Algebra II
 Lesson \#5 Unit 5 Class Worksheet \#5
 For Worksheet \#6

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=$
2. $\frac{8}{4 \mathrm{i}}=$

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{n}{d}=$

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
This problem involves dividing an imaginary number by an imaginary number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathrm{d}$.
This problem involves dividing an imaginary number by an imaginary number. In problems like this, you should treat the imaginary number i like a variable.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathrm{d}$.
This problem involves dividing an imaginary number by an imaginary number. In problems like this, you should treat the imaginary number i like a variable. Since i is a factor of both terms, you can 'reduce' the fraction.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
This problem involves dividing an imaginary number by an imaginary number. In problems like this, you should treat the imaginary number i like a variable. Since i is a factor of both terms, you can 'reduce' the fraction.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathrm{d}$.
This problem involves dividing an imaginary number by an imaginary number. In problems like this, you should treat the imaginary number i like a variable. Since i is a factor of both terms, you can 'reduce' the fraction.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$
2. $\frac{8}{4 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathrm{d}$.
This problem involves dividing an imaginary number by an imaginary number. In problems like this, you should treat the imaginary number i like a variable. Since i is a factor of both terms, you can 'reduce' the fraction. An imaginary number divided by an imaginary number is a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 i}{4 i}=\frac{8}{4}=2 \quad$ 2. $\frac{8}{4 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$
2. $\frac{8}{4 i}=$

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$

$$
\text { 2. } \frac{8}{4 \mathrm{i}}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
This problem involves dividing a real number by an imaginary number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$

$$
\text { 2. } \frac{8}{4 \mathrm{i}}=
$$

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d \text {. }
$$

This problem involves dividing a real number by an imaginary number. In problems like this, you must make the divisor, the denominator, a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$

$$
\text { 2. } \frac{8}{4 \mathrm{i}}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

This problem involves dividing a real number by an imaginary number. In problems like this, you must make the divisor, the denominator, a real number. Multiply both terms of the fraction by i.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$

$$
\text { 2. } \frac{8}{4 i}=\frac{8 i}{4 i^{2}}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

This problem involves dividing a real number by an imaginary number. In problems like this, you must make the divisor, the denominator, a real number. Multiply both terms of the fraction by i.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$

$$
\text { 2. } \frac{8}{4 \mathrm{i}}=\frac{8 \mathrm{i}}{4 \mathrm{i}^{2}}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

This problem involves dividing a real number by an imaginary number. In problems like this, you must make the divisor, the denominator, a real number. Multiply both terms of the fraction by i. Since $i^{2}=-1$, the divisor is now a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$

$$
\text { 2. } \frac{8}{4 i}=\frac{8 i}{4 i^{2}}=\frac{8 i}{-4}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

This problem involves dividing a real number by an imaginary number. In problems like this, you must make the divisor, the denominator, a real number. Multiply both terms of the fraction by i. Since $i^{2}=-1$, the divisor is now a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$

$$
\text { 2. } \frac{8}{4 i}=\frac{8 i}{4 i^{2}}=\frac{8 i}{-4}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

This problem involves dividing a real number by an imaginary number. In problems like this, you must make the divisor, the denominator, a real number. Multiply both terms of the fraction by i. Since $i^{2}=-1$, the divisor is now a real number. The division proceeds as if i was a variable.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$

$$
\text { 2. } \frac{8}{4 i}=\frac{8 i}{4 i^{2}}=\frac{8 i}{-4}=-2 i
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

This problem involves dividing a real number by an imaginary number. In problems like this, you must make the divisor, the denominator, a real number. Multiply both terms of the fraction by i. Since $i^{2}=-1$, the divisor is now a real number. The division proceeds as if i was a variable.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$

$$
\text { 2. } \frac{8}{4 i}=\frac{8 i}{4 i^{2}}=\frac{8 i}{-4}=-2 i
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

This problem involves dividing a real number by an imaginary number. In problems like this, you must make the divisor, the denominator, a real number. Multiply both terms of the fraction by i. Since $\mathbf{i} 2=-1$, the divisor is now a real number. The division proceeds as if i was a variable. A real number divided by an imaginary number is an imaginary number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

1. $\frac{8 \mathrm{i}}{4 \mathrm{i}}=\frac{8}{4}=2$
2. $\frac{8}{4 i}=\frac{8 i}{4 i^{2}}=\frac{8 i}{-4}=-2 i$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a real number.
In problems like these, the number i is treated as a variable.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+$
4. $\frac{4-9 i}{6}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i \quad$ 4. $\frac{4-9 i}{6}=$

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d \text {. }
$$

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 3. } \frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i \quad \text { 4. } \frac{4-9 i}{6}=
$$

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d \text {. }
$$

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 3. } \frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i \quad \text { 4. } \frac{4-9 i}{6}=\frac{4}{6}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 3. } \frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i \quad \text { 4. } \frac{4-9 i}{6}=\frac{4}{6}-
$$

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d \text {. }
$$

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i$

$$
\text { 4. } \frac{4-9 i}{6}=\frac{4}{6}-\frac{9 i}{6}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i$

$$
\text { 4. } \frac{4-9 i}{6}=\frac{4}{6}-\frac{9 i}{6}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i$

$$
\text { 4. } \frac{4-9 i}{6}=\frac{4}{6}-\frac{9 i}{6}=\frac{2}{3}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i$

$$
\text { 4. } \frac{4-9 i}{6}=\frac{4}{6}-\frac{9 i}{6}=\frac{2}{3}-
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i$

$$
\text { 4. } \frac{4-9 i}{6}=\frac{4}{6}-\frac{9 i}{6}=\frac{2}{3}-\frac{3}{2} i
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 3. } \frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i \quad \text { 4. } \quad \frac{4-9 i}{6}=\frac{4}{6}-\frac{9 i}{6}=\frac{2}{3}-\frac{3}{2} i
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by a real number. In problems like these, the number i is treated as a variable. Simply divide both terms of the complex number by the real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
3. $\frac{6+9 i}{3}=\frac{6}{3}+\frac{9 i}{3}=2+3 i \quad$ 4. $\frac{4-9 i}{6}=\frac{4}{6}-\frac{9 i}{6}=\frac{2}{3}-\frac{3}{2} i$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
5. $\frac{4-8 i}{4 i}=$
6. $\frac{4-2 \mathrm{i}}{-2 \mathrm{i}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \frac{4-8 i}{4 i}=
$$

6. $\frac{4-2 i}{-2 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \frac{4-8 i}{4 i}=
$$

