Algebra II
 Lesson \#1 Unit 6 Class Worksheet \#1
 For Worksheet \#1

Solving Second Degree Equations

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.

Step 1: Write the equation in standard form,

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.

Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{A}, \underline{B}$, and \underline{C} represent numbers.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.

Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{A}, \underline{B}$, and \underline{C} represent numbers. Clearly, \underline{A} can not be zero.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.

Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and \underline{C} represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}+\underline{B} x+\underline{C}=0$, where $\underline{A}, \underline{B}$, and \underline{C} represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and $\underline{\mathbf{C}}$ represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{\mathbf{A}} \mathbf{x}^{2}+\underline{\mathbf{B}} \mathbf{x}+\underline{\mathbf{C}}$.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{A}, \underline{B}$, and \underline{C} represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.)

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and $\underline{\mathbf{C}}$ represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and $\underline{\mathbf{C}}$ represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and \underline{C} represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Step 3: Apply the zero property of multiplication.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and $\underline{\mathbf{C}}$ represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Step 3: Apply the zero property of multiplication. If $\mathrm{PQ}=0$ then $\mathrm{P}=0$ or Q = 0 .

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and \underline{C} represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Step 3: Apply the zero property of multiplication. If $\mathrm{PQ}=0$ then $\mathrm{P}=0$ or $\mathbf{Q}=0$. Basically, this property states that if two numbers multiply to zero, then one of them must equal 0 .

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.

Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and $\underline{\mathbf{C}}$ represent numbers. Clearly, \underline{A} can not be zero. (It is the $\mathbf{x}^{\mathbf{2}}$ term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Step 3: Apply the zero property of multiplication. If $\mathrm{PQ}=0$ then $\mathrm{P}=0$ or $\mathbf{Q}=\mathbf{0}$. Basically, this property states that if two numbers multiply to zero, then one of them must equal 0 . When you finish this step, you will have two equations.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A} x^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and \underline{C} represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)
Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Step 3: Apply the zero property of multiplication. If $P Q=0$ then $P=0$ or $Q=0$. Basically, this property states that if two numbers multiply to zero, then one of them must equal 0 . When you finish this step, you will have two equations.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}} \underline{\underline{B}}$, and $\underline{\mathbf{C}}$ represent numbers. Clearly, \underline{A} can not be zero. (It is the $\mathbf{x}^{\mathbf{2}}$ term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Step 3: Apply the zero property of multiplication. If $P Q=0$ then $P=0$ or $Q=0$. Basically, this property states that if two numbers multiply to zero, then one of them must equal 0 . When you finish this step, you will have two equations.

Step 4: Solve each equation.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.

Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and \underline{C} represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Step 3: Apply the zero property of multiplication. If $P Q=0$ then $P=0$ or $Q=0$. Basically, this property states that if two numbers multiply to zero, then one of them must equal 0 . When you finish this step, you will have two equations.

Step 4: Solve each equation.
Class worksheets \#1 and \#2 review solving second degree equations using the factoring method.

Solving Second Degree Equations

In Algebra I, you learned several methods used to solve second degree equations with one variable. We will review them and learn how to apply them in problem solving situations. One method that you learned was the factoring method.
Step 1: Write the equation in standard form, $\underline{A^{2}}{ }^{2}+\underline{B} x+\underline{C}=0$, where $\underline{\mathbf{A}}, \underline{B}$, and \underline{C} represent numbers. Clearly, \underline{A} can not be zero. (It is the \mathbf{x}^{2} term that makes the equation 'second degree'.)

Step 2: Factor the expression $\underline{A} x^{2}+\underline{B} x+\underline{C}$. (This method can only be used if the expression is factorable.) At this point the equation is in the 'factored form', $\mathrm{PQ}=\mathbf{0}$.

Step 3: Apply the zero property of multiplication. If $P Q=0$ then $P=0$ or $Q=0$. Basically, this property states that if two numbers multiply to zero, then one of them must equal 0 . When you finish this step, you will have two equations.

Step 4: Solve each equation.
Class worksheets \#1 and \#2 review solving second degree equations using the factoring method.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad 2. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $2 x(x-3)=$ \qquad
5. $-6 x(x+3)=$ \qquad
6. $4 x(5 x-6)=$ \qquad
7. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply 2•3.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
\qquad
3. $5 x(x+6)=$ \qquad
5. $3 x(4 x+1)=$ \qquad
7. $-6 x(x+3)=$ \qquad
2. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
4. $2 x(x-3)=$ \qquad
6. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
\qquad
3. $5 x(x+6)=$ \qquad
5. $3 x(4 x+1)=$ \qquad
7. $-6 x(x+3)=$ \qquad
2. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
4. $2 x(x-3)=$ \qquad
6. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 . Now consider the problem : Factor 6.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
\qquad
3. $5 x(x+6)=$ \qquad
5. $3 x(4 x+1)=$ \qquad
7. $-6 x(x+3)=$ \qquad
2. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
4. $2 x(x-3)=$ \qquad
6. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
\qquad
3. $5 x(x+6)=$ \qquad
5. $3 x(4 x+1)=$ \qquad
7. $-6 x(x+3)=$ \qquad
2. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
4. $2 x(x-3)=$ \qquad
6. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.
Factoring can be thought of as 'undoing multiplication'.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.
Factoring can be thought of as 'undoing multiplication'.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.
Factoring can be thought of as 'undoing multiplication'.
Consider the problem: Factor 91.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.
Factoring can be thought of as 'undoing multiplication'.
Consider the problem: Factor 91. The answer is $7 \cdot 13$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
\qquad
3. $5 x(x+6)=$ \qquad
5. $3 x(4 x+1)=$ \qquad
7. $-6 x(x+3)=$ \qquad
2. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
4. $2 x(x-3)=$ \qquad
6. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is $\mathbf{6}$.
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.
Factoring can be thought of as 'undoing multiplication'.
Consider the problem: Factor 91. The answer is $7 \cdot 13$.
This factoring problem is 'more difficult' because you may not be as familiar with multiples of 13.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.
Factoring can be thought of as 'undoing multiplication'.
Consider the problem: Factor 91. The answer is $7 \cdot 13$.
This factoring problem is 'more difficult' because you may not be as familiar with multiples of 13.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
\qquad

1. $\mathbf{x}(\mathbf{x}+7)=$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.
Factoring can be thought of as 'undoing multiplication'.
Consider the problem: Factor 91. The answer is $7 \cdot 13$.
This factoring problem is 'more difficult' because you may not be as familiar with multiples of 13.

In algebra, each factoring pattern depends on a related multiplication pattern.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $x(x-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.
Factoring can be thought of as 'undoing multiplication'.
Consider the problem: Factor 91. The answer is $7 \cdot 13$.
This factoring problem is 'more difficult' because you may not be as familiar with multiples of 13.
In algebra, each factoring pattern depends on a related multiplication pattern. To understand factoring, you must understand multiplication.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
\qquad

1. $\mathbf{x}(\mathbf{x}+7)=$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Consider the problem : Multiply $2 \cdot 3$. Of course, the answer is 6 .
Now consider the problem : Factor 6. This time the answer is $2 \cdot 3$.
Factoring can be thought of as 'undoing multiplication'.
Consider the problem: Factor 91. The answer is $7 \cdot 13$.
This factoring problem is 'more difficult' because you may not be as familiar with multiples of 13.

In algebra, each factoring pattern depends on a related multiplication pattern. To understand factoring, you must understand multiplication.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $x(x-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathrm{x}+7)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$
\qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

\qquad

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\text { 1. } \mathbf{x}(\mathbf{x}+7)=
$$

3. $5 x(x+6)=$ \qquad
4. $3 x(4 x+1)=$ \qquad
5. $-6 x(x+3)=$ \qquad
6. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
7. $2 x(x-3)=$ \qquad
8. $4 x(5 x-6)=$ \qquad
9. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$

2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $x(x-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$
\qquad
2. $5 x(x+6)=$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=\quad \mathbf{x}^{2}+$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $x(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $x(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad 2. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\underset{\sim}{x}(x-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad
In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $x(x-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(x-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(x-1)=\quad x^{2}-x$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
3. $5 x(x+6)=$ \qquad 4. $2 x(x-3)=$ \qquad
4. $3 x(4 x+1)=$ \qquad
5. $4 x(5 x-6)=$ \qquad
6. $-6 x(x+3)=$ \qquad 8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=$ \qquad
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=$

3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+$
3. $\mathbf{3 x}(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $\mathbf{3 x}(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(x-1)=\quad \mathbf{x}^{2}-x$
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=$ \qquad
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $x(x-1)=$ \qquad
6. $2 x(x-3)=$

7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad

$$
\text { 2. } \mathbf{x}(\mathbf{x}-1)=\quad \mathbf{x}^{2}-\mathbf{x}
$$

4. $2 x(x-3)=2 x^{2}-$
5. $4 x(5 x-6)=$ \qquad
6. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad

$$
\text { 2. } \mathbf{x}(\mathbf{x}-1)=\quad \mathbf{x}^{2}-\mathbf{x}
$$

4. $2 x(x-3)=2 x^{2}-6 x$
5. $4 x(5 x-6)=$
\qquad
6. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $\mathbf{x}(\mathbf{x}-1)=$
3. $5 x(x+6)=5 x^{2}+30 x$
4. $2 x(x-3)=2 x^{2}-6 x$
5. $3 x(4 x+1)=$ \qquad 6. $4 x(5 x-6)=$ \qquad
6. $-6 x(x+3)=$ \qquad 8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=\underline{x^{2}-x}$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=\quad 5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ \qquad
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=$ $12 \mathrm{x}^{2}$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=\quad 5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(x-1)=\quad \mathbf{x}^{2}-x$
6. $2 x(x-3)=\quad 2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $x(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=\quad 2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $x(x-1)=$ \qquad
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=$ \qquad
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $x(x-1)=$ \qquad
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $x(x-1)=$ \qquad
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \qquad
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=$ \longrightarrow
5. $\mathbf{x}(\mathrm{x}-1)=$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}$

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}+$
5. $\mathbf{x}(\mathrm{x}-1)=\quad \mathbf{x}^{2}-\mathbf{x}$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}+-18 x$
5. $\mathbf{x}(\mathrm{x}-1)=$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}+-18 x$
5. $\mathbf{x}(\mathrm{x}-1)=$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=\frac{-6 x^{2}+-18 x}{\text { No 'double signs'. }}$
5. $\mathbf{x}(\mathrm{x}-1)=\quad \mathbf{x}^{2}-\mathbf{x}$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=\quad \mathbf{x}^{2}+7 \mathbf{x}$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=\frac{-6 x^{2}-18 x}{\text { No 'double signs'. }}$
5. $\mathbf{x}(\mathrm{x}-1)=\quad \mathbf{x}^{2}-\mathbf{x}$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}-18 x$
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=\quad 2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $x(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}-18 x$
5. $4 x(5 x-6)=20 x^{2}-24 x$
6. $\mathbf{x}(\mathbf{x}-1)=$
7. $2 x(x-3)=\quad 2 x^{2}-6 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}-18 x$
5. $4 x(5 x-6)=20 x^{2}-24 x$
6. $\mathbf{x}(\mathrm{x}-1)=$
7. $2 x(x-3)=\quad 2 x^{2}-6 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
\qquad
4. $-6 x(x+3)=-6 x^{2}-18 x$
5. $\mathbf{x}(\mathrm{x}-1)=$
6. $2 x(x-3)=\quad 2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=$ \qquad

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}-18 x$
5. $4 x(5 x-6)=20 x^{2}-24 x$
6. $\mathbf{x}(\mathbf{x}-1)=$
7. $2 x(x-3)=\quad 2 x^{2}-6 x$
8. $-3 x(2 x-5)=-6 x^{2}$

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}-18 x$
5. $4 x(5 x-6)=20 x^{2}-24 x$
6. $\mathbf{x}(\mathbf{x}-1)=$
7. $2 x(x-3)=\quad 2 x^{2}-6 x$
8. $-3 x(2 x-5)=-6 x^{2}-$

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}-18 x$
5. $4 x(5 x-6)=20 x^{2}-24 x$
6. $\mathbf{x}(\mathrm{x}-1)=$
7. $2 x(x-3)=2 x^{2}-6 x$
8. $-3 x(2 x-5)=-6 x^{2}--15 x$

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $\mathbf{x}(\mathrm{x}-1)=$
\qquad
3. $5 x(x+6)=5 x^{2}+30 x$
4. $2 x(x-3)=2 x^{2}-6 x$
5. $3 x(4 x+1)=12 x^{2}+3 x$
6. $4 x(5 x-6)=20 x^{2}-24 x$
7. $-6 x(x+3)=-6 x^{2}-18 x$
8. $-3 x(2 x-5)=-6 x^{2}--15 x$

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad 2. $\mathbf{x}(\mathrm{x}-1)=\quad \mathrm{x}^{2}-\mathrm{x}$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $2 x(x-3)=2 x^{2}-6 x$
4. $3 x(4 x+1)=12 x^{2}+3 x$
5. $4 x(5 x-6)=20 x^{2}-24 x$
6. $-6 x(x+3)=-6 x^{2}-18 x$

$$
\text { 8. }-3 x(2 x-5)=\frac{-6 x^{2}--15 x}{\text { No 'double signs'. }}
$$

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $\mathbf{x}(\mathbf{x}+7)=$ \qquad
2. $2 x(x-3)=\quad 2 x^{2}-6 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $4 x(5 x-6)=20 x^{2}-24 x$
5. $-6 x(x+3)=-6 x^{2}-18 x$
6. $\mathbf{x}(\mathrm{x}-1)=$ \qquad
7. $5 x(x+6)=5 x^{2}+30 x$

$$
\text { 8. }-3 x(2 x-5)=\frac{-6 x^{2}+15 x}{\text { No 'double signs'. }}
$$

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $x(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}-18 x$
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=-6 x^{2}+15 x$

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

1. $x(x+7)=\quad x^{2}+7 x$
2. $5 x(x+6)=5 x^{2}+30 x$
3. $3 x(4 x+1)=12 x^{2}+3 x$
4. $-6 x(x+3)=-6 x^{2}-18 x$
5. $\mathbf{x}(\mathbf{x}-1)=$
6. $2 x(x-3)=\quad 2 x^{2}-6 x$
7. $4 x(5 x-6)=20 x^{2}-24 x$
8. $-3 x(2 x-5)=-6 x^{2}+15 x$

In each case, you are asked to multiply a monomial times a binomial. These problems each involve one of the distributive laws stated below.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $\mathbf{3} \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
\qquad
9. $x^{2}+6 x=$
11. $3 x^{2}+12 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

The distributive laws can be re-written as factoring properties.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

The distributive laws can be re-written as factoring properties.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

The distributive laws can be re-written as factoring properties.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

The distributive laws can be re-written as factoring properties.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

The distributive laws can be re-written as factoring properties.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $\mathbf{3} \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

\qquad

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Notice that \mathbf{A} is the greatest common factor of the terms of the binomial.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Notice that \mathbf{A} is the greatest common factor of the terms of the binomial.

