F_{2}=2 a$, the length of the major axis.
Now, suppose point P is at one end of the minor axis. Points P, F_{1} and F_{2} form an isosceles triangle with $P_{1}=P F_{2}$. Since $\mathrm{PF}_{1}+\mathrm{PF}_{2}=\mathbf{2 a}$,

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then
$P F_{1}+P F_{2}=2 a$, the length of the major axis.
Now, suppose point P is at one end of the minor axis. Points P, F_{1} and F_{2} form an isosceles triangle with $P_{1}=P_{2}$. Since $\mathrm{PF}_{1}+\mathrm{PF}_{2}=\mathbf{2 a}, \mathrm{PF}_{1}=\mathbf{a}$ and $\mathrm{PF}_{2}=\mathbf{a}$.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then
$P F_{1}+P F_{2}=2 a$, the length of the major axis.
Now, suppose point P is at one end of the minor axis. Points P, F_{1} and F_{2} form an isosceles triangle with $P_{1}=P_{2}$. Since $\mathrm{PF}_{1}+\mathrm{PF}_{2}=\mathbf{2 a}, \mathrm{PF}_{1}=\mathbf{a}$ and $\mathrm{PF}_{2}=\mathbf{a}$.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=\mathbf{2 a}$, the length of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P_{1}+P_{2}=2 a$, the length of the major axis.
Observe the right triangle highlighted.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P_{1}+\mathbf{P F}_{2}=\mathbf{2 a}$, the length of the major axis.

Observe the right triangle highlighted. The hypotenuse is a units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P_{1}+\mathbf{P F}_{2}=\mathbf{2 a}$, the length of the major axis.

Observe the right triangle highlighted. The hypotenuse is a units long. Each focus is $\underline{\mathbf{c}}$ units from the center.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P_{1}+\mathbf{P F}_{2}=\mathbf{2 a}$, the length of the major axis.

Observe the right triangle highlighted. The hypotenuse is a units long. Each focus is $\underline{\mathbf{c}}$ units from the center. Since the minor axis of the ellipse is 2 b units long,

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P_{1}+\mathbf{P F}_{2}=\mathbf{2 a}$, the length of the major axis.

Observe the right triangle highlighted. The hypotenuse is a units long. Each focus is \underline{c} units from the center. Since the minor axis of the ellipse is 2 b units long, the vertical leg of the triangle is \underline{b} units long.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=\mathbf{2 a}$, the length of the major axis.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P_{1}+P_{2}=2 a$, the length of the major axis. Applying the Pythagorean Theorem,

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $\mathbf{P F}_{1}+\mathbf{P F}_{2}=\mathbf{2 a}$, the length of the major axis. Applying the Pythagorean Theorem, we get $\mathbf{b}^{2}+\mathbf{c}^{\mathbf{2}}=\mathbf{a}^{2}$.

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $\mathbf{P F}_{1}+\mathbf{P F}_{2}=\mathbf{2 a}$, the length of the major axis. Applying the Pythagorean Theorem, we get $b^{2}+c^{2}=\mathbf{a}^{2}$. Solving for c , we get

Equations of an Ellipse

The Standard Form Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k)
Major Axis: 2a units long
Minor Axis: 2b units long
If P represents any point on any
 ellipse with foci F_{1} and F_{2}, then $P F_{1}+P F_{2}=2 a$, the length of the major axis. Applying the Pythagorean Theorem, we get $b^{2}+c^{2}=\mathbf{a}^{2}$. Solving for c , we get

$$
c=\sqrt{a^{2}-b^{2}}
$$

Equations of an Ellipse
There are 2 types of ellipses that we will deal with.

Equations of an Ellipse

There are 2 types of ellipses that we will deal with.

Type 1 Major Axis Horizontal

Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
c=\sqrt{a^{2}-b^{2}}
$$

Equations of an Ellipse

There are 2 types of ellipses that we will deal with.

Type 1 Major Axis Horizontal Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
c=\sqrt{\mathbf{a}^{2}-b^{2}}
$$

Type 2 Major Axis Vertical Standard Form Equation

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

$c=\sqrt{\mathbf{a}^{2}-b^{2}}$

Equations of an Ellipse

There are 2 types of ellipses that we will deal with.
Type 1 Major Axis Horizontal Type 2 Major Axis Vertical Standard Form Equation Standard Form Equation

Equations of an Ellipse

There are 2 types of ellipses that we will deal with.

Type 1 Major Axis Horizontal
Standard Form Equation

Type 2 Major Axis Vertical Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$

As you compare these two equations, realize that \mathbf{a}^{2} and b^{2} are just numbers.

$$
c=\sqrt{a^{2}-b^{2}}
$$

Equations of an Ellipse

There are 2 types of ellipses that we will deal with.

Type 1 Major Axis Horizontal
Standard Form Equation

Type 2 Major Axis Vertical Standard Form Equation

Equations of an Ellipse

There are 2 types of ellipses that we will deal with.

Type 1 Major Axis Horizontal
Standard Form Equation

Type 2 Major Axis Vertical
Standard Form Equation

Equations of an Ellipse

There are 2 types of ellipses that we will deal with.