6. $\frac{4-2 i}{-2 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \frac{4-8 i}{4 i}=
$$

$$
\text { 6. } \frac{4-2 i}{-2 i}=
$$

These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
5. $\frac{4-8 i}{4 i}=$
6. $\frac{4-2 i}{-2 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
5. $\frac{4-8 i}{4 i}=$
6. $\frac{4-2 i}{-2 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
5. $\frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}=$
6. $\frac{4-2 i}{-2 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
5. $\frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}=$
6. $\frac{4-2 i}{-2 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}=\quad \text { 6. } \frac{4-2 i}{-2 i}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4-2 i}{-2 i}= \\
-4 &
\end{aligned},
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \text { 6. } \frac{4-2 i}{-2 i}= \\
= & \frac{4 i-8 i i^{2}}{-4}=\frac{4 i+8}{-4}=
\end{aligned}
\end{array}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4-2 i}{-2 i}= \\
-4 &
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=
\end{aligned}
$$

$$
\text { 6. } \frac{4-2 i}{-2 i}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
\text { 5. } & \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-2-i
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

6. $\frac{4-2 i}{-2 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

6. $\frac{4-2 i}{-2 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

6. $\frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

6. $\frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}=$
$=$

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

6. $\frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}=$

$$
=\frac{2}{2}
$$

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

6. $\frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}=$
$=\frac{4 i-2 i^{2}}{2}$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

6. $\frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}=$

$$
=\frac{4 i-2 i^{2}}{2}=\frac{}{2}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

6. $\quad \frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}=$
$=\frac{4 i-2 i^{2}}{2}=\frac{4 i+2}{2}$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

$$
\text { 6. } \begin{aligned}
& \frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}= \\
&= \frac{4 i-2 i^{2}}{2}=\frac{4 i+2}{2}= \\
&=
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{\mathbf{2}}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

$$
\text { 6. } \begin{aligned}
& \frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}= \\
= & \frac{4 i-2 i^{2}}{2}=\frac{4 i+2}{2}= \\
= & \frac{2+4 i}{2}
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{\mathbf{2}}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

$$
\text { 6. } \begin{aligned}
& \frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}= \\
= & \frac{4 i-2 i^{2}}{2}=\frac{4 i+2}{2}= \\
= & \frac{2+4 i}{2}=
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$. Express the complex number in the numerator in $\mathbf{a}+$ bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

$$
\text { 6. } \begin{aligned}
& \frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}= \\
= & \frac{4 i-2 i^{2}}{2}=\frac{4 i+2}{2}= \\
= & \frac{2+4 i}{2}=1
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$. Express the complex number in the numerator in $\mathbf{a}+$ bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

$$
\text { 6. } \begin{aligned}
& \frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}= \\
= & \frac{4 i-2 i^{2}}{2}=\frac{4 i+2}{2}= \\
= & \frac{2+4 i}{2}=1+2 i
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$. Express the complex number in the numerator in $\mathbf{a}+$ bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 5. } \begin{aligned}
& \frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}= \\
= & \frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}= \\
= & \frac{8+4 i}{-4}=-2-i
\end{aligned}
$$

$$
\text { 6. } \begin{aligned}
& \frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}= \\
= & \frac{4 i-2 i^{2}}{2}=\frac{4 i+2}{2}= \\
= & \frac{2+4 i}{2}=1+2 i
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{\mathbf{2}}=\mathbf{- 1}$. Express the complex number in the numerator in $\mathbf{a}+$ bi form and complete the division. A complex number divided by an imaginary number is a complex number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
5. $\frac{4-8 i}{4 i}=\frac{i(4-8 i)}{4 i^{2}}=$
$=\frac{4 i-8 i^{2}}{-4}=\frac{4 i+8}{-4}=$
$=\frac{8+4 i}{-4}=-2-\mathbf{i}$

$$
\text { 6. } \begin{aligned}
& \frac{4-2 i}{-2 i}=\frac{i(4-2 i)}{-2 i^{2}}= \\
= & \frac{4 i-2 i^{2}}{2}=\frac{4 i+2}{2}= \\
= & \frac{2+4 i}{2}=1+2 i
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
7. $\frac{5+6 i}{-3 i}=$
8. $\frac{3+7 i}{3 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
7. $\frac{5+6 i}{-3 i}=$
8. $\frac{3+7 i}{3 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
7. $\frac{5+6 i}{-3 i}=$
8. $\frac{3+7 i}{3 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
7. $\frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}$
8. $\frac{3+7 i}{3 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}=\quad \text { 8. } \frac{3+7 i}{3 i}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}=\quad \text { 8. } \frac{3+7 i}{3 i}=
$$

$$
=\frac{3}{3}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}=\quad \text { 8. } \frac{3+7 i}{3 i}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{}{3}
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}=\quad \text { 8. } \frac{3+7 i}{3 i}=
$$

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{array}{ll}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= &
\end{array}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$. Express the complex number in the numerator in a + bi form

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}
\end{aligned}
$$

$$
\text { 8. } \frac{3+7 \mathbf{i}}{3 i}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$. Express the complex number in the numerator in a + bi form

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=
\end{aligned}
$$

$$
\text { 8. } \frac{3+7 i}{3 i}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2
\end{aligned}
$$

$$
\text { 8. } \frac{3+7 i}{3 i}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{8 i}{} \frac{3+6 i^{2}}{3}=\frac{5 i-6}{3 i}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

8. $\frac{3+7 i}{3 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

8. $\frac{3+7 i}{3 i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

8. $\frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}=$
$=$

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
= & -3
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
= & \frac{3 i+7 i^{2}}{-3}=
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
= & \frac{3 i+7 i^{2}}{-3}=\frac{}{-3}
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
= & \frac{3 i+7 i^{2}}{-3}=\frac{3 i-7}{-3}
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
&= \frac{3 i+7 i^{2}}{-3}=\frac{3 i-7}{-3}= \\
&=
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=-1$. Express the complex number in the numerator in a + bi form