The Distributive Law for Multiplication over Addition:

$$
\underset{\uparrow}{\mathbf{A}} \mathbf{B}+\underset{\uparrow}{\mathbf{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\underset{\uparrow}{\mathbf{A B}}-\underset{\uparrow}{\mathrm{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

The Distributive Law for Multiplication over Addition:

$$
\underset{\uparrow}{\mathbf{A}} \mathbf{B}+\underset{\uparrow}{\mathbf{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\underset{\uparrow}{\mathbf{A B}}-\underset{\uparrow}{\mathbf{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
\qquad
9. $x^{2}+6 x=$
11. $3 x^{2}+12 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor.

The Distributive Law for Multiplication over Addition:

$$
\underset{\uparrow}{\mathbf{A}} \mathbf{B}+\underset{\uparrow}{\mathbf{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\underset{\uparrow}{\mathbf{A B}}-\underset{\uparrow}{\mathbf{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
\qquad
9. $x^{2}+6 x=$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.

The Distributive Law for Multiplication over Addition:

$$
\underset{\uparrow}{\mathbf{A}} \mathbf{B}+\underset{\uparrow}{\mathbf{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\underset{\uparrow}{\mathbf{A B}}-\underset{\uparrow}{\mathrm{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.

The Distributive Law for Multiplication over Addition:

$$
\underset{\uparrow}{\mathbf{A}} \mathbf{B}+\underset{\mathbf{A}}{\mathbf{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\underset{\uparrow}{\mathbf{A B}}-\underset{\uparrow}{\mathbf{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.

Step 2: Divide each term of the binomial by this expression.

The Distributive Law for Multiplication over Addition:

$$
\underset{\uparrow}{\mathrm{A}} \mathbf{B}+\underset{\uparrow}{\mathbf{A}} \mathbf{C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\underset{\uparrow}{\mathbf{A B}}-\underset{\uparrow}{\mathbf{A} C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$
11. $3 x^{2}+12 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad
Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad
Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad
Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$

11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad
Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$

11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad
Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$

10. $x^{2}-4 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad 12. $5 x^{2}-15 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
14. $9 x^{2}-6 x=$
\qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$

10. $x^{2}-4 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad 12. $5 x^{2}-15 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
14. $9 x^{2}-6 x=$
\qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
10. $x^{2}-4 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad 12. $5 x^{2}-15 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
10. $x^{2}-4 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad 12. $5 x^{2}-15 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$

12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$

12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\frac{x(x-}{\hat{\wedge}}$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\frac{x(x-4)}{\hat{\wedge}}$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 \mathrm{x}^{2}+12 \mathrm{x}=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x($
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x($
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x($
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=$

13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=\frac{3 x(x}{\hat{a}}$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=\frac{3 x(x+}{\Lambda}$
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=\frac{3 x(x+4)}{\hat{1}}$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
12. $5 x^{2}-15 x=$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=$ \qquad
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=$
14. $9 x^{2}-6 x=$
16. $-6 x^{2}-15 x=$
\qquad
\qquad
\qquad
Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
\qquad
\qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=$ \qquad
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
\qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=$ 5x(
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression. Step 2: Divide each term of the binomial by this expression.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x($
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\frac{5 x(}{\hat{}}$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\frac{5 x(x}{\hat{}}$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad 16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
10. $x^{2}-4 x=\quad x(x-4)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression. Step 2: Divide each term of the binomial by this expression.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=$
16. $-6 x^{2}-15 x=$
\qquad
\qquad
Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=$
16. $-6 x^{2}-15 x=$
\qquad
\qquad
Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x($
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x($
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x($
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=$ $\frac{2 \mathbf{x}(}{\hat{s}}$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=\frac{2 x(3 x}{\hat{u}}$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=\frac{2 x(3 x+}{A}$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=\frac{2 x(3 x+4)}{\hat{u}}$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression. Step 2: Divide each term of the binomial by this expression.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression. Step 2: Divide each term of the binomial by this expression.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=$ \qquad
15. $-3 x^{2}+9 x=$ \qquad 16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=$ \qquad
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=3 x($
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x($
15. $-3 x^{2}+9 x=$ \qquad 16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=\quad 3 x($
15. $-3 x^{2}+9 x=$ \qquad 16. $-6 x^{2}-15 x=$ \qquad
Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
14. $9 x^{2}-6 x=\frac{3 x(}{\hat{a}}$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=\frac{3 x(3 x}{\hat{a}}$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=\frac{3 x(3 x-}{x}$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=\frac{3 x(3 x-2)}{\hat{}}$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression. Step 2: Divide each term of the binomial by this expression.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=$ \qquad 16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=$ \qquad 16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=$ \qquad
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

9. $x^{2}+6 x=\quad x(x+6)$	10. $x^{2}-4 x=$
11. $3 x^{2}+12 x=3 x(x+4)$	12. $5 x^{2}-15 x=5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$	14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=$	16. $-6 x^{2}-15 x=$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

When the leading coefficient is negative, it is customary to factor out a negative coefficient.

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

9. $x^{2}+6 x=\quad x(x+6)$	10. $x^{2}-4 x=$
11. $3 x^{2}+12 x=3 x(x+4)$	12. $5 x^{2}-15 x=5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$	14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x($	16. $-6 x^{2}-15 x=$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

When the leading coefficient is negative, it is customary to factor out a negative coefficient.

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x($
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=-3 x($
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=\frac{-3 x(}{\hat{A}}$
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=\frac{-3 x(x}{\hat{u}}$
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=\frac{-3 x(x+}{\hat{A}}$
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=\frac{-3 x(x+-3)}{\hat{}}$
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x+-3)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=\frac{-3 x(x+-3)}{\text { No double signs. }}$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=\frac{-3 x(x-3)}{\text { No double signs. }}$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression. Step 2: Divide each term of the binomial by this expression.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=$ \qquad

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

When the leading coefficient is negative, it is customary to factor out a negative coefficient.

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=-3 x($

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

When the leading coefficient is negative, it is customary to factor out a negative coefficient.

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=-3 x($

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=-3 x($

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=\frac{-3 x(}{A}$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=\frac{-3 x(2 x}{\hat{A}}$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=\frac{-3 x(2 x-}{\hat{4}}$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=\frac{-3 x(2 x--5)}{\hat{}}$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=-3 x(2 x--5)$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=-3 x(2 x--5)$
No double signs.

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
12. $5 x^{2}-15 x=\quad 5 x(x-3)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
16. $-6 x^{2}-15 x=-3 x(2 x+5)$
No double signs.

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=\quad x(x+6)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=-3 x(x-3)$
10. $x^{2}-4 x=\quad x(x-4)$
12. $5 x^{2}-15 x=5 x(x-3)$
14. $9 x^{2}-6 x=3 x(3 x-2)$
16. $-6 x^{2}-15 x=-3 x(2 x+5)$

Step 1: Find the greatest common factor. 'Factor out' this expression. Step 2: Divide each term of the binomial by this expression.

The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
9. $x^{2}+6 x=$ \qquad 10. $x^{2}-4 x=\quad x(x-4)$
11. $3 x^{2}+12 x=3 x(x+4)$
13. $6 x^{2}+8 x=2 x(3 x+4)$
15. $-3 x^{2}+9 x=-3 x(x-3)$

Step 1: Find the greatest common factor. 'Factor out' this expression.
Step 2: Divide each term of the binomial by this expression.
The Distributive Law for Multiplication over Addition:

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

The Distributive Law for Multiplication over Subtraction:

$$
\mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$ \qquad
19. $(3 x+5)(3 x-5)=$ 20. $(4 x-3)(4 x+3)=$ \qquad

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$
20. $(4 x-3)(4 x+3)=$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad
18. $(x-4)(x+4)=$ \qquad
20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad
18. $(x-4)(x+4)=$ \qquad
20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(A+B)(A-B)=A^{2}-A B
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}=
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}=
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad
18. $(x-4)(x+4)=$ \qquad
20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}=\mathbf{A}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad
18. $(x-4)(x+4)=$ \qquad
20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad
18. $(x-4)(x+4)=$ \qquad
20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
\begin{gathered}
(A+B)(A-B)=A^{2}-A B+A B-B^{2}=A^{2}-B^{2} \\
(A+B)(A-B)=A^{2}-B^{2}
\end{gathered}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad 18. $(x-4)(x+4)=$ \qquad
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$ \qquad

$$
=
$$

19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$
$=\mathrm{X}^{2}$
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$
$=\mathrm{x}^{2}-$
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$
$=x^{2}-6^{2}$
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}$
$=x^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=$
$=x^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=x^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad 20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$

$$
=x^{2}-6^{2}=
$$

19. $(3 x+5)(3 x-5)=$ \qquad
20. $(x-4)(x+4)=$

21. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad

$$
\begin{aligned}
& \text { 18. }(x-4)(x+4)= \\
& =x^{2} \\
& \text { 20. }(4 x-3)(4 x+3)=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad

$$
\begin{aligned}
& \text { 18. }(x-4)(x+4)= \\
& =x^{2}- \\
& \text { 20. }(4 x-3)(4 x+3)=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad

$$
\begin{aligned}
& \text { 18. }(x-4)(x+4)= \\
& =x^{2}-4^{2} \\
& \text { 20. }(4 x-3)(4 x+3)=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$

$$
=x^{2}-6^{2}=
$$

19. $(3 x+5)(3 x-5)=$ \qquad
20. $(x-4)(x+4)=$

$$
=x^{2}-4^{2}=
$$

20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad

$$
\begin{aligned}
& \text { 18. }(x-4)(x+4)=-\quad x^{2} \\
& =x^{2}-4^{2}= \\
& \text { 20. }(4 x-3)(4 x+3)=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad

$$
\begin{aligned}
& \text { 18. }(x-4)(x+4)=\frac{x^{2}-}{} \begin{array}{l}
=x^{2}-4^{2}= \\
\text { 20. }(4 x-3)(4 x+3)=
\end{array}
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad

$$
\begin{aligned}
& \text { 18. }(x-4)(x+4)=\quad x^{2}-16 \\
& =x^{2}-4^{2}=
\end{aligned}
$$