Type 1 Major Axis Horizontal
Standard Form Equation

Type 2 Major Axis Vertical Standard Form Equation

$c=\sqrt{\mathbf{a}^{2}-b^{2}}$
by focusing on the larger denominator. $\quad \mathbf{c}=\sqrt{\mathbf{a}^{2}-\mathbf{b}^{2}}$

Equations of an Ellipse

There are 2 types of ellipses that we will deal with.

Type 1 Major Axis Horizontal
Standard Form Equation

Type 2 Major Axis Vertical Standard Form Equation

$c=\sqrt{\mathbf{a}^{2}-b^{2}}$
by focusing on the larger denominator. $\quad \mathbf{c}=\sqrt{\mathbf{a}^{2}-\mathbf{b}^{2}}$

Equations of an Ellipse

There are 2 types of ellipses that we will deal with.

Type 1 Major Axis Horizontal Standard Form Equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
c=\sqrt{\mathbf{a}^{2}-b^{2}}
$$

Type 2 Major Axis Vertical Standard Form Equation

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

$c=\sqrt{\mathbf{a}^{2}-b^{2}}$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}. 1.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (-1, 2)

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Longrightarrow$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(\mathbf{- 1}, 2) \Rightarrow h=-1$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis:

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 2a units long

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 2a units long

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 2a units long
2a

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 2a units long

$$
2 \mathbf{a}=
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 2a units long

$$
2 a=14
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 2a units long

$$
\begin{gathered}
2 a=14 \\
a
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 2a units long

$$
\begin{aligned}
2 a & =14 \\
a & =
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse. The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 2a units long

$$
\begin{aligned}
2 a & =14 \\
a & =7
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis:

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 2b units long

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 2b units long

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 2b units long
 2b $=$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 2b units long

$$
2 b=8
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 2b units long

$$
\begin{aligned}
2 b & =8 \\
b & =
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 2b units long

$$
\begin{aligned}
2 b & =8 \\
b & =4
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

(x

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

(x -

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$
 $\underline{(x-1)}$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
(x--1)^{2}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
(x--1)^{2}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
(x--1)^{2}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x--1)^{2}}{7^{2}}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
{\frac{(x--1)^{2}}{7^{2}}+. . . ~}_{\text {and }}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
{\frac{(x--1)^{2}}{7^{2}}+. . . ~}_{\text {and }}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x--1)^{2}}{7^{2}}+\frac{(y-2)}{}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
{\frac{(x--1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{} \text {. }+x^{2}}^{2}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
{\frac{(x--1)^{2}}{7^{2}}+{\frac{(y-2)^{2}}{}}^{2}, x^{2}}^{2}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
{\frac{(x--1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{} \text {. }+x^{2}}^{2}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
{\frac{(x--1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{4^{2}}=,=\text {. }}^{2}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& {\frac{(x--1)^{2}}{7^{2}}}^{2}+\frac{(y-2)^{2}}{4^{2}}=1 \\
& {\underline{(x+1)^{2}}}^{2}
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& {\frac{(x--1)^{2}}{7^{2}}}^{2}+\frac{(y-2)^{2}}{4^{2}}=1 \\
& {\frac{(x+1)^{2}}{49}}^{4}
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& {\frac{(x--1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{4^{2}}=1}_{{\frac{(x+1)^{2}}{49}}^{2}+}=\text {, }
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{4^{2}}=1 \\
& \frac{(x+1)^{2}}{49}+{\underline{(y-2)^{2}}}^{2}
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& {\frac{(x-1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{4^{2}}=1}_{{\frac{(x+1)^{2}}{49}}^{49}+\frac{(y-2)^{2}}{16}}=1
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& {\frac{(x-1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{4^{2}}=1}_{{\frac{(x+1)^{2}}{49}}^{49}+\frac{(y-2)^{2}}{16}=}=\text {. }
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$
Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{4^{2}}=1 \\
& \frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. This is a 'type 1 ' ellipse.

The major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{4^{2}}=1 \\
& \frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
{\frac{(x+1)^{2}}{49}}^{2}+\frac{(y-2)^{2}}{16}=1
$$

Center: $(-1,2) \Rightarrow h=-1$ and $k=2$ Major Axis: 14 units long $\Rightarrow \mathbf{a}=7$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-1)^{2}}{7^{2}}+\frac{(y-2)^{2}}{4^{2}}=1 \\
& \frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse
$A x^{2}+\mathbf{C y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ where $A \neq C$ and $A C>0$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse
$A x^{2}+\mathbf{C y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ where $A \neq C$ and $A C>0$