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
= & \frac{3 i+7 i^{2}}{-3}=\frac{3 i-7}{-3}= \\
= & \frac{-7+3 i}{-3}
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
= & \frac{3 i+7 i^{2}}{-3}=\frac{3 i-7}{-3}= \\
= & \frac{-7+3 i}{-3}=
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in $\mathbf{a}+$ bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
= & \frac{3 i+7 i^{2}}{-3}=\frac{3 i-7}{-3}= \\
= & \frac{-7+3 i}{-3}=\frac{7}{3}
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in $\mathbf{a}+$ bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{aligned}
& \frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= \\
= & \frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= \\
= & \frac{-6+5 i}{3}=-2+\frac{5}{3} i
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
= & \frac{3 i+7 i^{2}}{-3}=\frac{3 i-7}{-3}= \\
= & \frac{-7+3 i}{-3}=\frac{7}{3}-i
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in $\mathbf{a}+$ bi form and complete the division.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
7. $\frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}=$
$=\frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}=$
$=\frac{-6+5 i}{3}=-2+\frac{5}{3} i$

$$
\text { 8. } \begin{aligned}
& \frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
= & \frac{3 i+7 i^{2}}{-3}=\frac{3 i-7}{-3}= \\
= & \frac{-7+3 i}{-3}=\frac{7}{3}-\mathbf{i}
\end{aligned}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by an imaginary number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by i and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in $\mathbf{a}+$ bi form and complete the division. A complex number divided by an imaginary number is a complex number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 7. } \begin{array}{ll}
\frac{5+6 i}{-3 i}=\frac{i(5+6 i)}{-3 i^{2}}= & 8 . \\
=\frac{3+7 i}{3 i}=\frac{i(3+7 i)}{3 i^{2}}= \\
=\frac{5 i+6 i^{2}}{3}=\frac{5 i-6}{3}= & =\frac{3 i+7 i^{2}}{-3}=\frac{3 i-7}{-3}= \\
=\frac{-6+5 i}{3}=-2+\frac{5}{3} i & =\frac{-7+3 i}{-3}=\frac{7}{3}-i
\end{array}
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$
10. $\frac{17+i}{3-i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$

$$
\text { 10. } \frac{17+i}{3-i}=
$$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$
10. $\frac{17+i}{3-i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$
10. $\frac{17+i}{3-i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$
10. $\frac{17+i}{3-i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$
10. $\frac{17+i}{3-i}=$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$
10. $\frac{17+i}{3-i}=$
$a+b i$ and $a-b i$

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$
10. $\frac{17+i}{3-i}=$
a + bi and a - bi are complex conjugates of each other.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$
10. $\frac{17+i}{3-i}=$
a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$
10. $\frac{17+i}{3-i}=$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$

$$
\text { 10. } \frac{17+i}{3-i}=
$$

$\mathbf{a}+\mathbf{b i}$ and \mathbf{a} - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=$

$$
\text { 10. } \frac{17+i}{3-i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
9. $\frac{6+17 i}{4+3 i}=\frac{}{(4+3 i)(4-3 i)}$

$$
\text { 10. } \frac{17+i}{3-i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)} \quad \text { 10. } \frac{17+i}{3-i}=
$$

a + bi and a-bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{\mathbf{n}}{\mathrm{d}}=\mathbf{n} \div \mathrm{d} \text {. }
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad \text { 10. } \frac{17+i}{3-i}=
$$

a + bi and a-bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{\mathbf{n}}{\mathrm{d}}=\mathbf{n} \div \mathbf{d} \text {. }
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 \cdot \frac{17+i}{3-i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 \cdot \frac{17+i}{3-i}=
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathrm{bi}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{\mathbf{n}}{\mathrm{d}}=\mathbf{n} \div \mathbf{d} \text {. }
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad \text { 10. } \frac{17+i}{3-i}=
$$

$\mathbf{a}+\mathbf{b i}$ and a-bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{\mathbf{n}}{\mathrm{d}}=\mathbf{n} \div \mathbf{d} \text {. }
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)} \\
&= \text { 10. } \frac{17+i}{3-i}= \\
& 16-12 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad \text { 10. } \frac{17+i}{3-i}= \\
&=\frac{16-12 i}{16}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{\mathbf{n}}{\mathrm{d}}=\mathbf{n} \div \mathbf{d} \text {. }
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
& =\frac{16-12 i+12 i}{16-i}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad \text { 10. } \frac{17+i}{3-i}= \\
& =\frac{16-12 i+12 i}{16}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
& =\frac{16-12 i+12 i-9 i^{2}}{16-1}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad \text { 10. } \frac{17+i}{3-i}=
$$

$$
=\overline{16-12 i+12 i-9 i^{2}}
$$

a + bi and a-bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{\mathbf{n}}{\mathrm{d}}=\mathbf{n} \div \mathbf{d} \text {. }
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad \text { 10. } \frac{17+i}{3-i}=
$$

$$
=\frac{24}{16-12 i+12 i-9 i^{2}}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad \text { 10. } \frac{17+i}{3-i}= \\
&=\frac{24}{16-12 i+12 i-9 i^{2}}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad \text { 10. } \frac{17+i}{3-i}= \\
= & \frac{24-18 i}{16-12 i+12 i-9 i^{2}}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
& =\frac{24-18 i}{16-12 i+12 i-9 i^{2}}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 9. } \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
& =\frac{24-18 i+68 i}{16-12 i+12 i-9 i^{2}}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

9. | | $\frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}=$ |
| ---: | :--- |
| $=$ | $\frac{24-18 i+68 i}{16-12 i+12 i-9 i^{2}}$ |

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

9. | | $\frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}=$ |
| ---: | :--- |
| $=$ | $\frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}$ |

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 9. } & \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}=
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
&= \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
&=
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= &
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
& =\frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{4}{25}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
& =\frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{1}{25}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i}= \\
= & \frac{1}{45+0 i^{2}}=
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{25+0 i}{}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{}{25+0 i}
\end{aligned}
$$

a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{\mathbf{n}}{\mathrm{d}}=\mathbf{n} \div \mathbf{d} \text {. }
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{25}{}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \quad \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{}{25}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{25}{1}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75}{25}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 \mathrm{i}}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \frac{17+i}{3-i}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75}{25}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \quad \frac{17+i}{3-i}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}=\quad 10 . \quad \frac{17+i}{3-i}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{array}{ll}
\frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= & 10 . \\
=\frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
=\frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= & =\frac{51}{9+3 i-3 i-i^{2}} \\
=\frac{75+50 i}{25}=3+2 i &
\end{array}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
& =\frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
&= \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
&=
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \xrightarrow{\uparrow}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{\uparrow}{10}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{1}{10}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{i}{10+0 i}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{10+0 i}{}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{10+0 i}{}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
&= \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
&= \\
& 10
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{10}{}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{10}{}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{50}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{50}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{50+20 i}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{50+20 i}{10}=
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{50+20 i}{10}=5
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{aligned}
& \frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= \\
= & \frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= \\
= & \frac{75+50 i}{25}=3+2 i
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
= & \frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
= & \frac{50+20 i}{10}=5+2 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 9. } \begin{array}{ll}
\frac{6+17 i}{4+3 i}=\frac{(6+17 i)(4-3 i)}{(4+3 i)(4-3 i)}= & 10 . \\
=\frac{17+i}{3-i}=\frac{(17+i)(3+i)}{(3-i)(3+i)}= \\
=\frac{24-18 i+68 i-51 i^{2}}{16-12 i+12 i-9 i^{2}}= & =\frac{51+17 i+3 i+i^{2}}{9+3 i-3 i-i^{2}}= \\
=\frac{75+50 i}{25}=3+2 i & =\frac{50+20 i}{10}=5+2 i
\end{array}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=$
12. $\frac{22-7 i}{3+2 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=$
12. $\frac{22-7 i}{3+2 i}=$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathrm{bi}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=$
12. $\frac{22-7 i}{3+2 i}=$
a + bi and a-bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{}{(2-3 i)(2+3 i)}$
12. $\frac{22-7 i}{3+2 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 \mathrm{i}}{2-3 \mathrm{i}}=\frac{(-13-13 \mathrm{i})(2+3 \mathrm{i})}{(2-3 \mathrm{i})(2+3 \mathrm{i})}$
12. $\frac{22-7 i}{3+2 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\begin{aligned} & \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\ & =-\end{aligned}$
12. $\frac{22-7 i}{3+2 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$ $=\square$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$