20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=$ \qquad
18. $(x-4)(x+4)=\quad x^{2}-16$

$$
=x^{2}-4^{2}=
$$

20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{array}{lc}
\text { 17. } \begin{array}{l}
(x+6)(x-6)= \\
=x^{2}-6^{2}=
\end{array} & \begin{array}{c}
\text { 18. }(x-4)(x+4)= \\
\\
=x^{2}-36 \\
x^{2}=
\end{array} \\
\text { 19. }(3 x+5)(3 x-5)=\square & \text { 20. }(4 x-3)(4 x+3)= \\
=(3 x)^{2}
\end{array}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. } \begin{array}{l}
(x+6)(x-6)=-x^{2}-36 \\
=x^{2}-6^{2}= \\
\text { 19. }(3 x+5)(3 x-5)= \\
=(3 x)^{2}-
\end{array} .
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+6)(x-6)=\underline{x^{2}-36} \\
& =x^{2}-6^{2}= \\
& \text { 19. }(3 x+5)(3 x-5)= \\
& =(3 x)^{2}-5^{2} \\
& \text { 18. }(x-4)(x+4)=\quad x^{2}-16 \\
& =x^{2}-4^{2}= \\
& \text { 20. }(4 x-3)(4 x+3)=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{array}{ll}
\text { 17. } \begin{array}{l}
(x+6)(x-6)= \\
=x^{2}-6^{2}=
\end{array} & \begin{array}{c}
\text { 18. }(x-4)(x+4)= \\
=x^{2}-4^{2}=
\end{array} \\
\text { 19. }(3 x+5)(3 x-5)=\longrightarrow \\
(3 x)^{2}-5^{2}=
\end{array} \quad \begin{aligned}
& x^{2}-16 \\
& =(4 x-3)(4 x+3)=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+6)(x-6)=\quad x^{2}-36 \\
& =x^{2}-6^{2}= \\
& \text { 19. }(3 x+5)(3 x-5)=\underline{9 x^{2}} \\
& =(3 x)^{2}-5^{2}= \\
& \text { 18. }(x-4)(x+4)=\quad x^{2}-16 \\
& =\mathrm{x}^{2}-4^{2}= \\
& \text { 20. }(4 x-3)(4 x+3)=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. } \begin{array}{l}
(x+6)(x-6)=\begin{array}{l}
x^{2}-36 \\
=x^{2}-6^{2}=
\end{array} \\
\begin{array}{c}
\text { 18. }(x-4)(x+4)= \\
=x^{2}-4^{2}=
\end{array} \\
\text { 19. }(3 x+5)(3 x-5)=\frac{x^{2}-16}{} \begin{array}{l}
9 x^{2}- \\
(3 x)^{2}-5^{2}=
\end{array} \\
\text { 20. }(4 x-3)(4 x+3)=
\end{array}
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$

$$
=(3 x)^{2}-5^{2}=
$$

18. $(x-4)(x+4)=\quad x^{2}-16$

$$
=x^{2}-4^{2}=
$$

20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$
18. $(x-4)(x+4)=\quad x^{2}-16$
$=\mathrm{x}^{2}-4^{2}=$
20. $(4 x-3)(4 x+3)=$ \qquad

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$
18. $(x-4)(x+4)=\quad x^{2}-16$
$=x^{2}-4^{2}=$
20. $(4 x-3)(4 x+3)=$ $=(4 x)^{2}$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$
18. $(x-4)(x+4)=\quad x^{2}-16$

$$
=x^{2}-4^{2}=
$$

20. $(4 x-3)(4 x+3)=$ $=(4 x)^{2}-$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$
18. $(x-4)(x+4)=\quad x^{2}-16$

$$
=x^{2}-4^{2}=
$$

20. $(4 x-3)(4 x+3)=$ $=(4 x)^{2}-3^{2}$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$

$$
=x^{2}-6^{2}=
$$

19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$
20. $(x-4)(x+4)=\quad x^{2}-16$

$$
=x^{2}-4^{2}=
$$

20. $(4 x-3)(4 x+3)=$ $=(4 x)^{2}-3^{2}=$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$
18. $(x-4)(x+4)=\quad x^{2}-16$

$$
=x^{2}-4^{2}=
$$

$$
\text { 20. } \begin{aligned}
&(4 x-3)(4 x+3)=16 x^{2} \\
&=(4 x)^{2}-3^{2}=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$
18. $(x-4)(x+4)=\quad x^{2}-16$

$$
=x^{2}-4^{2}=
$$

$$
\begin{aligned}
& \text { 20. }(4 x-3)(4 x+3)=16 x^{2}- \\
& =(4 x)^{2}-3^{2}=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$
18. $(x-4)(x+4)=\quad x^{2}-16$

$$
=x^{2}-4^{2}=
$$

$$
\text { 20. }(4 x-3)(4 x+3)=16 x^{2}-9
$$

$$
=(4 x)^{2}-3^{2}=
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$
$=\mathrm{x}^{2}-6^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$
18. $(x-4)(x+4)=\quad x^{2}-16$

$$
=x^{2}-4^{2}=
$$

20. $(4 x-3)(4 x+3)=16 x^{2}-9$ $=(4 x)^{2}-3^{2}=$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
17. $(x+6)(x-6)=\quad x^{2}-36$

> 18. $(x-4)(x+4)=-\quad x^{2}-16$
> $=x^{2}-4^{2}=$
19. $(3 x+5)(3 x-5)=9 x^{2}-25$ $=(3 x)^{2}-5^{2}=$

$$
\text { 20. } \begin{aligned}
(4 x-3)(4 x+3)= \\
=(4 x)^{2}-3^{2}=
\end{aligned}
$$

These problems involve a special multiplication pattern. Notice that in each problem we are multiplying two binomials. Also notice that one of the binomials is in the form $A+B$ and the other binomial is in the form $A-B$.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$ \qquad
23. $36 x^{2}-25=$ \qquad
26. $x^{2}-4=$ \qquad 24. $4 x^{2}-81=$ \qquad

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$ \qquad 26. $x^{2}-4=$ \qquad
23. $36 x^{2}-25=$ \qquad 24. $4 x^{2}-81=$

The multiplication pattern below can be used to factor.

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$ \qquad
23. $36 x^{2}-25=$ \qquad
26. $x^{2}-4=$ \qquad 24. $4 x^{2}-81=$ \qquad

The multiplication pattern below can be used to factor.

$$
\begin{aligned}
& (A+B)(A-B)=A^{2}-B^{2} \\
& A^{2}-B^{2}=(A+B)(A-B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$ \qquad
23. $36 x^{2}-25=$ \qquad
26. $x^{2}-4=$ \qquad 24. $4 x^{2}-81=$ \qquad

The multiplication pattern below can be used to factor. This factoring pattern is called 'the difference of two squares'.

$$
\begin{aligned}
& (A+B)(A-B)=A^{2}-B^{2} \\
& A^{2}-B^{2}=(A+B)(A-B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$ \qquad
23. $36 x^{2}-25=$ —
26. $x^{2}-4=$ \qquad 24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$ \qquad 26. $x^{2}-4=$ \qquad
23. $36 x^{2}-25=$ \longrightarrow
24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$ $=$
23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad
26. $x^{2}-4=$ \qquad
24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$

$$
=\mathbf{x}^{2}
$$

23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad
24. $x^{2}-4=$ \qquad
25. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$

$$
=\mathbf{x}^{2}-
$$

23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad
24. $x^{2}-4=$ \qquad
25. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$ $=x^{2}-7^{2}$
23. $36 x^{2}-25=$ \qquad
26. $x^{2}-4=$ \qquad
24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\mathrm{x}^{2}-49=$
$=\mathrm{x}^{2}-7^{2}=$
23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad 24. $4 x^{2}-81=$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $x^{2}-49=(x+7)($
$=\mathrm{x}^{2}-7^{2}=$
23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad
26. $x^{2}-4=$ \qquad
24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =x^{2}-7^{2}=
\end{aligned}
$$

23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad 24. $4 x^{2}-81=$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $x^{2}-49=(x+7)(x-7)$
$=\mathrm{x}^{2}-7^{2}=$
23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad

$$
\text { 26. } x^{2}-4=
$$

$$
=
$$

24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $x^{2}-49=(x+7)(x-7)$
$=\mathrm{x}^{2}-7^{2}=$
23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad

$$
\text { 26. } x^{2}-4=
$$

24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $\begin{aligned} & x^{2}-49=(x+7)(x-7) \\ = & x^{2}-7^{2}=\end{aligned}$
23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad

$$
\text { 26. } \quad x^{2}-4=
$$

24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $x^{2}-49=(x+7)(x-7)$
$=\mathrm{x}^{2}-7^{2}=$
23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad

$$
\text { 26. } \begin{aligned}
x^{2}-4 & = \\
= & x^{2}-2^{2}
\end{aligned}
$$

24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =x^{2}-7^{2}=
\end{aligned}
$$

23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad

$$
\text { 26. } \begin{aligned}
& x^{2}-4= \\
&= x^{2}-2^{2}=
\end{aligned}
$$

24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $x^{2}-49=(x+7)(x-7)$
$=x^{2}-7^{2}=$
23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad

$$
\begin{aligned}
& \text { 26. } x^{2}-4=\frac{(x+2)(}{} \\
& =x^{2}-2^{2}=
\end{aligned}
$$

24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $x^{2}-49=(x+7)(x-7)$
$=x^{2}-7^{2}=$
23. $\mathbf{3 6} \mathrm{x}^{2}-\mathbf{2 5}=$ \qquad

$$
\text { 26. } \begin{aligned}
& x^{2}-4=\frac{(x+2)(x-2)}{}=x^{2}-2^{2}=
\end{aligned}
$$

24. $4 x^{2}-81=$ \qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\text { 21. } \left.x^{2}-49=(x+7)(x-7)\right)=\left(x^{2}-7^{2}=\right.
$$

23. $36 x^{2}-25=$ \qquad

$$
\text { 26. } \begin{aligned}
& x^{2}-4=\frac{(x+2)(x-2)}{} \\
& =x^{2}-2^{2}=
\end{aligned}
$$

$$
\text { 24. } 4 x^{2}-81=
$$

\qquad

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =\mathrm{x}^{2}-7^{2}= \\
& \text { 26. } \begin{aligned}
& x^{2}-4=(x+2)(x-2) \\
= & x^{2}-2^{2}=
\end{aligned} \\
& \text { 24. } 4 x^{2}-81= \\
& \text { 23. } 36 x^{2}-25= \\
& \text { 24. } 4 x^{2}-81= \\
& =(6 \mathrm{x})^{2}
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =\mathrm{x}^{2}-7^{2}= \\
& \text { 26. } \begin{aligned}
& x^{2}-4=(x+2)(x-2) \\
= & x^{2}-2^{2}=
\end{aligned} \\
& \text { 24. } 4 x^{2}-81= \\
& \text { 23. } 36 x^{2}-25= \\
& \text { 24. } 4 x^{2}-81= \\
& =(6 x)^{2}-
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =\mathbf{x}^{2}-7^{2}= \\
& \text { 26. } \begin{aligned}
& x^{2}-4 \\
= & x^{2}-2^{2}=
\end{aligned} \\
& \text { 24. } 4 x^{2}-81= \\
& \text { 23. } 36 x^{2}-25= \\
& \text { 24. } 4 x^{2}-81= \\
& =(6 x)^{2}-5^{2}
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $x^{2}-49=\quad(x+7)(x-7)$

$$
=x^{2}-7^{2}=
$$

$$
\begin{aligned}
& \text { 26. } x^{2}-4=\frac{(x+2)(x-2)}{} \\
& =x^{2}-2^{2}=
\end{aligned}
$$

23. $36 x^{2}-25=$
24. $4 x^{2}-81=$

$$
=(6 x)^{2}-5^{2}=
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{array}{ll}
\text { 21. } \begin{array}{ll}
x^{2}-49=\quad(x+7)(x-7) \\
= & x^{2}-7^{2}=
\end{array} & \begin{array}{l}
\text { 26. } \\
x^{2}-4= \\
=x^{2}-2^{2}=
\end{array} \\
\text { 23. } \begin{array}{ll}
36 x^{2}-25=(6 x+5)(x-2) \\
=(6 x)^{2}-5^{2}= & \text { 24. } 4 x^{2}-81=
\end{array}
\end{array}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{array}{lll}
\text { 21. } \begin{array}{l}
x^{2}-49=\frac{(x+7)(x-7)}{} \\
=x^{2}-7^{2}=
\end{array} & \begin{array}{l}
\text { 26. } x^{2}-4=\frac{(x+2)(x-2)}{} \\
=x^{2}-2^{2}= \\
\text { 23. } 36 x^{2}-25=(6 x+5)(6 x-5) \\
=(6 x)^{2}-5^{2}= \\
\end{array} & \text { 24. } 4 x^{2}-81=
\end{array}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\text { 21. } \begin{aligned}
& x^{2}-49=(x+7)(x-7) \\
& =x^{2}-7^{2}=
\end{aligned}
$$

23. $36 x^{2}-25=(6 x+5)(6 x-5)$

$$
=(6 x)^{2}-5^{2}=
$$

$$
\begin{aligned}
& \text { 26. } x^{2}-4=\frac{(x+2)(x-2)}{} \\
& =x^{2}-2^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24. } 4 x^{2}-81= \\
& =
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =x^{2}-7^{2}=
\end{aligned}
$$

23. $36 x^{2}-25=(6 x+5)(6 x-5)$

$$
=(6 x)^{2}-5^{2}=
$$

$$
\text { 26. } \begin{aligned}
& x^{2}-4=\frac{(x+2)(x-2)}{} \\
&=x^{2}-2^{2}=
\end{aligned}
$$

$$
\text { 24. } \begin{aligned}
& 4 x^{2}-81= \\
= & (2 x)^{2}
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =x^{2}-7^{2}=
\end{aligned}
$$

23. $36 x^{2}-25=(6 x+5)(6 x-5)$

$$
=(6 x)^{2}-5^{2}=
$$

$$
\begin{aligned}
& \text { 26. } x^{2}-4=\frac{(x+2)(x-2)}{} \\
& =x^{2}-2^{2}=
\end{aligned}
$$

$$
\text { 24. } \begin{aligned}
& 4 x^{2}-81= \\
= & (2 x)^{2}-
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =x^{2}-7^{2}=
\end{aligned}
$$