Start with the standard form equation.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

$$
\text { where } A \neq C \text { and } A C>0
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Start with the standard form equation.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

$$
\text { where } A \neq C \text { and } A C>0
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

$$
\text { where } A \neq C \text { and } A C>0
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Step 1: Clear the fractions.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

$$
\text { where } A \neq C \text { and } A C>0
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Step 1: Clear the fractions.
Multiply both sides of the equation by 784, which is (49)(16).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Step 1: Clear the fractions.
Multiply both sides of the equation by 784, which is (49)(16).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Step 1: Clear the fractions.
Multiply both sides of the equation by 784, which is (49)(16).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Step 1: Clear the fractions.
Multiply both sides of the equation by 784, which is (49)(16).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Step 1: Clear the fractions.
Multiply both sides of the equation by 784, which is (49)(16).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

$$
\text { where } A \neq C \text { and } A C>0
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Step 1: Clear the fractions.
Multiply both sides of the equation by 784, which is (49)(16).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1 \quad 16\left(x^{2}+2 x+1\right)+
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1 \quad 16\left(x^{2}+2 x+1\right)+
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

$$
16\left(x^{2}+2 x+1\right)+49(
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

$$
16\left(x^{2}+2 x+1\right)+49\left(y^{2}\right.
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

$$
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y\right.
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

$$
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

$$
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$
$\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1$

$$
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

$$
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

$$
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
\text { where } A \neq C \text { and } A C>0 \quad 16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

$$
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0 \quad 16(x+1)^{2}+49(y-2)^{2}=784 \\
& \frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1 \quad 16 x^{2}
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0 \quad 16(x+1)^{2}+49(y-2)^{2}=784 \\
& \frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{ll}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784
\end{array} \\
& 16 x^{2}+32 x
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+\mathrm{Dx}+\mathrm{Ey}+\mathrm{F}=0 \\
& \text { where } \mathrm{A} \neq \mathrm{C} \text { and } \mathrm{AC}>0 \quad 16(x+1)^{2}+49(y-2)^{2}=784 \\
& \frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{ll}
16 & 16 x^{2}+32 x+16
\end{array}
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0 \quad 16(x+1)^{2}+49(y-2)^{2}=784 \\
& \frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{ll}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784
\end{array} \\
& \hline 16 x^{2}+32 x+16+
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1 \begin{array}{rr}
16\left(x^{2}+2 x+1\right) \\
16 x^{2}+32 x+16+
\end{array}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1 \begin{gathered}
16\left(x^{2}+2 x+1\right)+49 \\
16 x^{2}+32 x+16+49 y^{2}
\end{gathered}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{aligned}
& 16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y\right. \\
& 16 x^{2}+32 x+16+49 y^{2}-196 y
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{rr}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right) & = \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196
\end{array}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0 \quad 16(x+1)^{2}+49(y-2)^{2}=784 \\
& \frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{ll}
16 & \left.16 x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784
\end{array}
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{cc}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784
\end{array}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{cc}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784
\end{array}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { where } A \neq C \text { and } A C>0
\end{aligned}
$$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{cc}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784
\end{array}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{cc}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784
\end{array}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}
\end{gathered}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}
\end{gathered}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
{\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{cc}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784
\end{array}}_{16 y^{2}+10 y^{2}+29 y} \quad 1
$$

$$
16 x^{2}+49 y^{2}+32 x
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
{\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{cc}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784
\end{array}}_{16 y^{2}+10 y^{2}+29 y} \quad 106 y .
$$

$$
16 x^{2}+49 y^{2}+32 x-196 y
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{cc}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784
\end{array}
$$

$$
16 x^{2}+49 y^{2}+32 x-196 y
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212
\end{gathered}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$16(x+1)^{2}+49(y-2)^{2}=784$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=
\end{gathered}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=784
\end{gathered}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=784
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=784
\end{gathered}
$$

Step 5: Subtract 784 from both sides.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=784 \\
16 x^{2}
\end{gathered}
$$

Step 5: Subtract 784 from both sides.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=784 \\
16 x^{2}+49 y^{2}
\end{gathered}
$$

Step 5: Subtract 784 from both sides.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
49 \\
\hline 16
\end{gathered} \underbrace{2} \frac{(y-2)^{2}}{16}=\begin{aligned}
& 16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
& 16 x^{2}+49 y^{2}+32 x-196 y+212=784 \\
& 16 x^{2}+49 y^{2}+32 x
\end{aligned}
$$

Step 5: Subtract 784 from both sides.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
49 \\
\\
\hline 16
\end{gathered} \begin{gathered}
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=784 \\
16 x^{2}+49 y^{2}+32 x-196 y
\end{gathered}
$$

Step 5: Subtract 784 from both sides.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
\\
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=784 \\
16 x^{2}+49 y^{2}+32 x-196 y-572
\end{gathered}
$$

Step 5: Subtract 784 from both sides.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{cc}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
& 16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=784 \\
& 16 x^{2}+49 y^{2}+32 x-196 y-572=0
\end{array}
$$

Step 5: Subtract 784 from both sides.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\begin{gathered}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
\frac{(x+1)}{}_{49}^{2}+\frac{(y-2)^{2}}{16}=\begin{array}{l}
16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
\\
16 x^{2}+49 y^{2}+32 x-196 y+212=784 \\
16 x^{2}+49 y^{2}+32 x-196 y-572=0
\end{array} \\
\\
\\
\\
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
16(x+1)^{2}+49(y-2)^{2}=784
$$