$$
=\frac{4+6 i}{}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$=\frac{4+6 i-6 i}{}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$

$$
=\frac{4+6 i-6 i}{}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \quad \frac{22-7 i}{3+2 i}=
$$

$$
=\frac{4+6 i-6 i-9 i^{2}}{4}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \quad \frac{22-7 i}{3+2 i}=$

$$
=\frac{4+6 i-6 i-9 i^{2}}{}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$=\frac{-26}{4+6 i-6 i-9 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$=\frac{-26}{4+6 i-6 i-9 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$=\frac{-26-39 i}{4+6 i-6 i-9 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$=\frac{-26-39 i}{4+6 i-6 i-9 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$=\frac{-26-39 i-26 i}{4+6 i-6 i-9 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=$ 12. $\frac{22-7 i}{3+2 i}=$
$=\frac{-26-39 \mathbf{i}-26 \mathbf{i}}{4+6 \mathbf{i}-6 \mathbf{i}-9 \mathbf{i}^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}=$
$=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \quad \frac{22-7 i}{3+2 i}=
$$

$$
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}=
$$

$$
=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \quad \frac{22-7 i}{3+2 i}=
$$

$=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}=$
$=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{aligned}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=\quad \text { 12. } \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{1}{13}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{4}{13}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=\quad \text { 12. } \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{4}{13+0 i}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=\quad \text { 12. } \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13+0 i}{13}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=\quad \text { 12. } \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13+0 i}{13}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13}{}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \quad \frac{22-7 i}{3+2 i}=$
$=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}=$
$=\frac{13}{}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{aligned}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=\quad \text { 12. } \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13}{13}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\begin{aligned} & \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=\quad \text { 12. } \frac{22-7 i}{3+2 i}= \\ & =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\ & =\frac{13}{13}\end{aligned}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
11. $\begin{aligned} & \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \quad \frac{22-7 i}{3+2 i}= \\ = & \frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\ = & \frac{13-65 i}{13}\end{aligned}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=\quad \text { 12. } \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 i}{13}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=\quad \text { 12. } \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 i}{13}=
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 i}{13}=1
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5
Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \frac{22-7 i}{3+2 i}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{aligned}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \quad \frac{22-7 i}{3+2 i}= \\
= & \frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
= & \frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{aligned}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \quad \frac{22-7 i}{3+2 i}= \\
= & \frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
= & \frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{aligned}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}=12 . \quad \frac{22-7 i}{3+2 i}= \\
= & \frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
= & \frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{aligned}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
= & \frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
= & \frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{aligned}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
= & \frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
= & \frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. } \\
\frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & = \\
=\frac{13-65 i}{13}=1-5 i
\end{array}
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 11. } \begin{array}{ll}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{13-65 i}{13}=1-5 i & =\frac{1}{9}
\end{array}=\frac{}{}
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 \mathrm{i} \\
& \text { 12. } \begin{array}{l}
\frac{22-7 \mathbf{i}}{3+2 \mathbf{i}}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=- \\
9
\end{array}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 11. } \begin{array}{ll}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{13-65 i}{13}=1-5 i & =\frac{1}{9-6 i}
\end{array}=\frac{}{\text { 12 }}=1
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. } \\
=\frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{}{9-6 i} \\
=\frac{13-65 i}{13}=1-5 i &
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. } \\
=\frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{1}{9-6 i+6 i} \\
=\frac{13-65 i}{13}=1-5 i &
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{ll}
3+22-7 i \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
9-6 i+6 i
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. } \\
=\frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{1}{9-6 i+6 i-4 i^{2}} \\
=\frac{13-65 i}{13}=1-5 i &
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. } \\
=\frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{}{9-6 i+6 i-4 i^{2}} \\
=\frac{13-65 i}{13}=1-5 i &
\end{array}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{aligned}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{aligned}
& \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{ll}
22-7 i \\
=\frac{-26-39 i-26 i}{}+39 i^{2} \\
4+6 i-6 i-9 i^{2} & \\
= & =\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{13-65 i}{13}=1-5 i &
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. } \\
=\frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{66-44 i}{9-6 i+6 i-4 i^{2}} \\
=\frac{13-65 i}{13}=1-5 i &
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. } \\
\frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{66-44 i-21 i}{9-6 i+6 i-4 i^{2}} \\
=\frac{13-65 i}{13}=1-5 i &
\end{array}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{l}
22-7 i \\
=\frac{-26-39 i}{}+26 i-39 i^{2} \\
4+6 i-6 i-9 i^{2}
\end{array}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{13-65 i}{13}=1-5 i & =\frac{66-44 i-21 i}{9-6 i+6 i-4 i^{2}} \\
=1
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{l}
22-7 i \\
=\frac{-26-39 i}{}+26 i-39 i^{2} \\
4+6 i-6 i-9 i^{2}
\end{array}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{13-65 i}{13}=1-5 i & =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}} \\
=1
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{ll}
32-7 i \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
9-6 i+6 i+4 i^{2}
\end{array}=\left\{\begin{array}{l}
=\frac{13-65 i}{13}=1-5 i
\end{array}\right.
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{ll}
3+22-7 i \\
3+2 i & \frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
=\frac{13-65 i}{13}=1-5 i & =
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 \mathbf{i} \\
& \text { 12. } \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\frac{}{13}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 \mathbf{i} \\
& \text { 12. } \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\overline{13}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{aligned}
& 32-7 i \\
& =\frac{-26-39 i}{}=\frac{(22-7 i)\left(3-29 i^{2}\right.}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 \mathrm{i}}{13}=1-5 \mathrm{i} \\
& \text { 12. } \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\overline{13+0 i}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{aligned}
& 32-7 i \\
& =\frac{-26-39 i}{}=\frac{(22-7 i)\left(3-39 i^{2}\right.}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{ll}
3+22-7 i \\
3+2 i & \frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
=\frac{13-65 i}{13}=1-5 i & =\frac{13}{13}
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{aligned}
& \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{aligned}
& \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& = \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{aligned}
& \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{aligned}
& \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\frac{13-65 i}{13}=1-5 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{ll}
3+22-7 i \\
3+2 i & \frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
=\frac{13-65 i}{13}=1-5 i & =\frac{52-65 i}{13}=
\end{array}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{ll}
3+22-7 i \\
3+2 i & \frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
=\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= & =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
=\frac{13-65 i}{13}=1-5 i & =\frac{52-65 i}{13}=4
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 11. } \frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= \\
& =\frac{-26-39 i-26 i-39 i^{2}}{4+6 i-6 i-9 i^{2}}= \\
& =\frac{13-65 \mathrm{i}}{13}=1-5 \mathrm{i} \\
& \text { 12. } \frac{22-7 i}{3+2 i}=\frac{(22-7 i)(3-2 i)}{(3+2 i)(3-2 i)}= \\
& =\frac{66-44 i-21 i+14 i^{2}}{9-6 i+6 i-4 i^{2}}= \\
& =\frac{52-65 i}{13}=4-5 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 11. } \begin{array}{ll}
\frac{-13-13 i}{2-3 i}=\frac{(-13-13 i)(2+3 i)}{(2-3 i)(2+3 i)}= & \text { 12. }
\end{array} \begin{array}{l}
22-7 i \\
=\frac{-26-39 i}{}=\frac{(22-7 i)(3-29 i}{4+6 i-6 i-9 i^{2}}= \\
=\frac{66-44 i-21 i+14 i^{2}}{(3+2 i)(3-2 i)}= \\
=\frac{13-65 i}{13}=1-5 i+6 i-4 i^{2}
\end{array}= \\
= & =\frac{52-65 i}{13}=4-5 i
\end{array}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=$
14. $\frac{4-i}{1+3 i}=$
a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=$
14. $\frac{4-i}{1+3 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=$
14. $\frac{4-i}{1+3 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{}{(1-2 i)(1+2 i)}$
14. $\frac{4-i}{1+3 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}$
14. $\frac{4-i}{1+3 i}=$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathrm{bi}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$
14. $\frac{4-i}{1+3 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