23. $36 x^{2}-25=(6 x+5)(6 x-5)$

$$
=(6 x)^{2}-5^{2}=
$$

$$
\text { 26. } \begin{aligned}
& x^{2}-4=\frac{(x+2)(x-2)}{} \\
&=x^{2}-2^{2}=
\end{aligned}
$$

$$
\text { 24. } \begin{aligned}
& 4 x^{2}-81= \\
= & (2 x)^{2}-9^{2}
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =x^{2}-7^{2}=
\end{aligned}
$$

23. $36 x^{2}-25=(6 x+5)(6 x-5)$

$$
=(6 x)^{2}-5^{2}=
$$

$$
\begin{aligned}
& \text { 26. } x^{2}-4=\frac{(x+2)(x-2)}{} \\
& =x^{2}-2^{2}=
\end{aligned}
$$

$$
\text { 24. } \begin{aligned}
4 x^{2}-81= \\
=(2 x)^{2}-9^{2}=
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =x^{2}-7^{2}=
\end{aligned}
$$

23. $36 x^{2}-25=(6 x+5)(6 x-5)$

$$
\text { 24. } \begin{aligned}
& 4 x^{2}-81=(2 x+9)(\\
& =(2 x)^{2}-9^{2}=
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } x^{2}-49=(x+7)(x-7) \\
& =x^{2}-7^{2}=
\end{aligned}
$$

$$
\text { 26. } \begin{aligned}
& x^{2}-4=\frac{(x+2)(x-2)}{} \\
& =x^{2}-2^{2}=
\end{aligned}
$$

23. $36 x^{2}-25=(6 x+5)(6 x-5)$

$$
\begin{aligned}
& \text { 24. } 4 x^{2}-81=(2 x+9)(2 x-9) \\
& =(2 x)^{2}-9^{2}=
\end{aligned}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{array}{ll}
\text { 21. } \begin{aligned}
& x^{2}-49=\frac{(x+7)(x-7)}{} \text { 26. } x^{2}-4=\frac{(x+2)(x-2)}{} \\
&=x^{2}-7^{2}= \\
&=x^{2}-2^{2}= \\
& \text { 23. } 36 x^{2}-25=(6 x+5)(6 x-5) \text { 24. } 4 x^{2}-81=(2 x+9)(2 x-9) \\
&=(6 x)^{2}-5^{2}==(2 x)^{2}-9^{2}=
\end{aligned}
\end{array}
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
21. $x^{2}-49=(x+7)(x-7)$
$=\mathrm{x}^{2}-\mathbf{7}^{2}=$
23. $36 x^{2}-25=(6 x+5)(6 x-5)$
$=(6 x)^{2}-5^{2}=$

$$
\text { 26. } \begin{aligned}
& x^{2}-4= \\
&=(x+2)(x-2) \\
& x^{2}-2^{2}=
\end{aligned}
$$

$$
\text { 24. } 4 x^{2}-81=(2 x+9)(2 x-9)
$$

$$
=(2 x)^{2}-9^{2}=
$$

The Difference of Two Squares Factoring Pattern

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad
28. $(x-5)(x-6)=$ \qquad
30. $(x+7)(x-5)=$ \qquad
32. $(x-5)(x+1)=$ \qquad

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is \mathbf{x}. The second term is a number.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is \mathbf{x}. The second term is a number.

$$
(x+A)(x+B)=
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is \mathbf{x}. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(\underset{x}{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=\mathbf{x}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathrm{x}+\mathbf{B})=\mathbf{x}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is \mathbf{x}. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=\mathbf{x}^{2}+\mathbf{B x}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=\mathbf{x}^{2}+\mathbf{B x}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(x+A)(x+B)=\mathbf{x}^{2}+\mathbf{B x}+\mathbf{A x}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(x+A)(x+B)=x^{2}+B x+A x
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(x+A)(x+B)=x^{2}+B x+A x+A B
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=\mathbf{x}^{2}+\mathbf{B x}+\mathbf{A x}+\mathbf{A B}=
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=\mathbf{x}^{2}+\mathbf{B x}+\mathbf{A x}+\mathbf{A B}=
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=\mathbf{x}^{2}+\mathbf{B x}+\mathbf{A x}+\mathbf{A B}=\mathbf{x}^{2}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=\mathbf{x}^{2}+\mathbf{B x}+\mathbf{A x}+\mathbf{A B}=\mathbf{x}^{2}+(\mathbf{A}+\mathbf{B}) \mathbf{x}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=\mathbf{x}^{2}+\mathbf{B x}+\mathbf{A x}+\mathbf{A B}=\mathbf{x}^{2}+(\mathbf{A}+\mathbf{B}) \mathbf{x}+\mathbf{A B}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{B})=\mathbf{x}^{2}+\mathbf{B x}+\mathbf{A x}+\mathbf{A B}=\mathbf{x}^{2}+(\mathbf{A}+\mathbf{B}) \mathbf{x}+\mathbf{A B}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

Notice that in each problem we are multiplying two binomials. The first term in each binomial is x. The second term is a number.

$$
\begin{gathered}
(x+A)(x+B)=x^{2}+B x+A x+A B=x^{2}+(A+B) x+A B \\
(x+A)(x+B)=x^{2}+(A+B) x+A B
\end{gathered}
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$
26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is \mathbf{x}^{2}.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad 26. $(x+2)(x+7)=$ \qquad
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=$ \qquad
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}$

A $=3$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}$
$A=3 \quad B=5$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}$

$$
A=3 \quad B=5 \quad A+B=8
$$

27. $(x-4)(x-3)=$ \qquad
28. $(x+6)(x-2)=$ \qquad
29. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x$
$A=3 \quad B=5 \quad A+B=8$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x$ $A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
26. $(x+2)(x+7)=$ \qquad

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
28. $(x+6)(x-2)=$ \qquad
29. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
26. $(x+2)(x+7)=$ \qquad
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad 28. $(x-5)(x-6)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=$ \qquad
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=$ \qquad
28. $(x+6)(x-2)=$ \qquad
29. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}$
28. $(x+6)(x-2)=$ \qquad
29. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}$

$$
A=-4
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad
\qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=x^{2}$

$$
A=-4 \quad B=-3
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}$

$$
A=-4 \quad B=-3 \quad A+B=-7
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x$

$$
A=-4 \quad B=-3 \quad A+B=-7
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=x^{2}-7 x$ $A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12$
29. $(x+6)(x-2)=$ \qquad
31. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad 30. $(x+7)(x-5)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
26. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=\frac{x^{2}+8 x+15}{8}$ $A=3 \quad B=5 \quad A+B=8 \quad A B=15$
26. $(x+2)(x+7)=x^{2}+9 x+14$ $A=2 \quad B=7 \quad A+B=9 \quad A B=14$
27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=\frac{x^{2}+8 x+15}{}$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=\frac{x^{2}+8 x+15}{}$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\text { 25. }(x+3)(x+5)=x^{2}+8 x+15
$$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=$ \qquad
30. $(x-9)(x+2)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}$
30. $(x-9)(x+2)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{aligned}
& \text { 25. }(x+3)(x+5)=x^{2}+8 x+15 \\
& A=3 \quad B=5 \quad A+B=8 \quad A B=15 \\
& \text { 26. }(x+2)(x+7)=x^{2}+9 x+14 \\
& A=2 \quad B=7 \quad A+B=9 \quad A B=14 \\
& \text { 27. }(x-4)(x-3)=x^{2}-7 x+12 \\
& \text { 28. }(x-5)(x-6)=x^{2}-11 x+30 \\
& A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12 \\
& \text { 29. }(x+6)(x-2)=x^{2} \\
& A=6 \\
& \text { 31. }(x-9)(x+2)= \\
& \text { 32. }(x-5)(x+1)= \\
& (x+A)(x+B)=x^{2}+(A+B) x+A B
\end{aligned}
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{aligned}
& \text { 25. }(x+3)(x+5)=x^{2}+8 x+15 \\
& A=3 \quad B=5 \quad A+B=8 \quad A B=15 \\
& \text { 26. }(x+2)(x+7)=x^{2}+9 x+14 \\
& A=2 \quad B=7 \quad A+B=9 \quad A B=14 \\
& \text { 27. }(x-4)(x-3)=x^{2}-7 x+12 \\
& \text { 28. }(x-5)(x-6)=x^{2}-11 x+30 \\
& A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12 \\
& \text { 29. }(x+6)(x-2)=x^{2} \\
& A=6 \quad B=-2 \\
& \text { 31. }(x-9)(x+2)= \\
& \text { 32. }(x-5)(x+1)= \\
& (x+A)(x+B)=x^{2}+(A+B) x+A B
\end{aligned}
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{aligned}
& \text { 25. }(x+3)(x+5)=x^{2}+8 x+15 \\
& A=3 \quad B=5 \quad A+B=8 \quad A B=15 \\
& \text { 26. }(x+2)(x+7)=x^{2}+9 x+14 \\
& A=2 \quad B=7 \quad A+B=9 \quad A B=14 \\
& \text { 27. }(x-4)(x-3)=x^{2}-7 x+12 \\
& A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12 \\
& \text { 29. }(x+6)(x-2)=x^{2} \\
& A=6 \quad B=-2 \quad A+B=4 \\
& \text { 31. }(x-9)(x+2)= \\
& \text { 32. }(x-5)(x+1)= \\
& (x+A)(x+B)=x^{2}+(A+B) x+A B
\end{aligned}
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{aligned}
& \text { 25. }(x+3)(x+5)=x^{2}+8 x+15 \\
& A=3 \quad B=5 \quad A+B=8 \quad A B=15 \\
& \text { 26. }(x+2)(x+7)=x^{2}+9 x+14 \\
& A=2 \quad B=7 \quad A+B=9 \quad A B=14 \\
& \text { 27. }(x-4)(x-3)=x^{2}-7 x+12 \\
& \text { 28. }(x-5)(x-6)=x^{2}-11 x+30 \\
& A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12 \\
& \text { 29. }(x+6)(x-2)=x^{2}+4 x \\
& A=6 \quad B=-2 \quad A+B=4 \\
& \text { 31. }(x-9)(x+2)= \\
& \text { 32. }(x-5)(x+1)= \\
& (x+A)(x+B)=x^{2}+(A+B) x+A B
\end{aligned}
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x$

$$
A=6 \quad B=-2 \quad A+B=4 \quad A B=-12
$$

26. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
27. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
28. $(x+7)(x-5)=$ \qquad
29. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
31. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
32. $(x+7)(x-5)=$ \qquad
33. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$ $A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12$
28. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
29. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$ $A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12$
28. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
29. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$ $A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12$
28. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
29. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$ $A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12$
28. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
29. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=$ \qquad 32. $(x-5)(x+1)=$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=\frac{x^{2}+8 x+15}{}$
$A=3 \quad B=5 \quad A+B=8 \quad A B=15$
27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}$
$A=-9$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}$
$A=-9 \quad B=2$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}$
$A=-9 \quad B=2 \quad A+B=-7$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x$

$$
A=-9 \quad B=2 \quad A+B=-7
$$

26. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
27. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
28. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
29. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=x^{2}$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=x^{2}$
$A=-5$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.

$$
\begin{aligned}
& \text { 25. }(x+3)(x+5)=x^{2}+8 x+15 \\
& A=3 \quad B=5 \quad A+B=8 \quad A B=15 \\
& \text { 27. }(x-4)(x-3)=x^{2}-7 x+12 \\
& A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12 \\
& \text { 29. }(x+6)(x-2)=x^{2}+4 x-12 \\
& A=6 \quad B=-2 \quad A+B=4 \quad A B=-12 \\
& \text { 31. }(x-9)(x+2)=x^{2}-7 x-18 \\
& A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18 \\
& \text { 26. }(x+2)(x+7)=x^{2}+9 x+14 \\
& A=2 \quad B=7 \quad A+B=9 \quad A B=14 \\
& \text { 28. }(x-5)(x-6)=x^{2}-11 x+30 \\
& A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30 \\
& \text { 30. }(x+7)(x-5)=x^{2}+2 x-35 \\
& A=7 \quad B=-5 \quad A+B=2 \quad A B=-35 \\
& \text { 32. }(x-5)(x+1)=x^{2} \\
& A=-5 \quad B=1 \\
& (x+A)(x+B)=x^{2}+(A+B) x+A B
\end{aligned}
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=x^{2}$
$A=-5 \quad B=1 \quad A+B=-4$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=x^{2}-4 x$
$A=-5 \quad B=1 \quad A+B=-4$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=x^{2}-4 x$
$A=-5 \quad B=1 \quad A+B=-4 \quad A B=-5$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=x^{2}-4 x-5$
$A=-5 \quad B=1 \quad A+B=-4 \quad A B=-5$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=x^{2}-11 x+30$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=x^{2}-4 x-5$
$A=-5 \quad B=1 \quad A+B=-4 \quad A B=-5$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Perform the indicated operations.
25. $(x+3)(x+5)=x^{2}+8 x+15$

$$
A=3 \quad B=5 \quad A+B=8 \quad A B=15
$$

27. $(x-4)(x-3)=x^{2}-7 x+12$

$$
A=-4 \quad B=-3 \quad A+B=-7 \quad A B=12
$$

29. $(x+6)(x-2)=x^{2}+4 x-12$
$A=6 \quad B=-2 \quad A+B=4 \quad A B=-12$
30. $(x-9)(x+2)=x^{2}-7 x-18$
$A=-9 \quad B=2 \quad A+B=-7 \quad A B=-18$
31. $(x+2)(x+7)=x^{2}+9 x+14$
$A=2 \quad B=7 \quad A+B=9 \quad A B=14$
32. $(x-5)(x-6)=\underline{x^{2}-11 x+30}$
$A=-5 \quad B=-6 \quad A+B=-11 \quad A B=30$
33. $(x+7)(x-5)=x^{2}+2 x-35$
$A=7 \quad B=-5 \quad A+B=2 \quad A B=-35$
34. $(x-5)(x+1)=x^{2}-4 x-5$
$A=-5 \quad B=1 \quad A+B=-4 \quad A B=-5$

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

This pattern can be used to multiply two binomials of this type. Notice that the first term is x^{2}. The coefficient of the 'middle term', the x-term, is the sum of A and B. Finally, notice that the last term is the product of A and B.