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=\begin{array}{cc}
16\left(x^{2}+2 x+1\right)+49\left(y^{2}-4 y+4\right)=784 \\
& 16 x^{2}+32 x+16+49 y^{2}-196 y+196=784 \\
16 x^{2}+49 y^{2}+32 x-196 y+212=784 \\
& 16 x^{2}+49 y^{2}+32 x-196 y-572=0
\end{array}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{a^{2}-b^{2}}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{a^{2}-b^{2}}
$$

$$
\mathbf{c}=
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{\mathbf{a}^{2}-b^{2}}
$$

$$
c=\sqrt{ }
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{aligned}
& c=\sqrt{a^{2}-b^{2}} \\
& c=\sqrt{49}
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-}
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{array}{r}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33}
\end{array}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$F_{1}($

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
F_{1}(-1
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
F_{1}(-1-\sqrt{33}
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
F_{1}(-1-\sqrt{33}, 2)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
F_{1}(-1-\sqrt{33}, 2)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
F_{1}(-1-\sqrt{33}, 2) \quad F_{2}(
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
F_{1}(-1-\sqrt{33}, 2) \quad F_{2}(-1
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
F_{1}(-1-\sqrt{33}, 2) \quad F_{2}(-1+\sqrt{33}
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
F_{1}(-1-\sqrt{33}, 2) \quad F_{2}(-1+\sqrt{33}, 2)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
1.

Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation

$$
16 x^{2}+49 y^{2}+32 x-196 y-572=0
$$

$$
F_{1}(-1-\sqrt{33}, 2) \quad F_{2}(-1+\sqrt{33}, 2)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{49-16}=\sqrt{33} \approx 5.7
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

$$
F_{1}(-1-\sqrt{33}, 2) \quad F_{2}(-1+\sqrt{33}, 2)
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.

1. Standard Form Equation

$$
\frac{(x+1)^{2}}{49}+\frac{(y-2)^{2}}{16}=1
$$

General Form Equation
$16 x^{2}+49 y^{2}+32 x-196 y-572=0$

$$
F_{1}(-1-\sqrt{33}, 2) \quad F_{2}(-1+\sqrt{33}, 2)
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2' ellipse. The major axis is vertical.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center:

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1)$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Longrightarrow h=5$ and $k=$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis:

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 2a units long

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 2a units long

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 2a units long
2a

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 2a units long

$$
2 \mathbf{a}=
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 2a units long

$$
2 a=10
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 2a units long

$$
\begin{gathered}
2 \mathbf{a}=10 \\
\mathbf{a}
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 2a units long

$$
\begin{aligned}
2 a & =10 \\
a & =
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 2a units long

$$
\begin{aligned}
2 a & =10 \\
a & =5
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow a=5$ Minor Axis:

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 2b units long

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 2b units long

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 2b units long 2b

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 2b units long

$$
\mathbf{2 b}=
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 2b units long

$$
2 b=8
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 2b units long

$$
2 b=8
$$

b

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 2b units long

$$
\begin{aligned}
2 b & =8 \\
b & =
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 2b units long

$$
\begin{aligned}
2 b & =8 \\
b & =4
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$
 (x -

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$
 $(x-5)$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 8 units long $\Rightarrow b=4$
 $\underline{(x-5)^{2}}$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 8 units long $\Rightarrow b=4$
 $\underline{(x-5)^{2}}$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 8 units long $\Rightarrow b=4$
 $\frac{(x-5)^{2}}{4^{2}}$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x-5)^{2}}{4^{2}}+
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x-5)^{2}}{4^{2}}+
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-}{}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)}{}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow a=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow a=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1 \\
& {\underline{(x-5)^{2}}}^{2}
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1 \\
& \frac{(x-5)^{2}}{16}
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1 \\
& \frac{(x-5)^{2}}{16}+
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$ Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$ Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1 \\
& \frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{}
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1 \\
& \frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. This is a 'type 2 ' ellipse. The major axis is vertical.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1 \\
& \frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
{\frac{(x-5)^{2}}{16}}^{16}+\frac{(y-1)^{2}}{25}=1
$$

Center: $(5,1) \Rightarrow h=5$ and $k=1$
Major Axis: 10 units long $\Rightarrow \mathbf{a}=5$
Minor Axis: 8 units long $\Rightarrow b=4$

$$
\begin{aligned}
& \frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1 \\
& \frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse
$\mathbf{A x}^{2}+\mathbf{C y} \mathbf{y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}$ where $A \neq C$ and $A C>0$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Step 1: Clear the fractions. Multiply both sides of the equation by 400, which is (16)(25).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

$$
25(x-5)^{2}
$$

Step 1: Clear the fractions. Multiply both sides of the equation by 400, which is (16)(25).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Step 1: Clear the fractions. Multiply both sides of the equation by 400 , which is (16)(25).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Step 1: Clear the fractions. Multiply both sides of the equation by 400 , which is (16)(25).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Step 1: Clear the fractions. Multiply both sides of the equation by 400 , which is (16)(25).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Step 1: Clear the fractions. Multiply both sides of the equation by 400, which is (16)(25).