14. $\frac{4-i}{1+3 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

14. $\frac{4-i}{1+3 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

14. $\frac{4-i}{1+3 i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
&=\frac{1+2 i}{1+2}
\end{aligned}
$$

$$
\text { 14. } \frac{4-i}{1+3 i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div \mathbf{d}
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
&=\frac{1+2 i-2 i}{1+2}
\end{aligned}
$$

$$
\text { 14. } \frac{4-i}{1+3 i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div \mathbf{d}
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=
$$

$$
\text { 14. } \frac{4-i}{1+3 i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

$$
\text { Division problems are written using fraction notation. } \frac{n}{d}=\mathbf{n} \div d .
$$

These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)} \\
&=\frac{1}{1+2 i-2 i-4 i^{2}}
\end{aligned}
$$

$$
\text { 14. } \frac{4-i}{1+3 i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=\quad$ 14. $\frac{4-i}{1+3 i}=$
$=\overline{1+2 i-2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=\quad$ 14. $\frac{4-i}{1+3 i}=$
$=\frac{3}{1+2 i-2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$ 14. $\frac{4-i}{1+3 i}=$
$=\frac{3}{1+2 i-2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$ 14. $\frac{4-i}{1+3 i}=$
$=\frac{3+6 \mathbf{i}}{1+2 i-2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$ 14. $\frac{4-i}{1+3 i}=$
$=\frac{3+6 \mathbf{i}}{1+2 i-2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$ 14. $\frac{4-i}{1+3 i}=$
$=\frac{3+6 i+5 i}{1+2 i-2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$ 14. $\frac{4-i}{1+3 i}=$
$=\frac{3+6 i+5 i}{1+2 i-2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$ 14. $\frac{4-i}{1+3 i}=$
$=\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$
14. $\frac{4-i}{1+3 i}=$
$=\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}=$
$=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$
14. $\frac{4-i}{1+3 i}=$
$=\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}=$
$=\frac{4}{5}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$
14. $\frac{4-i}{1+3 i}=$
$=\frac{3+6 i+5}{1+\underset{4}{2} i-2 i}$
$=\frac{1}{5}$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& 5+0 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& = \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& =
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& 3+5 i \\
& 1-2 i=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
&= \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
&= \\
& 5+0 i
\end{aligned}
$$

a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
13. $\frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=$
14. $\frac{4-i}{1+3 i}=$
$=\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}=$
$=\frac{5}{5}$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& =\frac{}{5}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7}{5}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7}{5}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7-i}{5}+\frac{11}{5} i
\end{aligned}
$$

a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7-i}{5}+\frac{11}{5} i
\end{aligned}
$$

a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& = \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& = \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

14. $\begin{aligned} & \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\ & =\end{aligned}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

14. $\begin{aligned} & \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\ & =\end{aligned}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

14. $\begin{aligned} & \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\ & = \\ & 1-3 i\end{aligned}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& =\frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

14. $\frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}=$

$$
=\overline{1-3 i+3 i}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& =\frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

14. $\frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}=$

$$
=\overline{1-3 i+3 i-9 i^{2}}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& = \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

14. $\frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}=$

$$
=\overline{1-3 i+3 i-9 i^{2}}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& =\frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

14. $\frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}=$
$=\frac{4}{1-3 i+3 i-9 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& = \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& =\frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
= & \frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
= &
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
= & \frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
= & \frac{\uparrow}{10}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
= & \frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
= & \frac{4}{10}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
= & \frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
= & \frac{4}{10+0 i}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
& =\frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
& =\frac{}{10+0 i}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
& =\frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
& = \\
& 10+0 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
& =\frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
& =\frac{10}{}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