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad 36. $x^{2}-15 x+56=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $x^{2}-x-30=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$ \qquad
36. $x^{2}-15 x+56=$ \qquad
38. $x^{2}-x-30=$ \qquad

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad 36. $x^{2}-15 x+56=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'.

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad 36. $x^{2}-15 x+56=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad 36. $x^{2}-15 x+56=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is $\mathbf{x}^{\mathbf{2}}$.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad 36. $x^{2}-15 x+56=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $\mathbf{x}^{2}-\mathbf{x}-\mathbf{3 0}=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad 36. $x^{2}-15 x+56=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is $\mathbf{x}^{\mathbf{2}}$.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
36. $x^{2}-15 x+56=$ \qquad
38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x,

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term,

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term,

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $\mathbf{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad 38. $\mathbf{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$ \qquad
36. $x^{2}-15 x+56=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad
$A+B=11$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$ \qquad
36. $x^{2}-15 x+56=$ \qquad
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad
$A+B=11 \quad A B=28$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$ \qquad
36. $x^{2}-15 x+56=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=$ \qquad 34. $x^{2}+10 x+16=$ \qquad
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
36. $x^{2}-15 x+56=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)($
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$ \qquad
36. $x^{2}-15 x+56=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$ \qquad
36. $x^{2}-15 x+56=$ \qquad
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$ \qquad
36. $x^{2}-15 x+56=$ \qquad
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$ \qquad
36. $x^{2}-15 x+56=$ \qquad
38. $\mathbf{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$ \qquad
A $+\mathbf{B}=10$
36. $x^{2}-15 x+56=$ \qquad
38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$
$A+B=10 \quad A B=16$
36. $x^{2}-15 x+56=$ \qquad
38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=$ \qquad
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=(x+2)($
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=$ \qquad
38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad

$$
\begin{aligned}
& \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
& A+B=10 \quad A B=16 \quad A=2 B=8
\end{aligned}
$$

36. $x^{2}-15 x+56=$ \qquad
37. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad

$$
\begin{aligned}
& \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
& A+B=10 \quad A B=16 \quad A=2 \quad B=8
\end{aligned}
$$

36. $x^{2}-15 x+56=$ \qquad
37. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=$ \qquad
38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
$A+B=-4$
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=$ \qquad
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

33. $x^{2}+11 x+28=(x+4)(x+7)$	34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$	$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
35. $x^{2}-4 x+3=$	36. $x^{2}-15 x+56=$
$A+B=-4 \quad A B=3$	
37. $\mathrm{x}^{2}-4 \mathrm{x}-12=$	38. $\mathrm{x}^{2}-\mathrm{x}-30=$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=$ \qquad
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=$ \qquad
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

33. $x^{2}+11 x+28=(x+4)(x+7)$	34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$	$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
35. $x^{2}-4 x+3=\underline{(x-1)(}$	36. $x^{2}-15 x+56=$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$	
37. $\mathrm{x}^{2}-4 x-12=$	38. $\mathrm{x}^{2}-\mathrm{x}-30=$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=$ \qquad
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=$ \qquad
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$ \qquad
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=$ \qquad
38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$ \qquad

34. | $x^{2}+10 x+16=(x+2)(x+8)$ |
| :---: |
| $A+B=10 \quad A B=16 \quad A=2 \quad B=8$ |
| \downarrow |
| 36. $\quad x^{2}-15 x+56=$ |
| $A+B=-15$ |
35. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$ \qquad

$$
\begin{aligned}
& \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
& A+B=10 \quad A B=16 \quad A=2 B=8 \\
& \downarrow \\
& \text { 36. } x^{2}-15 x+56= \\
& A+B=-15 \quad A B=56
\end{aligned}
$$

38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$

$$
\begin{aligned}
& \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
& A+B=10 \quad A B=16 A=2 B=8
\end{aligned}
$$

35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
36. $x^{2}-4 x-12=$ \qquad

$$
\begin{aligned}
& \text { 36. } x^{2}-15 x+56= \\
& A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8
\end{aligned}
$$

38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$ \qquad

$$
\begin{aligned}
& \text { 34. } x^{2}+10 x+16=\frac{(x+2)(x+8)}{} \\
& A+B=10 \quad A B=16 \quad A=2 B=8 \\
& \text { 36. } \quad x^{2}-15 x+56=\frac{(x-7)(}{} \\
& A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8
\end{aligned}
$$

38. $\mathbf{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$ \qquad

$$
\begin{aligned}
& \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
& A+B=10 \quad A B=16 \quad A=2 \quad B=8 \\
& \text { 36. } x^{2}-15 x+56=\frac{(x-7)(x-8)}{} \\
& A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8
\end{aligned}
$$

38. $\mathbf{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$

$$
\begin{aligned}
& \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
& A+B=10 \quad A B=16 A=2 B=8
\end{aligned}
$$

35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
36. $x^{2}-4 x-12=$ \qquad

$$
\begin{aligned}
& \text { 36. } x^{2}-15 x+56=\frac{(x-7)(x-8)}{} \\
& A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8
\end{aligned}
$$

38. $\mathbf{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$ \qquad

$$
\begin{aligned}
& \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
& A+B=10 \quad A B=16 \quad A=2 \quad B=8
\end{aligned}
$$

36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
37. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$
$A+B=-4$
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$
$A+B=-4 \quad A B=-12$
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=$
$A+B=-4 \quad A B=-12 \quad A=-6 \quad B=2$
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
38. $x^{2}-x-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=(x-6)($
$A+B=-4 \quad A B=-12 \quad A=-6 \quad B=2$
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=(x-6)(x+2)$
$A+B=-4 \quad A B=-12 \quad A=-6 \quad B=2$
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
33. $x^{2}+11 x+28=(x+4)(x+7)$
$A+B=11 \quad A B=28 \quad A=4 \quad B=7$
35. $x^{2}-4 x+3=(x-1)(x-3)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
37. $x^{2}-4 x-12=(x-6)(x+2)$
$A+B=-4 \quad A B=-12 \quad A=-6 \quad B=2$
34. $x^{2}+10 x+16=(x+2)(x+8)$
$A+B=10 \quad A B=16 \quad A=2 \quad B=8$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{array}{cc}
\text { 33. } x^{2}+11 x+28=\frac{(x+4)(x+7)}{} & \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
A+B=11 A B=28 A=4 B=7 & A+B=10 \quad A B=16 A=2 B=8
\end{array}
$$

35. $x^{2}-4 x+3=(x-1)(x-3)$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
37. $x^{2}-4 x-12=(x-6)(x+2)$ $A+B=-4 \quad A B=-12 \quad A=-6 \quad B=2$
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad
The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

33. $x^{2}+11 x+28=\frac{(x+4)(x+7)}{A+B=11 \quad A B=28} A=4 \quad B=7$	$\begin{aligned} & \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\ & A+B=10 \quad A B=16 A=2 B=8 \end{aligned}$
35. $x^{2}-4 x+3=\left(\begin{array}{l}\text { (}\end{array}\right.$	36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$	$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
37. $x^{2}-4 x-12=(x-6)(x+2)$	38. $\mathrm{x}^{2}-\mathrm{x}-30$
$A+B=-4 \quad A B=-12 \quad A=-6 \quad B=2$	$A+B=-1 \quad A B=-30$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{array}{cc}
\text { 33. } x^{2}+11 x+28=\frac{(x+4)(x+7)}{} \quad \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
A+B=11 \quad A B=28 A=4 B=7 & A+B=10 \quad A B=16 A=2 B=8
\end{array}
$$

35. $x^{2}-4 x+3=(x-1)(x-3)$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
37. $x^{2}-4 x-12=(x-6)(x+2)$
38. $\mathrm{x}^{2}-\mathrm{x}-30=$ \qquad $A+B=-4 \quad A B=-12 \quad A=-6 \quad B=2$
$A+B=-1 \quad A B=-30 \quad A=5 \quad B=-6$
The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{array}{cc}
\text { 33. } x^{2}+11 x+28=\frac{(x+4)(x+7)}{} & \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
A+B=11 A B=28 A=4 B=7 & A+B=10 \quad A B=16 A=2 B=8
\end{array}
$$

35. $x^{2}-4 x+3=(x-1)(x-3)$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
37. $x^{2}-4 x-12=(x-6)(x+2)$
38. $x^{2}-x-30=(x+5)($
$A+B=-1 \quad A B=-30 \quad A=5 \quad B=-6$
The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{array}{cc}
\text { 33. } x^{2}+11 x+28=\frac{(x+4)(x+7)}{} & \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
A+B=11 A B=28 A=4 B=7 & A+B=10 \quad A B=16 A=2 B=8
\end{array}
$$

35. $x^{2}-4 x+3=(x-1)(x-3)$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
37. $x^{2}-4 x-12=(x-6)(x+2)$

$$
\text { 38. } x^{2}-x-30=(x+5)(x-6)
$$

$$
A+B=-1 \quad A B=-30 \quad A=5 \quad B=-6
$$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{array}{cc}
\text { 33. } x^{2}+11 x+28=\frac{(x+4)(x+7)}{} \quad \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
A+B=11 \quad A B=28 A=4 B=7 & A+B=10 \quad A B=16 A=2 B=8
\end{array}
$$

35. $x^{2}-4 x+3=(x-1)(x-3)$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
37. $x^{2}-4 x-12=(x-6)(x+2)$
$A+B=-4 \quad A B=-12 \quad A=-6 \quad B=2$

$$
\begin{aligned}
\text { 38. } x^{2}-x-30 & =\frac{(x+5)(x-6)}{A+B=-1 \quad A B}=-30 \quad A=5 \quad B=-6
\end{aligned}
$$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{array}{cc}
\text { 33. } x^{2}+11 x+28=\frac{(x+4)(x+7)}{} \quad \text { 34. } x^{2}+10 x+16=(x+2)(x+8) \\
A+B=11 \quad A B=28 A=4 B=7 & A+B=10 \quad A B=16 A=2 B=8
\end{array}
$$

35. $x^{2}-4 x+3=(x-1)(x-3)$
36. $x^{2}-15 x+56=(x-7)(x-8)$
$A+B=-4 \quad A B=3 \quad A=-1 \quad B=-3$
$A+B=-15 \quad A B=56 \quad A=-7 \quad B=-8$
37. $x^{2}-4 x-12=(x-6)(x+2)$
38. $\begin{aligned} \mathrm{x}^{2}-\mathrm{x}-30 & =\frac{(x+5)(x-6)}{} \\ A+B=-1 \quad A B & =-30 \quad A=5 \quad B=-6\end{aligned}$
$A+B=-4 \quad A B=-12 \quad A=-6 \quad B=2$
The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=$ \qquad
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$ \qquad
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=$ \qquad
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$ \qquad
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=$
$A+B=6$
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$ \qquad
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=$
$A+B=6 \quad A B=-27$
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$ \qquad
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=$ \qquad
40. $\mathbf{x}^{2}+7 x-18=$ \qquad
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)($
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$ \qquad
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)(x-3)$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$ \qquad
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)(x-3)$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$ \qquad
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{}$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$ \qquad
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{A+B=6 \quad A B=-27 \quad A=9 \quad B=-3}$
41. $x^{2}+10 x+25=$ \qquad
40. $\mathrm{x}^{2}+7 \mathrm{x}-18=$
$\mathrm{A}+\mathrm{B}=7$
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{A+B=6 \quad A B=-27 \quad A=9 \quad B=-3}$
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$
$A+B=7 \quad A B=\mathbf{- 1 8}$
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)(x-3)$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{A+B=6 \quad A B=-27 \quad A=9 \quad B=-3}$
41. $x^{2}+10 x+25=$ \qquad

$$
\begin{aligned}
& \text { 40. } x^{2}+7 x-18=\frac{(x-2)(}{A+B=7 \quad A B=-18 \quad A=-2 B=9} \\
& A+B=1
\end{aligned}
$$