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C y} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}\right.
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x\right.
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$25(x-5)^{2}+16(y-1)^{2}=400$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$25(x-5)^{2}+16(y-1)^{2}=400$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16(
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$25(x-5)^{2}+16(y-1)^{2}=400$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16(
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$25(x-5)^{2}+16(y-1)^{2}=400$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

$$
25\left(x^{2}-10 x+25\right)+16\left(y^{2}\right.
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$25(x-5)^{2}+16(y-1)^{2}=400$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y\right.
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$25(x-5)^{2}+16(y-1)^{2}=400$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$25(x-5)^{2}+16(y-1)^{2}=400$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400
$$

Step 2: Square the binomials.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \frac{25\left(x^{2}-10 x+25\right)}{25 x^{2}-250 x+625}+16\left(y^{2}-2 y+1\right)=400
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+16 y^{2}
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right) \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400
\end{aligned}
$$

Step 3: Perform the indicated multiplication.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \quad \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400
\end{aligned}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{gathered}
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
25 x^{2}
\end{gathered}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{gathered}
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
\\
\\
25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
25 x^{2}+16 y^{2}
\end{gathered}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{array}{ll}
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right) & =400 \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
25 x^{2}+16 y^{2}-250 x
\end{array}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& \\
& \\
& \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
& 25 x^{2}+16 y^{2}-250 x-32 y
\end{aligned}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& \\
& \\
& \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400
\end{aligned}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{aligned}
& 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& \\
& \\
& \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
& 25 x^{2}+16 y^{2}-250 x-32 y+641
\end{aligned}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{gathered}
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
\\
\\
\\
25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
25 x^{2}+16 y^{2}-250 x-32 y+641=
\end{gathered}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{gathered}
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
\\
\\
\\
25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
25 x^{2}+16 y^{2}-250 x-32 y+641=400
\end{gathered}
$$

Step 4: Rearrange (and combine like) terms.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{gathered}
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
\\
\\
\\
25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
25 x^{2}+16 y^{2}-250 x-32 y+641=400
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 \begin{gathered}
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
\\
\\
\\
25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
25 x^{2}+16 y^{2}-250 x-32 y+641=400
\end{gathered}
$$

Step 5: Subtract 400 from each side.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\begin{array}{ll}
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 & 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
& 25 x^{2}+16 y^{2}-250 x-32 y+641=400
\end{array}
$$

Step 5: Subtract 400 from each side.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\begin{array}{ll}
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 & 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& \begin{array}{ll}
25 x^{2}-250 x+625+16 y^{2}-32 y+16=400
\end{array} \\
& \mathbf{2 5 x}^{2}+16 y^{2}-250 x-32 y+641=400
\end{array}
$$

Step 5: Subtract 400 from each side.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\begin{array}{ll}
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 & 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& \begin{array}{ll}
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400
\end{array} \\
& \mathbf{2 5 x}^{2}+16 y^{2}-250 x-32 y+641=400
\end{array}
$$

Step 5: Subtract 400 from each side.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+\mathbf{C} y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\begin{array}{ll}
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 & 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& \begin{array}{ll}
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400
\end{array} \\
& \mathbf{2 5 x}^{2}+16 y^{2}-250 x-32 y+641=400
\end{array}
$$

Step 5: Subtract 400 from each side.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\begin{array}{ll}
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 & 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
& \mathbf{2 5 x}^{2}+16 y^{2}-250 x-32 y+641=400
\end{array}
$$

Step 5: Subtract 400 from each side.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\begin{array}{lc}
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 & 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
& \mathbf{2 5 x}^{2}+16 y^{2}-250 x-32 y+641=400 \\
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0
\end{array}
$$

Step 5: Subtract 400 from each side.

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=0
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\begin{array}{lc}
\frac{(\mathrm{x}-5)^{2}}{16}+\frac{(\mathrm{y}-1)^{2}}{25}=1 & 25\left(\mathrm{x}^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& \begin{array}{ll}
& 25 x^{2}-250 x+625+16 y^{2}-32 y+16=400
\end{array} \\
& \mathbf{2 5 x}^{2}+16 y^{2}-250 x-32 y+641=400 \\
& \\
& \mathbf{2 5} x^{2}+16 y^{2}-250 x-32 y+241=0
\end{array}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation of an Ellipse

$$
A x^{2}+C y^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0}
$$

where $A \neq C$ and $A C>0$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\begin{array}{lc}
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1 & 25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=400 \\
& \begin{array}{ll}
25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
& \\
& \mathbf{2 5 x ^ { 2 }}+16 y^{2}-250 x-32 y+641=400 \\
& \\
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0
\end{array}
\end{array}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$$
25 x^{2}+16 y^{2}-250 x-32 y+241=0
$$

$$
25(x-5)^{2}+16(y-1)^{2}=400
$$

$$
\begin{gathered}
\mathbf{2 5}\left(x^{2}-10 x+25\right)+\mathbf{1 6}\left(y^{2}-2 y+1\right)=400 \\
25 x^{2}-250 x+625+16 y^{2}-32 y+16=400 \\
25 x^{2}+16 y^{2}-250 x-32 y+641=400 \\
25 x^{2}+16 y^{2}-250 x-32 y+241=0
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\mathbf{c}=
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{ }
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{\mathbf{a}^{2}}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{a^{2}-}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{a^{2}-b^{2}}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{a^{2}-b^{2}}
$$