14. $\frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}=$

$$
=\frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}=
$$

$$
=\frac{10}{10}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
& =\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
& = \\
& \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
= & \frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
= & \frac{1}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
= & \frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
= & \frac{1-13 i}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
& =\frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
& =\frac{1-13 i}{10}=
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
& =\frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
& =\frac{1-13 i}{10}=\frac{1}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}= \\
= & \frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}= \\
= & \frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
& \frac{4-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
& =\frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
& = \\
& \frac{1-13 i}{10}=\frac{1}{10}-\frac{13}{10} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a complex number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 13. } \begin{aligned}
& \begin{array}{ll}
& \frac{3+5 i}{1-2 i}=\frac{(3+5 i)(1+2 i)}{(1-2 i)(1+2 i)}=
\end{array} \text { 14. } \\
&=\frac{3-i}{1+3 i}=\frac{(4-i)(1-3 i)}{(1+3 i)(1-3 i)}= \\
&=\frac{3+6 i+5 i+10 i^{2}}{1+2 i-2 i-4 i^{2}}==\frac{4-12 i-i+3 i^{2}}{1-3 i+3 i-9 i^{2}}= \\
&=\frac{-7+11 i}{5}=\frac{-7}{5}+\frac{11}{5} i=\frac{1-13 i}{10}=\frac{1}{10}-\frac{13}{10} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and \mathbf{a} - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=$
16. $\frac{-2}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=$
16. $\frac{-2}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=$
16. $\frac{-2}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=$
16. $\frac{-2}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=$
16. $\frac{-2}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{}{(1+2 i)(1-2 i)}$
16. $\frac{-2}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}$
16. $\frac{-2}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\begin{aligned} & \frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{ii})}= \\ & =\frac{}{1}\end{aligned}$
16. $\frac{-2}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)} & = \\
= & \frac{1-2 i}{1}
\end{aligned}
$$

16. $\frac{-2}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$ $=\overline{1-2 \mathrm{i}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$ $=\overline{1-2 i+2 i}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{1}{1-2 i+2 i}
\end{aligned}
$$

16. $\frac{-2}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)} & = \\
= & \frac{1-2 i+2 i-4 i^{2}}{1}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

15. | | $\frac{5}{1+2 i}=\frac{\Gamma}{5(1-2 i)}$ |
| ---: | :--- |
| $=$ | $\frac{16 .}{} \frac{-2}{3-i}=$ |
| $1-2 i+2 i-4 i^{2}$ | |

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$ $=\frac{5}{1-2 i+2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=16 . \quad \frac{-2}{3-i}=$ $=\frac{5}{1-2 i+2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$ $=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$

$$
\begin{aligned}
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{\uparrow}{\uparrow}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$

$$
\begin{aligned}
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{1}{5}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$

$$
\begin{aligned}
& =\frac{5-10 i}{1-2 i+\underset{\uparrow}{2 i}-4 i^{2}}= \\
& =\frac{4}{5}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$

$$
\begin{aligned}
& =\frac{5-10 i}{1-2 i+\underset{\uparrow}{i}-4 i^{2}}= \\
& =\frac{1}{5+0 i}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\overline{5+0 i}$
a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\overline{5+0 i}$
a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$
$=\frac{5-1}{1-2 i+}$
$=\frac{5}{5}$
a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5}{5}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5}{5}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$

$$
\begin{aligned}
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$

$$
\begin{aligned}
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$

$$
\begin{aligned}
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 16. $\frac{-2}{3-i}=$

$$
\begin{aligned}
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=16 . \quad \frac{-2}{3-i}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and \mathbf{a} - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad \text { 16. } \frac{-2}{3-i}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=\quad \text { 16. } \frac{-2}{3-i}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

16. $\frac{-2}{3-i}=\frac{}{(3-i)(3+i)}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

16. $\frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
= & \frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

16. $\begin{aligned} & \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\ & =\end{aligned}$
$\mathbf{a}+\mathbf{b i}$ and \mathbf{a} - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

16. $\begin{aligned} & \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\ & = \\ & 9\end{aligned}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

16. $\begin{aligned} & \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\ & = \\ & 9\end{aligned}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

16. $\begin{aligned} & \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\ & =\frac{\square i}{9+3 i}\end{aligned}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
= & \frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
= & \frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

16. $\begin{aligned} & \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\ &= \frac{1}{9+3 i-3 i}\end{aligned}$
$\mathbf{a}+\mathbf{b i}$ and \mathbf{a} - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

16. $\frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}=$

$$
=\overline{9+3 \mathbf{i}-3 \mathbf{i}}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
& \frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned}
$$

16. $\frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}=$

$$
=\overline{9+3 \mathbf{i}-3 \mathbf{i}-\mathbf{i}^{2}}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$
16. $\frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}=$

$$
=\overline{9+3 i-3 i-i^{2}}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$
16. $\frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6}{9+3 i-3 i-i^{2}}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$
16. $\frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6}{9+3 i-3 i-i^{2}}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$
16. $\frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}=$
$=\frac{-6-2 i}{9+3 i-3 i-i^{2}}$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
= & \frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
= &
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{\uparrow}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
= & \frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
= & \frac{\uparrow}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
= & \frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
= & \frac{\uparrow}{10+0 i}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{}{10+0 i}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{}{10+0 i}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{10}{10}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{10}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{-6}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{-6-2 i}{10}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{-6-2 i}{10}=
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{-6-2 i}{10}=\frac{-3}{5}
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
15. $\frac{5}{1+2 \mathrm{i}}=\frac{5(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5-10 i}{1-2 i+2 i-4 i^{2}}=$
$=\frac{5-10 i}{5}=1-2 i$

$$
\text { 16. } \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
= & \frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
= & \frac{-6-2 i}{10}=\frac{-3}{5}-\frac{1}{5} i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing a real number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 15. } \begin{aligned}
\frac{5}{1+2 i}=\frac{5(1-2 i)}{(1+2 i)(1-2 i)}= & \text { 16. }
\end{aligned} \begin{aligned}
& \frac{-2}{3-i}=\frac{-2(3+i)}{(3-i)(3+i)}= \\
& =\frac{5-10 i}{1-2 i+2 i-4 i^{2}}= \\
& =\frac{-6-2 i}{9+3 i-3 i-i^{2}}= \\
& =\frac{5-10 i}{5}=1-2 i
\end{aligned} \quad=\frac{-6-2 i}{10}=\frac{-3}{5}-\frac{1}{5} i=
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{n}{d}=\mathbf{n} \div d$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=$
18. $\frac{-2 i}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{}{(1+2 \mathrm{i})(1-2 \mathrm{i})}$
18. $\frac{-2 i}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=\quad \text { 18. } \frac{-2 i}{3-i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=\quad \text { 18. } \frac{-2 i}{3-i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=\quad \text { 18. } \frac{-2 i}{3-i}=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 17. } \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=\text { 18. } \frac{-2 i}{3-i}= \\
& =\frac{}{1-2 i}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 17. } \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=\quad \text { 18. } \frac{-2 i}{3-i}= \\
& =\frac{i}{1-2 i+2 i}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 17. } \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
& =\frac{i}{1-2 i+2 i}
\end{aligned}
$$