42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{A+B=6 \quad A B=-27 \quad A=9 \quad B=-3}$
41. $x^{2}+10 x+25=$ \qquad

$$
\begin{aligned}
& \text { 40. } x^{2}+7 x-18=\frac{(x-2)(x+9)}{A+B=7 \quad A B=-18 \quad A=-2 \quad B=9}
\end{aligned}
$$

42. $\mathrm{x}^{2}-14 \mathrm{x}+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{A+B=6 \quad A B=-27 \quad A=9 \quad B=-3}$
41. $x^{2}+10 x+25=$ \qquad

$$
\begin{aligned}
& \text { 40. } x^{2}+7 x-18=\frac{(x-2)(x+9)}{A+B=7 \quad A B=-18 \quad A=-2 \quad B=9}
\end{aligned}
$$

42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)(x-3)$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=$ \qquad
40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)(x-3)$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $\mathrm{x}^{2}+10 \mathrm{x}+25=$ \qquad
A $+\mathbf{B}=\mathbf{1 0}$
40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)(x-3)$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=$ \qquad
$A+B=10 \quad A B=25$
40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)(x-3)$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $\mathrm{x}^{2}+10 \mathrm{x}+25=$ \qquad
$A+B=10 \quad A B=25 \quad A=5 \quad B=5$
40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{}$		40. $x^{2}+7 x-18=\frac{(x-2)(x+9)}{}$
$A+B=6 A B=-27 A=9 \quad B=-3$		$A+B=7 \quad A B=-18 \quad A=-2 B=9$
\downarrow		42. $x^{2}-14 x+49=$
41. $x^{2}+10 x+25=(x+5)($		

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)(x-3)$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=(x+5)(x+5)$
$A+B=10 \quad A B=25 \quad A=5 \quad B=5$
40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=(x+9)(x-3)$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=(x+5)(x+5)$
$A+B=10 \quad A B=25 \quad A=5 \quad B=5$
40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
42. $x^{2}-14 x+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
\text { 39. } x^{2}+6 x-27 & =\frac{(x+9)(x-3)}{A+B}=6 \quad A B=-27 \quad A=9 \quad B=-3
\end{aligned}
$$

$$
A+B=10 \quad A B=25 \quad A=5 \quad B=5
$$

40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$

$$
\text { 41. } x^{2}+10 x+25=(x+5)(x+5)
$$

41. $x^{2}+10 x+25=(x+5)(x+5)$
42. $\mathrm{x}^{2}-14 \mathrm{x}+49=$ \qquad

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is \mathbf{x}^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{A+B=6 \quad A B=-27 \quad A=9 \quad B=-3}$
41. $x^{2}+10 x+25=(x+5)(x+5)$
$A+B=10 \quad A B=25 \quad A=5 \quad B=5$
40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
42. $x^{2}-14 x+49=$
$A+B=-14$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
\text { 39. } x^{2}+6 x-27 & =\frac{(x+9)(x-3)}{A+B}=6 \quad A B=-27 \quad A=9 \quad B=-3
\end{aligned}
$$

41. $x^{2}+10 x+25=(x+5)(x+5)$
$A+B=10 \quad A B=25 \quad A=5 \quad B=5$
42. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
43. $\mathrm{x}^{2}-14 \mathrm{x}+49=$
$A+B=-14 \quad A B=49$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
\text { 39. } x^{2}+6 x-27 & =\frac{(x+9)(x-3)}{A+B}=6 \quad A B=-27 \quad A=9 \quad B=-3
\end{aligned}
$$

$$
\text { 41. } x^{2}+10 x+25=(x+5)(x+5)
$$

$$
A+B=10 \quad A B=25 \quad A=5 \quad B=5
$$

40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
41. $\mathrm{x}^{2}-14 \mathrm{x}+49=$
$A+B=-14 \quad A B=49 \quad A=-7 \quad B=-7$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{A+B=6 \quad A B=-27 \quad A=9 \quad B=-3}$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=(x+5)(x+5)$
$A+B=10 \quad A B=25 \quad A=5 \quad B=5$
40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$

$$
\text { 42. } x^{2}-14 x+49=(x-7)(
$$

$$
A+B=-14 \quad A B=49 \quad A=-7 \quad B=-7
$$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.
39. $x^{2}+6 x-27=\frac{(x+9)(x-3)}{A+B=6 \quad A B=-27 \quad A=9 \quad B=-3}$
$A+B=6 \quad A B=-27 \quad A=9 \quad B=-3$
41. $x^{2}+10 x+25=(x+5)(x+5)$
$A+B=10 \quad A B=25 \quad A=5 \quad B=5$
40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$

$$
\begin{aligned}
& \text { 42. } x^{2}-14 x+49=(x-7)(x-7) \\
& A+B=-14 \quad A B=49 \quad A=-7 \quad B=-7
\end{aligned}
$$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
\text { 39. } x^{2}+6 x-27 & =\frac{(x+9)(x-3)}{A+B}=6 \quad A B=-27 \quad A=9 \quad B=-3
\end{aligned}
$$

$$
\text { 41. } x^{2}+10 x+25=(x+5)(x+5)
$$

$$
A+B=10 \quad A B=25 \quad A=5 \quad B=5
$$

40. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$
41. $x^{2}-14 x+49=(x-7)(x-7)$
$A+B=-14 \quad A B=49 \quad A=-7 \quad B=-7$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Factor each of the following.

$$
\begin{aligned}
& \text { 39. } x^{2}+6 x-27=\frac{(x+9)(x-3)}{A+B=6 \quad A B=-27 A=9 B=-3}
\end{aligned}
$$

41. $x^{2}+10 x+25=(x+5)(x+5)$
$A+B=10 \quad A B=25 \quad A=5 \quad B=5$
42. $x^{2}+7 x-18=(x-2)(x+9)$
$A+B=7 \quad A B=-18 \quad A=-2 \quad B=9$

The pattern below can be used to factor trinomials of 'this type'. The first term of the trinomial is x^{2}. The challenge is to find the numbers A and B such that their sum is the coefficient of x, the middle term, and their product is the constant term.

$$
\begin{aligned}
& (x+A)(x+B)=x^{2}+(A+B) x+A B \\
& x^{2}+(A+B) x+A B=(x+A)(x+B)
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
43. $x^{2}+3 x=0$
44. $2 x^{2}-10 x=0$
45. $15 x^{2}+20 x=0$

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
43. $x^{2}+3 x=0$
44. $2 x^{2}-10 x=0$
45. $15 x^{2}+20 x=0$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
43. $x^{2}+3 x=0$
44. $2 x^{2}-10 x=0$
45. $15 x^{2}+20 x=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
43. $x^{2}+3 x=0$
44. $2 x^{2}-10 x=0$
45. $15 x^{2}+20 x=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
43. $x^{2}+3 x=0$
44. $2 x^{2}-10 x=0$
45. $15 x^{2}+20 x=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
43. $x^{2}+3 x=0$
44. $2 x^{2}-10 x=0$
45. $15 x^{2}+20 x=0$

The equation is already in standard form.

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
43. $x^{2}+3 x=0$
44. $2 x^{2}-10 x=0$
45. $15 x^{2}+20 x=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
43. $x^{2}+3 x=0$
44. $2 x^{2}-10 x=0$
45. $15 x^{2}+20 x=0$

$$
x(x+3)=0
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 43. } x^{2}+3 x=0 \quad \text { 44. } 2 x^{2}-10 x=0 \quad \text { 45. } 15 x^{2}+20 x=0
$$

$$
x(x+3)=0
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 43. } x^{2}+3 x=0 \\
& x(x+3)=0 \\
& x=0 \text { or } x+3=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 43. } x^{2}+3 x=0 \\
& x(x+3)=0 \\
& x=0 \text { or } x+3=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 43. } x^{2}+3 x=0 \\
& x(x+3)=0 \\
& x=0 \text { or } x+3=0 \\
& x=0 \text { or } x=-3
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 43. } x^{2}+3 x=0 \\
& \quad \text { 44. } 2 x^{2}-10 x=0 \\
& x(x+3)=0 \\
& x=0 \text { or } x+3=0 \\
& x=0 \text { or } x=-3
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 43. } x^{2}+3 x=0 \\
& x(x+3)=0 \\
& x=0 \text { or } x+3=0 \\
& x=0 \text { or } x=-3
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 43. } x^{2}+3 x=0 \\
& \quad x(x+3)=0 \\
& x=0 \text { or } x+3=0 \\
& x=0 \text { or } x=-3
\end{aligned}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ll}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
\begin{array}{c}
x(x+3)=0
\end{array} & \text { 45. } 15 x^{2}+20 x=0 \\
x=0 \text { or } x+3=0 & \\
x=0 \text { or } x=-3 & \begin{array}{l}
\text { The equation is already } \\
\text { in standard form. }
\end{array}
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{l|l}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
x(x+3)=0 & \\
x=0 \text { or } x+3=0 \\
x=0 \text { or } x=-3 & \\
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 43. } x^{2}+3 x=0 \\
& x(x+3)=0
\end{aligned} \begin{aligned}
& 2 x^{2}-10 x=0 \\
& 2 x(x-5)=0 \\
& x=0 \text { or } x+3=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 43. } x^{2}+3 x=0 \\
& x(x+3)=0
\end{aligned} \begin{aligned}
& 2 x^{2}-10 x=0 \\
& 2 x(x-5)=0 \\
& x=0 \text { or } x+3=0 \\
& x=0 \text { or } x=-3
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x=-3 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x=-3 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
2 x(x-5)=0 & \text { 45. } 15 x^{2}+20 x=0 \\
x(x+3)=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x+3=0 & x=0 \text { or } x=5
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
2 x(x-5)=0 & \text { 45. } 15 x^{2}+20 x=0 \\
x(x+3)=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x+3=0 & x=0 \text { or } x=5
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5
\end{array}
$$

45. $15 x^{2}+20 x=0$

The equation is already in standard form.

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
2 x(x-5)=0 & \text { 45. } 15 x^{2}+20 x=0 \\
x(x+3)=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x+3=0 & x=0 \text { or } x=5
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 & \text { 45. } 15 x^{2}+20 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 & 5 x(3 x+4)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 & \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 & \text { 45. } 15 x^{2}+20 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 & 5 x(3 x+4)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 & \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5 &
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5
\end{array}
$$

$$
\begin{aligned}
& \text { 45. } 15 x^{2}+20 x=0 \\
& 5 x(3 x+4)=0 \\
& 5 x=0 \text { or } 3 x+4=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5
\end{array}
$$

$$
\begin{aligned}
& \text { 45. } 15 x^{2}+20 x=0 \\
& 5 x(3 x+4)=0 \\
& 5 x=0 \text { or } 3 x+4=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccr}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 & \text { 45. } 15 x^{2}+20 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 & 5 x(3 x+4)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 & 5 x=0 \text { or } 3 x+4=0 \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5 & 3 x=-4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5
\end{array}
$$

$$
\begin{aligned}
& \text { 45. } 15 x^{2}+20 x=0 \\
& 5 x(3 x+4)=0 \\
& 5 x=0 \text { or } 3 x+4=0 \\
& 3 x=-4 \\
& x=0 \text { or } x=\frac{-4}{3}
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 43. } x^{2}+3 x=0 & \text { 44. } 2 x^{2}-10 x=0 & \text { 45. } 15 x^{2}+20 x=0 \\
x(x+3)=0 & 2 x(x-5)=0 & 5 x(3 x+4)=0 \\
x=0 \text { or } x+3=0 & 2 x=0 \text { or } x-5=0 & 5 x=0 \text { or } 3 x+4=0 \\
x=0 \text { or } x=-3 & x=0 \text { or } x=5 & 3 x=-4 \\
& & x=0 \text { or } x=\frac{-4}{3}
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$

The equation is already in standard form.