$$
\mathbf{c}=
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{a^{2}-b^{2}}
$$

$$
c=\sqrt{ }
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
c=\sqrt{a^{2}-b^{2}}
$$

$$
c=\sqrt{ }
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{aligned}
& c=\sqrt{\mathbf{a}^{2}-b^{2}} \\
& c=\sqrt{25}
\end{aligned}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{\mathbf{a}^{2}-b^{2}} \\
c=\sqrt{25-}
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{\mathbf{a}^{2}-b^{2}} \\
c=\sqrt{25-}
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{array}{r}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}
\end{array}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation
$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\mathbf{F}_{\mathbf{1}} \mathbf{5}
$$

Each focus is on the major axis, \mathbf{c} units frow the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,1+3)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4) \quad F_{2}(
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4) \quad F_{2}(5
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4) \quad F_{2}(5,
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4) \quad F_{2}(5,1-3)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4) \quad F_{2}(5,-2)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4) \quad F_{2}(5,-2)
$$

Each focus is on the major axis, \mathbf{c} units from the center where

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}} \\
c=\sqrt{25-16}=\sqrt{9}=3
\end{gathered}
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2. Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4) \quad F_{2}(5,-2)
$$

Class Worksheet \#2

Write the equation in standard form and the equation in general form for each ellipse. Then locate and label foci F_{1} and F_{2}.
2.

Standard Form Equation

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

General Form Equation

$25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
F_{1}(5,4) \quad F_{2}(5,-2)
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
9 x^{2}+25 y^{2}+36 x-189=0
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
9 x^{2}+25 y^{2}+36 x-189=0
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
9 x^{2}+25 y^{2}+36 x-189=0
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
9 x^{2}+25 y^{2}+36 x-189=0
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$
(9x ${ }^{2}$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}=
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}=189
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}=189
\end{aligned}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}=189
\end{aligned}
$$

Step 2: Factor out the 9.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
& 9(
\end{aligned}
$$

Step 2: Factor out the 9.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
& 9\left(x^{2}\right.
\end{aligned}
$$

Step 2: Factor out the 9.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
& 9\left(x^{2}+4 x\right)
\end{aligned}
$$

Step 2: Factor out the 9.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
& 9\left(x^{2}+4 x\right)+
\end{aligned}
$$

Step 2: Factor out the 9.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
& \left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
& 9\left(x^{2}+4 x\right)+25 y^{2}
\end{aligned}
$$

Step 2: Factor out the 9.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189
\end{gathered}
$$

Step 2: Factor out the 9.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189
\end{gathered}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{array}{r}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x \quad\right)+25 y^{2}=189
\end{array}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}+
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}+25 y^{2}
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}+25 y^{2}=
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}+25 y^{2}=225
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}+25 y^{2}=225
\end{gathered}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}+25 y^{2}=225
\end{gathered}
$$

Step 4: Divide both sides by 225

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
9 x^{2}+25 y^{2}+36 x-189 & =0 \\
\left(9 x^{2}+36 x\right)+25 y^{2} & =189 \\
9\left(x^{2}+4 x\right)+25 y^{2} & =189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2} & =189+36 \\
9(x+2)^{2}+25 y^{2} & =225 \\
\frac{9(x+2)^{2}}{225}+\frac{25 y^{2}}{225} & =\frac{225}{225}
\end{aligned}
$$

Step 4: Divide both sides by 225

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
9 x^{2}+25 y^{2}+36 x-189 & =0 \\
\left(9 x^{2}+36 x\right)+25 y^{2} & =189 \\
9\left(x^{2}+4 x\right)+25 y^{2} & =189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2} & =189+36 \\
9(x+2)^{2}+25 y^{2} & =225 \\
\frac{9(x+2)^{2}}{225}+\frac{25 y^{2}}{225} & =\frac{225}{225}
\end{aligned}
$$

Step 4: Divide both sides by 225 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}+25 y^{2}=225 \\
\frac{9(x+2)^{2}}{225}+\frac{25 y^{2}}{225}=\frac{225}{225} \\
\frac{(x+2)^{2}}{25}
\end{gathered}
$$

Step 4: Divide both sides by 225 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}+25 y^{2}=225 \\
\frac{9(x+2)^{2}}{225}+\frac{25 y^{2}}{225}=\frac{225}{225} \\
\frac{(x+2)^{2}}{25}+
\end{gathered}
$$

Step 4: Divide both sides by 225 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{gathered}
9 x^{2}+25 y^{2}+36 x-189=0 \\
\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
9(x+2)^{2}+25 y^{2}=225 \\
\frac{9(x+2)^{2}}{225}+\frac{25 y^{2}}{225}=\frac{225}{225} \\
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}
\end{gathered}
$$