$$
\text { 18. } \frac{-2 i}{3-i}=
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 17. } \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
& =\frac{i}{1-2 i+2 i-4 i^{2}}
\end{aligned}
$$

$$
\text { 18. } \frac{-2 i}{3-i}=
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 18. $\frac{-2 i}{3-i}=$
$=\overline{1-2 i+2 i-4 i^{2}}$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=\quad$ 18. $\frac{-2 i}{3-i}=$
$=\frac{5 i}{1-2 i+2 i-4 i^{2}}$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=$ 18. $\frac{-2 i}{3-i}=$
$=\frac{5 i}{1-2 i+2 i-4 i^{2}}$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=$ 18. $\frac{-2 i}{3-i}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=$ 18. $\frac{-2 i}{3-i}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\square$
$\mathbf{a}+\mathbf{b i}$ and \mathbf{a} - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathrm{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=$ 18. $\frac{-2 i}{3-i}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\overline{5}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=$
$=\frac{5 i-10 i^{2}}{1-\underset{\uparrow}{2 i}+\underset{\uparrow}{2 i}-4 i^{2}}=\frac{}{5}$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5 i-10 i^{2}}{1-2 i+\underset{\uparrow}{i}-4 i^{2}}=\frac{}{5+0 i}$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=\quad$ 18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{}{5+0 i}$
$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=\quad$ 18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{}{5+0 i}$
a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathrm{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=\quad$ 18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{}{5}$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{}{5}$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i}{5}$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}$
18. $\frac{-2 \mathrm{i}}{3-\mathrm{i}}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}=$
$=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}=$
$=\frac{5}{5}$
18. $\frac{-2 i}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}=$ $=\frac{10}{5}$
18. $\frac{-2 i}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 \mathrm{i}}{1+2 \mathrm{i}}=\frac{5 \mathrm{i}(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})}=$
$=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}=$
$=\frac{10+5 i}{5}$
18. $\frac{-2 i}{3-i}=$
$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=$

$$
\begin{aligned}
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
& =\frac{10+5 i}{5}=
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in a + bi form. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=$

$$
\begin{aligned}
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
& =\frac{10+5 i}{5}=2
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in a + bi form. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
17. $\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=$

$$
\begin{aligned}
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
& =\frac{10+5 i}{5}=2+i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in a + bi form. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{-2 i}{3-i}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5-i}=2+i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{array}{ll}
\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= & \text { 18. } \frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}= \\
=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= & =\frac{}{9+3 i-3 i-i^{2}} \\
=\frac{10+5 i}{5}=2+i &
\end{array}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{array}{ll}
\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= & \text { 18. } \frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}= \\
=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= & =\frac{-6 i}{9+3 i-3 i-i^{2}} \\
=\frac{10+5 i}{5}=2+i &
\end{array}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 \mathbf{i}}{9+3 \mathbf{i}-3 \mathbf{i}-\mathbf{i}^{2}}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{array}{ll}
\frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= & \text { 18. } \frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}= \\
=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= & =\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}} \\
=\frac{10+5 i}{5}=2+i &
\end{array}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
\begin{equation*}
=\frac{-6 \mathbf{i}-2 \mathbf{i}^{2}}{9+3 \mathbf{i}-3 \mathbf{i}-\mathbf{i}^{2}}= \tag{ـ_}
\end{equation*}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 \mathbf{i}-2 \mathbf{i}^{2}}{9+3 \mathbf{i}-3 \mathbf{i}-\mathbf{i}^{2}}=\frac{}{10}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 \mathbf{i}-2 \mathbf{i}^{2}}{9+\underset{\uparrow}{3 i}-3 i-i^{2}}=\frac{}{10}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 i-2 i^{2}}{9+\underset{\uparrow}{\mathbf{i}}-3 \mathbf{i}-\mathbf{i}^{2}}=\frac{}{10+0 i}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 \mathbf{i}-2 \mathbf{i}^{2}}{9+3 i-3 i-i^{2}}=\frac{}{10+0 i}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{}{10+0 i}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 \mathbf{i}-2 \mathbf{i}^{2}}{9+3 \mathbf{i}-3 i-\mathbf{i}^{2}}=\frac{}{10}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{}{10}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i}{10}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i+2}{10}
$$

$\mathbf{a}+\mathbf{b i}$ and $\mathbf{a}-\mathbf{b i}$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 \mathbf{i}-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i+2}{10}=
$$

$$
=
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
=\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i+2}{10}=
$$

$$
=\frac{10}{10}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
\begin{aligned}
& =\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i+2}{10}= \\
& =\frac{2}{10}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
\begin{aligned}
& =\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i+2}{10}= \\
& =\frac{2-6 i}{10}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=\mathbf{- 1}$. Express the complex number in the numerator in a + bi form.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
\begin{aligned}
& =\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i+2}{10}= \\
& =\frac{2-6 i}{10}=
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in a + bi form. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
\begin{aligned}
& =\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i+2}{10}= \\
& =\frac{2-6 i}{10}=\frac{1}{5}
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in a + bi form. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}= \\
= & \frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= \\
= & \frac{10+5 i}{5}=2+i
\end{aligned}
$$

18. $\frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}=$

$$
\begin{aligned}
& =\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i+2}{10}= \\
& =\frac{2-6 i}{10}=\frac{1}{5}-\frac{3}{5} i
\end{aligned}
$$

$a+b i$ and $a-b i$ are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.
These problems involve dividing an imaginary number by a complex number. In problems like these, you must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $i^{2}=-1$. Express the complex number in the numerator in a + bi form. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 17. } \begin{aligned}
& \frac{5 i}{1+2 i}=\frac{5 i(1-2 i)}{(1+2 i)(1-2 i)}=
\end{aligned} \begin{array}{lr}
\text { 18. } & \frac{-2 i}{3-i}=\frac{-2 i(3+i)}{(3-i)(3+i)}= \\
=\frac{5 i-10 i^{2}}{1-2 i+2 i-4 i^{2}}=\frac{5 i+10}{5}= & =\frac{-6 i-2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{-6 i+2}{10}= \\
=\frac{10+5 i}{5}=2+i & =\frac{2-6 i}{10}=\frac{1}{5}-\frac{3}{5} i
\end{array}
$$

a + bi and a - bi are complex conjugates of each other. The product of a complex number and its complex conjugate is always a real number.