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$
$3 x(3 x-1)=0$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$
$3 x(3 x-1)=0$
$3 \mathrm{x}=0$ or $3 \mathrm{x}-1=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$
$3 x(3 x-1)=0$
$3 \mathrm{x}=0$ or $3 \mathrm{x}-1=0$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
46. $9 x^{2}-3 x=0$
47. $x^{2}-64=0$
48. $9 x^{2}-49=0$
$3 x(3 x-1)=0$
$3 x=0$ or $3 x-1=0$
$3 \mathrm{x}=1$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 46. } 9 x^{2}-3 x=0 \\
& 3 x(3 x-1)=0 \\
& 3 x=0 \text { or } 3 x-1=0 \\
& 3 x=1 \\
& x=0 \text { or } x=\frac{1}{3}
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 46. } 9 x^{2}-3 x=0 \\
& 3 x(3 x-1)=0 \\
& 3 x=0 \text { or } 3 x-1=0 \\
& \quad 3 x=1 \\
& x=0 \text { or } x=\frac{1}{3}
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 46. } 9 x^{2}-3 x=0 \\
3 x(3 x-1)=0 \\
3 x=0 \text { or } 3 x-1=0 \\
3 x=1 \\
x=0 \text { or } x=\frac{1}{3}
\end{gathered}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 46. } 9 x^{2}-3 x=0 \\
3 x(3 x-1)=0 \\
3 x=0 \text { or } 3 x-1=0 \\
3 x=1 \\
x=0 \text { or } x=\frac{1}{3}
\end{gathered}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 46. } 9 x^{2}-3 x=0 \\
3 x(3 x-1)=0 \\
3 x=0 \text { or } 3 x-1=0 \\
3 x=1 \\
x=0 \text { or } x=\frac{1}{3}
\end{gathered}
$$

47. $x^{2}-64=0$

The equation is already in standard form.
48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 46. } 9 x^{2}-3 x=0 \\
3 x(3 x-1)=0 \\
3 x=0 \text { or } 3 x-1=0 \\
3 x=1 \\
x=0 \text { or } x=\frac{1}{3}
\end{gathered}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 46. } 9 x^{2}-3 x=0 \\
3 x(3 x-1)=0 \\
3 x=0 \text { or } 3 x-1=0 \\
3 x=1 \\
(x+8)(x-8)=0 \\
x=0 \text { or } x=\frac{1}{3}
\end{gathered}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 46. } 9 x^{2}-3 x=0 \\
3 x(3 x-1)=0 \\
3 x=0 \text { or } 3 x-1=0 \\
3 x=1 \\
(x+8)(x-8)=0 \\
x=0 \text { or } x=\frac{1}{3}
\end{gathered}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 46. } 9 x^{2}-3 x=0 \\
3 x(3 x-1)=0 \\
3 x=0 \text { or } 3 x-1=0 \\
3 x=1 \\
x=0 \text { or } x=\frac{1}{3}
\end{gathered}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 46. } 9 x^{2}-3 x=0 \\
3 x(3 x-1)=0 \\
3 x=0 \text { or } 3 x-1=0 \\
3 x=1 \\
x=0 \text { or } x=\frac{1}{3}
\end{gathered}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

48. $9 x^{2}-49=0$

The equation is already in standard form.

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

48. $9 x^{2}-49=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

48. $9 x^{2}-49=0$
$(3 x+7)(3 x-7)=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\left.\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}.\right)$
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

48. $9 x^{2}-49=0$
$(3 x+7)(3 x-7)=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

$$
\begin{gathered}
\text { 48. } 9 x^{2}-49=0 \\
(3 x+7)(3 x-7)=0 \\
3 x+7=0 \text { or } 3 x-7=0
\end{gathered}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

$$
\begin{gathered}
\text { 48. } 9 x^{2}-49=0 \\
(3 x+7)(3 x-7)=0 \\
3 x+7=0 \text { or } 3 x-7=0
\end{gathered}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

$$
\begin{gathered}
\text { 48. } 9 x^{2}-49=0 \\
(3 x+7)(3 x-7)=0 \\
3 x+7=0 \text { or } 3 x-7=0 \\
3 x=-7 \text { or } 3 x=7
\end{gathered}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 \\
3 x=1 & x=-8 \text { or } x=8 \\
x=0 \text { or } x=\frac{1}{3} &
\end{array}
$$

$$
\begin{gathered}
\text { 48. } 9 x^{2}-49=0 \\
(3 x+7)(3 x-7)=0 \\
3 x+7=0 \text { or } 3 x-7=0 \\
3 x=-7 \text { or } 3 x=7 \\
x=\frac{-7}{3} \text { or } x=\frac{7}{3}
\end{gathered}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 46. } 9 x^{2}-3 x=0 & \text { 47. } x^{2}-64=0 & \text { 48. } 9 x^{2}-49=0 \\
3 x(3 x-1)=0 & (x+8)(x-8)=0 & (3 x+7)(3 x-7)=0 \\
3 x=0 \text { or } 3 x-1=0 & x+8=0 \text { or } x-8=0 & 3 x+7=0 \text { or } 3 x-7=0 \\
3 x=1 & x=-8 \text { or } x=8 & 3 x=-7 \text { or } 3 x=7 \\
x=0 \text { or } x=\frac{1}{3} & & x=-\frac{7}{3} \text { or } x=\frac{7}{3}
\end{array}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
49. $25 x^{2}-1=0$
50. $x^{2}+8 x+12=0$
51. $x^{2}+11 x+24=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
49. $25 x^{2}-1=0 \quad$ 50. $x^{2}+8 x+12=0 \quad$ 51. $x^{2}+11 x+24=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
49. $25 x^{2}-1=0$
50. $x^{2}+8 x+12=0$
51. $x^{2}+11 x+24=0$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
49. $25 x^{2}-1=0 \quad$ 50. $x^{2}+8 x+12=0 \quad$ 51. $x^{2}+11 x+24=0$

The equation is already in standard form.

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
49. $25 x^{2}-1=0$
50. $x^{2}+8 x+12=0$
51. $x^{2}+11 x+24=0$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
49. $25 x^{2}-1=0$
50. $x^{2}+8 x+12=0$
51. $x^{2}+11 x+24=0$
$(5 \mathrm{x}+1)(5 \mathrm{x}-1)=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
49. $25 x^{2}-1=0$
50. $x^{2}+8 x+12=0$
51. $\mathrm{x}^{2}+11 \mathrm{x}+24=0$
$(5 \mathrm{x}+1)(5 \mathrm{x}-1)=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \begin{array}{l}
\text { 49. } 25 x^{2}-1=0 \\
(5 x+1)(5 x-1)=0 \\
5 x+1=0 \text { or } 5 x-1=0
\end{array} \\
& \begin{array}{l}
\text { 50. } x^{2}+8 x+12=0 \\
\text { 51. } x^{2}+11 x+24=0
\end{array}
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \begin{array}{l}
\text { 49. } 25 x^{2}-1=0 \\
(5 x+1)(5 x-1)=0 \\
5 x+1=0 \text { or } 5 x-1=0
\end{array} \\
& \begin{array}{l}
\text { 50. } x^{2}+8 x+12=0 \\
\text { 51. } x^{2}+11 x+24=0
\end{array}
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 49. } 25 x^{2}-1=0 \quad \text { 50. } x^{2}+8 x+12=0 \\
& (5 x+1)(5 x-1)=0 \\
& 5 x+1=0 \text { or } 5 x-1=0 \\
& 5 x=-1 \text { or } 5 x=1
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 49. } 25 x^{2}-1=0 \quad \text { 50. } x^{2}+8 x+12=0 \\
& \begin{array}{l}
(5 x+1)(5 x-1)=0 \\
5 x+1=0 \text { or } 5 x-1=0 \\
5 x=-1 \text { or } 5 x=1 \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5}
\end{array}
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 49. } 25 x^{2}-1=0 \\
& (5 x+1)(5 x-1)=0 \\
& 5 x+1=0 \text { or } 5 x-1=0 \\
& 5 x=-1 \text { or } 5 x=1 \\
& x=-\frac{1}{5} \text { or } x=\frac{1}{5}
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 49. } 25 x^{2}-1=0 \\
(5 x+1)(5 x-1)=0 \\
5 x+1=0 \text { or } 5 x-1=0 \\
5 x=-1 \text { or } 5 x=1 \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5}
\end{gathered}
$$

$$
\text { 50. } x^{2}+8 x+12=0
$$

$$
\text { 51. } x^{2}+11 x+24=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 49. } 25 x^{2}-1=0 \\
(5 x+1)(5 x-1)=0 \\
5 x+1=0 \text { or } 5 x-1=0 \\
5 x=-1 \text { or } 5 x=1 \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5}
\end{gathered}
$$

$$
\text { 50. } x^{2}+8 x+12=0
$$

$$
\text { 51. } x^{2}+11 x+24=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 49. } 25 x^{2}-1=0 \\
(5 x+1)(5 x-1)=0 \\
5 x+1=0 \text { or } 5 x-1=0 \\
5 x=-1 \text { or } 5 x=1 \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5}
\end{gathered}
$$

The equation is already in standard form.
51. $x^{2}+11 x+24=0$
50. $x^{2}+8 x+12=0$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=0$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 49. } 25 x^{2}-1=0 \\
(5 x+1)(5 x-1)=0 \\
5 x+1=0 \text { or } 5 x-1=0 \\
5 x=-1 \text { or } 5 x=1 \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5}
\end{gathered}
$$

$$
\text { 50. } x^{2}+8 x+12=0
$$

$$
\text { 51. } x^{2}+11 x+24=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{l|l|l}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 & \\
5 x+1=0 \text { or } 5 x-1=0 & \\
5 x=-1 \text { or } 5 x=1 & \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5} &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 49. } 25 x^{2}-1=0 \\
& (5 x+1)(5 x-1)=0
\end{aligned} \quad \begin{array}{r}
\text { 50. } x^{2}+8 x+12=0 \\
(x+2)(x+6)=0 \\
5 x+1=0 \text { or } 5 x-1=0
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=0$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|c|c}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 & \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 \\
5 x=-1 \text { or } 5 x=1 & \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5} &
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|c|c}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 \\
5 x=-1 \text { or } 5 x=1 & \\
x=-\frac{1}{5} \text { or } x=\frac{1}{5} &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{gathered}
\text { 49. } 25 x^{2}-1=0 \\
(5 x+1)(5 x-1)=0 \\
5 x+1=0 \text { or } 5 x-1=0 \\
5 x=-1 \text { or } 5 x=1 \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5}
\end{gathered}
$$

$$
\begin{aligned}
& \text { 50. } x^{2}+8 x+12=0 \\
& (x+2)(x+6)=0 \\
& x+2=0 \text { or } x+6=0 \\
& x=-2 \text { or } x=-6
\end{aligned}
$$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 \\
x=-\frac{1}{5} \text { or } x=\frac{1}{5} &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 \\
x=\frac{1}{5} \text { or } x=\frac{1}{5} &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 \\
x=-\frac{1}{5} \text { or } x=\frac{1}{5} &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5} &
\end{array}
$$

51. $x^{2}+11 x+24=0$

The equation is already in standard form.

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & \text { 51. } x^{2}+11 x+24=0 \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 \\
x=-\frac{1}{5} \text { or } x=\frac{1}{5} &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 & (x+3)(x+8)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 & \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 \\
x=-\frac{1}{5} \text { or } x=\frac{1}{5} & &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 & (x+3)(x+8)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 & \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 & \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5} & &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 & (x+3)(x+8)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 & x+3=0 \text { or } x+8=0 \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 & \\
x=-\frac{1}{5} \text { or } x=\frac{1}{5} & &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 & (x+3)(x+8)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 & x+3=0 \text { or } x+8=0 \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 & \\
x=\frac{-1}{5} \text { or } x=\frac{1}{5} & &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 & (x+3)(x+8)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 & x+3=0 \text { or } x+8=0 \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 & x=-3 \text { or } x=-8
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 49. } 25 x^{2}-1=0 & \text { 50. } x^{2}+8 x+12=0 & \text { 51. } x^{2}+11 x+24=0 \\
(5 x+1)(5 x-1)=0 & (x+2)(x+6)=0 & (x+3)(x+8)=0 \\
5 x+1=0 \text { or } 5 x-1=0 & x+2=0 \text { or } x+6=0 & x+3=0 \text { or } x+8=0 \\
5 x=-1 \text { or } 5 x=1 & x=-2 \text { or } x=-6 & x=-3 \text { or } x=-8 \\
x=-\frac{1}{5} \text { or } x=\frac{1}{5} & &
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 52. } x^{2}-13 x+30=0 \quad \text { 53. } x^{2}-9 x+20=0 \quad \text { 54. } x^{2}-5 x-36=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 52. } x^{2}-13 x+30=0 \quad \text { 53. } x^{2}-9 x+20=0 \quad \text { 54. } x^{2}-5 x-36=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 52. } x^{2}-13 x+30=0 \quad \text { 53. } x^{2}-9 x+20=0 \quad \text { 54. } x^{2}-5 x-36=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 52. } x^{2}-13 x+30=0 \quad \text { 53. } x^{2}-9 x+20=0 \quad \text { 54. } x^{2}-5 x-36=0
$$

The equation is already in standard form.