Step 4: Divide both sides by 225 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
&\left(9 x^{2}+36 x\right)+25 y^{2}
\end{aligned}=189 \quad \begin{aligned}
9\left(x^{2}+4 x\right)+25 y^{2} & =189 \\
9\left(x^{2}+4 x+4\right)+25 y^{2} & =189+36 \\
9(x+2)^{2}+25 y^{2} & =225 \\
\frac{9(x+2)^{2}}{225}+\frac{25 y^{2}}{225} & =\frac{225}{225} \\
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9} & =
\end{aligned}
$$

Step 4: Divide both sides by 225 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
&\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
& 9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
& 9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
& 9(x+2)^{2}+25 y^{2}=225 \\
& \frac{9(x+2)^{2}}{225}+\frac{25 y^{2}}{225}=\frac{225}{225} \\
& \frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
\end{aligned}
$$

Step 4: Divide both sides by 225 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3.

$$
\begin{aligned}
& 9 x^{2}+25 y^{2}+36 x-189=0 \\
&\left(9 x^{2}+36 x\right)+25 y^{2}=189 \\
& 9\left(x^{2}+4 x\right)+25 y^{2}=189 \\
& 9\left(x^{2}+4 x+4\right)+25 y^{2}=189+36 \\
& 9(x+2)^{2}+25 y^{2}=225 \\
& \frac{9(x+2)^{2}}{225}+\frac{25 y^{2}}{225}=\frac{225}{225} \\
& \frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
\end{aligned}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse

$\underline{(x-2)}^{2}$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

$$
\begin{gathered}
\text { Type } 1 \text { Ellipse } \\
\frac{(x--2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{}
\end{gathered}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse

$\frac{(x--2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse

$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse

$\frac{(x--2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse

$\frac{(x--2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse

$\frac{(x--2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2,

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse

$\frac{(x--2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x--2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x--2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$\mathbf{a}=$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)
$a=5 \quad b=$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)
$a=5 \quad b=3$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)
$a=5 \quad b=3$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)
$a=5 \quad b=3$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)
$a=5 \quad b=3$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
c=\sqrt{\mathbf{a}^{2}-b^{2}}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
c=\sqrt{a^{2}-b^{2}}=
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
\mathbf{c}=\sqrt{\mathbf{a}^{2}-\mathbf{b}^{2}}=\sqrt{ }
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
\begin{gathered}
a=5 \quad b=3 \\
c=\sqrt{a^{2}-b^{2}}=\sqrt{25}
\end{gathered}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
c=\sqrt{\mathbf{a}^{2}-b^{2}}=\sqrt{25-}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
\begin{gathered}
a=5 \quad b=3 \\
c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=
\end{gathered}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=\sqrt{16}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=\sqrt{16}=4
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=\sqrt{16}=4
$$

Locate and label foci F_{1} and F_{2}.

Each focus is on the major axis 4 units
from the center.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=\sqrt{16}=4
$$

Locate and label foci F_{1} and F_{2}.

Each focus is on the
major axis 4 units
Each focus is on the
major axis 4 units from the center.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
3. $9 x^{2}+25 y^{2}+36 x-189=0$

$$
\frac{(x+2)^{2}}{25}+\frac{y^{2}}{9}=1
$$

Type 1 Ellipse
$\frac{(x-2)^{2}}{5^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
Center (-2, 0)

$$
a=5 \quad b=3
$$

$$
c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=\sqrt{16}=4
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
25 x^{2}+16 y^{2}-250 x-32 y+241=0
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
25 x^{2}+16 y^{2}-250 x-32 y+241=0
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph. 4.

$$
25 x^{2}+16 y^{2}-250 x-32 y+241=0
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$
(25x ${ }^{2}$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}\right.
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241
\end{aligned}
$$

Step 1: Rearrange the terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241
\end{aligned}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241
\end{aligned}
$$

Step 2: Factor.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241
\end{aligned}
$$

Step 2: Factor. Factor out the 25.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241
\end{aligned}
$$

$$
25(
$$

Step 2: Factor. Factor out the 25.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}\right.
\end{aligned}
$$

Step 2: Factor. Factor out the 25.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}-10 x\right)
\end{aligned}
$$

Step 2: Factor. Factor out the 25.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}-10 x\right)+
\end{aligned}
$$

Step 2: Factor.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}-10 x\right)+
\end{aligned}
$$

Step 2: Factor. Factor out the 16.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}-10 x\right)+16(
\end{aligned}
$$

Step 2: Factor. Factor out the 16.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}-10 x\right)+16\left(y^{2}\right.
\end{aligned}
$$

Step 2: Factor. Factor out the 16.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)
\end{aligned}
$$

Step 2: Factor. Factor out the 16.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241
\end{aligned}
$$