Division problems are written using fraction notation. $\frac{\mathbf{n}}{\mathbf{d}}=\mathbf{n} \div \mathbf{d}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3-i

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a $+\mathbf{b i}$ form.
19. $4+3 i$
20. 3 - i

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a $+\mathbf{b i}$ form.
19. $4+3 i$
20. 3 - i

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3-i

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{\underbrace{(4+3 i)(4-3 i)}}=$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{?}{16}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{\left(4^{+3 i)(4-3 i)}\right.}=$
$=\frac{A}{16-12 i}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5
Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i \quad$ 20. $3-i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{16-12 i}{}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5
Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\overline{16-12 i+12 i}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& 19.4+3 i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{i(12 i+12 i}{16-12}
\end{aligned}
$$

$$
\text { 20. } 3-\mathrm{i}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3-i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\overline{16-12 i+12 i-9 i^{2}}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\overline{16-12 i+12 i-9 i^{2}}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\overline{16-12 i+12 i-9 i^{2}}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& \text { 19. } 4+3 i \quad \text { 20. } 3-i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{\uparrow}{25}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& \text { 19. } 4+3 i \quad \text { 20. } 3-i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{\uparrow}{25}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& \text { 19. } 4+3 i \quad \text { 20. } 3-i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{\uparrow}{\uparrow}= \\
& 25+0 i
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\overline{25}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\overline{25}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3-i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3-i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i \quad$ 20. $3-i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& 19.4+3 i \quad \text { 20. } 3-i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{4-3 i}{25}=\frac{4}{25}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& 19.4+3 i \quad \text { 20. } 3-i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $i^{2}=-1$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
20. 3 - i
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.) In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{array}{l|l}
19.4+3 i & \text { 20. } 3-i \\
\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= & \frac{1}{3-i} \\
=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i &
\end{array}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.) In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{array}{l|l}
19.4+3 i & \text { 20. } 3-i \\
\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= & \frac{1}{3-i} \\
=\frac{4-3 i}{16-12 i}+12 i-9 i^{2} & \\
=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i &
\end{array}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& 19 . \quad 4+3 i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i
\end{aligned}
$$

$$
\text { 20. } 3-i
$$

$$
\frac{1}{3-i}=
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 \mathrm{i}}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$
20. 3 - i

$$
\frac{1}{3-i}=\frac{}{(3-i)(3+i)}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$
20. 3-i

$$
\frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$
20. 3-i
$\frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}=$
=

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$
20. 3-i
$\frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}=$
$=$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{1}{9}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{}{9}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 \mathrm{i}}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{\square i}{9+3 i}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 \mathrm{i}}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{1+3 i}{9+3 i}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 \mathrm{i}}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{1}{9+3 i-3 i}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$
20. 3-i

$$
\begin{aligned}
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{1}{9+3 i-3 i}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$
20. 3-i

$$
\begin{aligned}
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
= & \frac{1}{9+3 i-3 i-i^{2}}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{}{9+3 i-3 i-i^{2}}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{3+i}{9+3 i-3 i-i^{2}}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} \mathrm{i}$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{3+i}{9+3 i-3 i-i^{2}}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$
20. 3-i

$$
\begin{aligned}
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& = \\
& \frac{3+i}{9+3 i-3 i-i^{2}}=
\end{aligned}
$$

$$
=
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$
20. 3-i

$$
\frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}=
$$

$$
=\frac{3+\mathbf{i}}{9+3 \mathbf{i}-3 \mathbf{i}-\mathbf{i}^{2}}=
$$

$$
=
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=-1$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{3+i}{9+3 i-3 i-i^{2}}= \\
& =\frac{\uparrow}{10}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$
20. 3-i

$$
\begin{aligned}
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
= & \frac{3+i}{9+3 i-3 i-i^{2}}= \\
= & \frac{\uparrow}{10}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$
20. 3-i

$$
\begin{aligned}
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
= & \frac{3+i}{9+3 i-3 i-i^{2}}= \\
= & \frac{\uparrow}{10+0 i}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$
20. 3-i

$$
\begin{aligned}
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
= & \frac{3+i}{9+3 i-3 i-i^{2}}= \\
= & \frac{10}{10}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.
19. $4+3 i$
$\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}=$
$=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}=$
$=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i$
20. 3-i

$$
\begin{aligned}
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
= & \frac{3+i}{9+3 i-3 i-i^{2}}= \\
= & \frac{10}{10}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathbf{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& 19 . \quad 4+3 i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{3+i}{9+3 i-3 i-i^{2}}= \\
& =\frac{3+i}{10}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& 19 . \quad 4+3 i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{3+i}{9+3 i-3 i-i^{2}}= \\
& =\frac{3+i}{10}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions.
Remember that $\mathrm{i}^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& 19 . \quad 4+3 i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{3+i}{9+3 i-3 i-i^{2}}= \\
& =\frac{3+i}{10}=
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{\mathbf{2}}=\mathbf{- 1}$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& 19 . \quad 4+3 i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{3+i}{9+3 i-3 i-i^{2}}= \\
& =\frac{3+i}{10}=\frac{3}{10}
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{\mathbf{2}}=\mathbf{- 1}$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{aligned}
& 19 . \quad 4+3 i \\
& \frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= \\
& =\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= \\
& =\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20. } 3-i \\
& \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
& =\frac{3+i}{9+3 i-3 i-i^{2}}= \\
& =\frac{3+i}{10}=\frac{3}{10}+\frac{1}{10} i
\end{aligned}
$$

The multiplicative inverse of the real number k is $\frac{1}{k}$. (k can not be zero.)
In the same way, the multiplicative inverse of $a+b i$ is $\frac{1}{a+b i}$. Divide the real number 1 by the complex number. You must make the divisor a real number. Multiply both terms of the fraction by the complex conjugate of the divisor and simplify the resulting expressions. Remember that $\mathrm{i}^{2}=\mathbf{- 1}$. Now that the divisor is a real number, you can complete the division process.

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{array}{ll}
19.4+3 i & \text { 20. } 3-i \\
\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= & \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= & =\frac{3+i}{9+3 i-3 i-i^{2}}= \\
=\frac{4-3 i}{25}=\frac{4}{25}-\frac{3}{25} i & =\frac{3+i}{10}=\frac{3}{10}+\frac{1}{10} i
\end{array}
$$

Algebra II Class Worksheet \#5 Unit 5

Write the multiplicative inverse of each of the following using a + bi form.

$$
\begin{array}{ll}
\text { 19. } 4+3 i & \text { 20. } 3-i \\
\frac{1}{4+3 i}=\frac{1(4-3 i)}{(4+3 i)(4-3 i)}= & \frac{1}{3-i}=\frac{1(3+i)}{(3-i)(3+i)}= \\
=\frac{4-3 i}{16-12 i+12 i-9 i^{2}}= & =\frac{3+i}{9+3 i-3 i-i^{2}}= \\
=\text { Good luck on the homework!! }
\end{array}
$$