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 52. } x^{2}-13 x+30=0 \quad \text { 53. } x^{2}-9 x+20=0 \quad \text { 54. } x^{2}-5 x-36=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 52. } x^{2}-13 x+30=0 \quad \text { 53. } x^{2}-9 x+20=0 \quad \text { 54. } x^{2}-5 x-36=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 52. } x^{2}-13 x+30=0 \quad \text { 53. } x^{2}-9 x+20=0 \quad \text { 54. } x^{2}-5 x-36=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 52. } x^{2}-13 x+30=0 \\
& (x-3)(x-10)=0 \\
& x-3=0 \text { or } x-10=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 52. } x^{2}-13 x+30=0 \\
& (x-3)(x-10)=0 \\
& x-3=0 \text { or } x-10=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 52. } x^{2}-13 x+30=0 \\
& \begin{array}{l}
(x-3)(x-10)=0 \\
x-3=0 \text { or } x-10=0 \\
x=3 \text { or } x=10
\end{array} \\
& \quad \begin{array}{l}
\text { 53. } x^{2}-9 x+20=0 \\
\text { 54. } x^{2}-5 x-36=0
\end{array} \\
& x
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 52. } x^{2}-13 x+30=0 \\
& \begin{array}{l}
(x-3)(x-10)=0 \\
x-3=0 \text { or } x-10=0 \\
x=3 \text { or } x=10
\end{array} \\
& \quad \begin{array}{l}
x^{2}-9 x+20=0 \\
\text { 54. } x^{2}-5 x-36=0
\end{array} \\
& x
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 52. } x^{2}-13 x+30=0 \\
& \begin{array}{l}
(x-3)(x-10)=0 \\
x-3=0 \text { or } x-10=0 \\
x=3 \text { or } x=10
\end{array} \\
& x+9 x+20=0 \\
& \text { 54. } x^{2}-5 x-36=0 \\
& x
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 52. } x^{2}-13 x+30=0 \\
& \begin{array}{l}
(x-3)(x-10)=0 \\
x-3=0 \text { or } x-10=0 \\
x-3 \\
x=3 \text { or } x=10
\end{array} \\
& x+20=0 \\
& x^{2}-9 x+2 . x^{2}-5 x-36=0 \\
&
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=0$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|l|l}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
\begin{array}{c}
(x-3)(x-10)=0
\end{array} \\
\begin{array}{cl}
x-3=0 \text { or } x-10=0 \\
x=3 \text { or } x=10 & \\
& \begin{array}{l}
\text { The equation is already } \\
\text { in standard form. }
\end{array}
\end{array}
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 52. } x^{2}-13 x+30=0 \\
& (x-3)(x-10)=0 \\
& x-3=0 \text { or } x-10=0 \\
& x=3 \text { or } x=10 \\
&
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 &
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 52. } x^{2}-13 x+30=0 \\
& \begin{array}{c}
(x-3)(x-10)=0
\end{array} \\
& (x-5)(x-4)=0 \\
& x-3=0 \text { or } x-10=0 \\
& x-5=0 \text { or } x-4=0 \\
& x=3 \text { or } x=10
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|c|c}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 & \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 & \\
x=3 \text { or } x=10 & &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|cc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc|c}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 & \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4
\end{array}
$$

54. $x^{2}-5 x-36=0$

The equation is already in standard form.

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc|c}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 & (x-9)(x+4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 & x-9=0 \text { or } x+4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 & (x-9)(x+4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 & x-9=0 \text { or } x+4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 & (x-9)(x+4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 & x-9=0 \text { or } x+4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4 & x=9 \text { or } x=-4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 52. } x^{2}-13 x+30=0 & \text { 53. } x^{2}-9 x+20=0 & \text { 54. } x^{2}-5 x-36=0 \\
(x-3)(x-10)=0 & (x-5)(x-4)=0 & (x-9)(x+4)=0 \\
x-3=0 \text { or } x-10=0 & x-5=0 \text { or } x-4=0 & x-9=0 \text { or } x+4=0 \\
x=3 \text { or } x=10 & x=5 \text { or } x=4 & x=9 \text { or } x=-4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
55. $x^{2}-4 x-45=0$
56. $x^{2}+6 x-16=0$
57. $x^{2}+3 x-10=0$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
55. $x^{2}-4 x-45=0 \quad$ 56. $x^{2}+6 x-16=0 \quad$ 57. $x^{2}+3 x-10=0$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
55. $x^{2}-4 x-45=0 \quad$ 56. $x^{2}+6 x-16=0 \quad$ 57. $x^{2}+3 x-10=0$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
55. $x^{2}-4 x-45=0 \quad$ 56. $x^{2}+6 x-16=0 \quad$ 57. $x^{2}+3 x-10=0$

The equation is already in standard form.

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.
55. $x^{2}-4 x-45=0 \quad$ 56. $x^{2}+6 x-16=0 \quad$ 57. $x^{2}+3 x-10=0$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 55. } x^{2}-4 x-45=0 \quad \text { 56. } x^{2}+6 x-16=0 \quad \text { 57. } x^{2}+3 x-10=0
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 55. } x^{2}-4 x-45=0 \quad \text { 56. } x^{2}+6 x-16=0 \quad \text { 57. } x^{2}+3 x-10=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 55. } x^{2}-4 x-45=0 \\
& (x-9)(x+5)=0 \\
& x-9=0 \text { or } x+5=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 55. } x^{2}-4 x-45=0 \\
& (x-9)(x+5)=0 \\
& x-9=0 \text { or } x+5=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 55. } x^{2}-4 x-45=0 \\
& (x-9)(x+5)=0 \\
& x-9=0 \text { or } x+5=0 \\
& x=9 \text { or } x=-5
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 55. } x^{2}-4 x-45=0 \quad \text { 56. } x^{2}+6 x-16=0 \quad \text { 57. } x^{2}+3 x-10=0 \\
& (x-9)(x+5)=0 \\
& x-9=0 \text { or } x+5=0 \\
& x=9 \text { or } x=-5
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 55. } x^{2}-4 x-45=0 \\
& (x-9)(x+5)=0 \\
& x-9=0 \text { or } x+5=0 \\
& x=9 \text { or } x=-5
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 55. } x^{2}-4 x-45=0 \\
& (x-9)(x+5)=0 \\
& x-9=0 \text { or } x+5=0 \\
& x=9 \text { or } x=-5
\end{aligned}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{lll}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 \\
x-9=0 \text { or } x+5=0 \\
x=9 \text { or } x=-5 & \\
\text { The equation is already } \\
\text { in standard form. }
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 55. } x^{2}-4 x-45=0 \\
& (x-9)(x+5)=0 \\
& x-9=0 \text { or } x+5=0 \\
& x=9 \text { or } x=-5 \\
& \\
& \\
&
\end{aligned}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 55. } x^{2}-4 x-45=0 \\
& (x-9)(x+5)=0 \\
& x-9=0 \text { or } x+5=0 \\
& x-x^{2}+6 x-16=0 \\
& (x-2)(x+8)=0 \\
& x=9 \text { or } x=-5
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 55. } x^{2}-4 x-45=0 \\
& (x-9)(x+5)=0 \\
& x-9=0 \text { or } x+5=0 \\
& x-x^{2}+6 x-16=0 \\
& (x-2)(x+8)=0 \\
& x=9 \text { or } x=-5
\end{aligned}
$$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|c|c}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 \\
x=9 \text { or } x=-5 & &
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|c|c}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 \\
x=9 \text { or } x=-5 & &
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|c|c}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8 &
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=0$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc|c}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 & \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 & \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8 & \text { The equation is already } \\
& & \begin{array}{l}
\text { in standard form. }
\end{array}
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 & (x+5)(x-2)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 & x+5=0 \text { or } x-2=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 & (x+5)(x-2)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 & x+5=0 \text { or } x-2=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8 &
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc|c}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 & (x+5)(x-2)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 & x+5=0 \text { or } x-2=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8 & x=-5 \text { or } x=2
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 55. } x^{2}-4 x-45=0 & \text { 56. } x^{2}+6 x-16=0 & \text { 57. } x^{2}+3 x-10=0 \\
(x-9)(x+5)=0 & (x-2)(x+8)=0 & (x+5)(x-2)=0 \\
x-9=0 \text { or } x+5=0 & x-2=0 \text { or } x+8=0 & x+5=0 \text { or } x-2=0 \\
x=9 \text { or } x=-5 & x=2 \text { or } x=-8 & x=-5 \text { or } x=2
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 58. } x^{2}+x-90=0 \quad \text { 59. } x^{2}+8 x+16=0 \quad \text { 60. } x^{2}-10 x+25=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 58. } x^{2}+x-90=0 \quad \text { 59. } x^{2}+8 x+16=0 \quad \text { 60. } x^{2}-10 x+25=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 58. } x^{2}+x-90=0 \quad \text { 59. } x^{2}+8 x+16=0 \quad \text { 60. } x^{2}-10 x+25=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 58. } x^{2}+x-90=0 \quad \text { 59. } x^{2}+8 x+16=0 \quad \text { 60. } x^{2}-10 x+25=0
$$

The equation is already in standard form.

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\text { 58. } x^{2}+x-90=0 \quad \text { 59. } x^{2}+8 x+16=0 \quad \text { 60. } x^{2}-10 x+25=0
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
\text { 58. } x^{2}+x-90 & =0 \\
(x-9)(x+10) & =0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
\text { 58. } x^{2}+x-90 & =0 \\
(x-9)(x+10) & =0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 58. } x^{2}+x-90=0 \\
& (x-9)(x+10)=0 \\
& x-9=0 \text { or } x+10=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 58. } x^{2}+x-90=0 \\
& (x-9)(x+10)=0 \\
& x-9=0 \text { or } x+10=0
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 58. } x^{2}+x-90=0 \\
& (x-9)(x+10)=0 \\
& x-9=0 \text { or } x+10=0 \\
& x=9 \text { or } x=-10
\end{aligned}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 58. } x^{2}+x-90=0 \\
& (x-9)(x+10)=0 \\
& x-9=0 \text { or } x+10=0 \\
& x=9 \text { or } x=-10
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 58. } x^{2}+x-90=0 \\
& (x-9)(x+10)=0 \\
& x-9=0 \text { or } x+10=0 \\
& x=9 \text { or } x=-10
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 58. } x^{2}+x-90=0 \\
& (x-9)(x+10)=0 \\
& x-9=0 \text { or } x+10=0 \\
& x=9 \text { or } x=-10 \\
& x
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\left.\begin{array}{r|l|l}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
\begin{array}{c}
(x-9)(x+10)=0 \\
x-9=0
\end{array} & \\
x=9 \text { or } x+10=0
\end{array}\right)
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 58. } x^{2}+x-90=0 \\
& (x-9)(x+10)=0 \\
& x-9=0 \text { or } x+10=0 \\
& x=9 \text { or } x=-10 \\
& x
\end{aligned}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|c|c}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & \\
x=9 \text { or } x=-10 &
\end{array}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{aligned}
& \text { 58. } x^{2}+x-90=0 \\
& (x-9)(x+10)=0 \\
& \text { 59. } x^{2}+8 x+16=0 \\
& \text { 60. } x^{2}-10 x+25=0 \\
& (x+4)(x+4)=0 \\
& x-9=0 \text { or } x+10=0 \\
& x=9 \text { or } x=-10
\end{aligned}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \text { or } x+4=0 \\
x=9 \text { or } x=-10
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|c|c}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \text { or } x+4=0 \\
x=9 \text { or } x=-10 & \begin{array}{l}
\text { Don't write the same } \\
\text { equation twice. }
\end{array}
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{c|c|c}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & \begin{array}{l}
\text { Don't write the same } \\
\text { equation twice. }
\end{array}
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+B x+C=0$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & x=-4 &
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 & \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & x=-4 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & x=-4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & x=-4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x}{ }^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & x=-4
\end{array}
$$

60. $x^{2}-10 x+25=0$

The equation is already in standard form.

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & x=-4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & x=-4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 & (x-5)(x-5)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 & x-5=0 \text { or } x-5=0 \\
x=9 \text { or } x=-10 & x=-4 &
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc|c}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 & (x-5)(x-5)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 & x-5=0 \text { or } x-5=0 \\
x=9 \text { or } x=-10 & x=-4 & \begin{array}{l}
\text { Don't write the same } \\
\text { equation twice. }
\end{array}
\end{array}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 & (x-5)(x-5)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 & x-5=0 \\
x=9 \text { or } x=-10 & x=-4 & \begin{array}{l}
\text { Don't write the same } \\
\text { equation twice. }
\end{array}
\end{array}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & x=-4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication. If $P Q=0$, then $P=0$ or $Q=0$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{cc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 \\
x=9 \text { or } x=-10 & x=-4
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 & (x-5)(x-5)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 & x-5=0 \\
x=9 \text { or } x=-10 & x=-4 & x=5
\end{array}
$$

Step 1: Write the equation in standard form: $A \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathrm{C}$.)
Step 3: Apply the 'zero property of multiplication. If $\mathbf{P Q}=\mathbf{0}$, then $\mathbf{P}=\mathbf{0}$ or $\mathbf{Q}=\mathbf{0}$.
Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 & (x-5)(x-5)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 & x-5=0 \\
x=9 \text { or } x=-10 & x=-4 & x=5
\end{array}
$$

Step 1: Write the equation in standard form: $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 & (x-5)(x-5)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 & x-5=0 \\
x=9 \text { or } x=-10 & x=-4 & x=5
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

Algebra II Class Worksheet \#1 Unit 6

Use the factoring method to solve each of the following equations.

$$
\begin{array}{ccc}
\text { 58. } x^{2}+x-90=0 & \text { 59. } x^{2}+8 x+16=0 & \text { 60. } x^{2}-10 x+25=0 \\
(x-9)(x+10)=0 & (x+4)(x+4)=0 & (x-5)(x-5)=0 \\
x-9=0 \text { or } x+10=0 & x+4=0 & x-5=0 \\
x=9 \text { or } x=-10 & x=-4 & x=5 \\
\text { GOOd IUCK On Yourinomework?! }
\end{array}
$$

Step 1: Write the equation in standard form: $A x^{2}+\mathbf{B x}+\mathbf{C}=\mathbf{0}$
Step 2: Write the equation in factored form.
(Factor the polynomial $\mathbf{A x}^{2}+\mathbf{B x}+\mathbf{C}$.)
Step 3: Apply the 'zero property of multiplication.

$$
\text { If } P Q=0 \text {, then } P=0 \text { or } Q=0
$$

Step 4: Solve each equation.