Step 2: Factor.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241
\end{aligned}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{aligned}
& 25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
& \left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
& 25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241
\end{aligned}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{array}{r}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x \quad\right)+16\left(y^{2}-2 y\right)=-241
\end{array}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{array}{r}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x-16\left(y^{2}-2 y\right)=-241\right.
\end{array}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y \quad\right)=-241
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y \quad\right)=-241+625
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y\right)=-241+625
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16
\end{gathered}
$$

$$
25(
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
25(x-5)^{2}
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
25(x-5)^{2}+
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
25(x-5)^{2}+
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
25(x-5)^{2}+16(
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
25(x-5)^{2}+16(y-1)^{2}
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
25(x-5)^{2}+16(y-1)^{2}=
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
25(x-5)^{2}+16(y-1)^{2}=400
\end{gathered}
$$

Step 3: Complete the square.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
25(x-5)^{2}+16(y-1)^{2}=400
\end{gathered}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
25(x-5)^{2}+16(y-1)^{2}=400
\end{gathered}
$$

Step 4: Divide both sides by 400

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400}
\end{gathered}
$$

Step 4: Divide both sides by 400

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400}
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400}
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\underline{(x-5)^{2}}
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}+
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}+
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{2}
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
\end{gathered}
$$

Step 4: Divide both sides by 400 and reduce to lowest terms.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
\end{gathered}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4.

$$
\begin{gathered}
25 x^{2}+16 y^{2}-250 x-32 y+241=0 \\
\left(25 x^{2}-250 x\right)+\left(16 y^{2}-32 y\right)=-241 \\
25\left(x^{2}-10 x\right)+16\left(y^{2}-2 y\right)=-241 \\
25\left(x^{2}-10 x+25\right)+16\left(y^{2}-2 y+1\right)=-241+625+16 \\
\frac{25(x-5)^{2}}{400}+\frac{16(y-1)^{2}}{400}=\frac{400}{400} \\
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
\end{gathered}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph. 4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\underline{(x-5)}^{2}$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{}$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5,

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$\mathbf{a}=$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)
$\mathrm{a}=5$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)
$\mathrm{a}=5$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
a=5
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)
$\mathbf{a}=5$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)
$a=5 \quad b=$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)
$a=5 \quad b=4$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)
$a=5 \quad b=4$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1
$$

Center (5, 1)
$a=5 \quad b=4$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1
$$

Center (5, 1)
$a=5 \quad b=4$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
a=5 \quad b=4
$$

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1
$$

Center (5, 1)

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse

$$
\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1
$$

Center (5, 1)

$$
\begin{gathered}
a=5 \quad b=4 \\
c=\sqrt{a^{2}-b^{2}}
\end{gathered}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
\begin{array}{r}
a=5 \quad b=4 \\
c=\sqrt{a^{2}-b^{2}}=
\end{array}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
\begin{aligned}
& a=5 \quad b=4 \\
& c=\sqrt{a^{2}-b^{2}}=\sqrt{ }
\end{aligned}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
\begin{gathered}
a=5 \quad b=4 \\
c=\sqrt{a^{2}-b^{2}}=\sqrt{25}
\end{gathered}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
\begin{aligned}
& a=5 \quad b=4 \\
& c=\sqrt{a^{2}-b^{2}}=\sqrt{25-16}
\end{aligned}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
\begin{aligned}
& a=5 \quad b=4 \\
& c=\sqrt{a^{2}-b^{2}}=\sqrt{25-16}=
\end{aligned}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
\begin{aligned}
& a=5 \quad b=4 \\
& c=\sqrt{a^{2}-b^{2}}=\sqrt{25-16}=\sqrt{9}
\end{aligned}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
\begin{aligned}
& a=5 \quad b=4 \\
& c=\sqrt{a^{2}-b^{2}}=\sqrt{25-16}=\sqrt{9}=3
\end{aligned}
$$

Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
a=5 \quad b=4
$$

$\mathbf{c}=\sqrt{\mathbf{a}^{2}-b^{2}}=\sqrt{25-16}=\sqrt{9}=3 \begin{aligned} & \text { Each focus is on the } \\ & \text { major axis } 3 \text { units } \\ & \text { from the center. }\end{aligned}$
Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 x^{2}+16 y^{2}-250 x-32 y+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
a=5 \quad b=4
$$

$\mathbf{c}=\sqrt{\mathbf{a}^{2}-\mathbf{b}^{2}}=\sqrt{25-16}=\sqrt{9}=3 \quad \begin{aligned} & \text { Each focus is on the } \\ & \text { major axis } 3 \text { units } \\ & \text { from the center. }\end{aligned}$
Locate and label foci F_{1} and F_{2}.

Class Worksheet \#2

Express each equation using standard form and sketch a graph.
4. $25 \mathrm{x}^{2}+16 \mathrm{y}^{2}-\mathbf{2 5 0 x}-\mathbf{3 2 y}+241=0$

$$
\frac{(x-5)^{2}}{16}+\frac{(y-1)^{2}}{25}=1
$$

Type 2 Ellipse
$\frac{(x-5)^{2}}{4^{2}}+\frac{(y-1)^{2}}{5^{2}}=1$
Center (5, 1)

$$
\begin{aligned}
& a=5 \quad b=4 \\
& c=\sqrt{a^{2}-b^{2}}=\sqrt{25-16}=\sqrt{9}=3
\end{aligned}
$$

Locate and label foci F_{1} and F_{2}.

