Algebra II
 Lesson \#4 Unit 5
 Class Worksheet \#4
 For Worksheet \#5

The Complex Numbers

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

1. $\mathrm{x}^{2}=9$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

1. $\mathbf{x}^{2}=9$
$x=\sqrt{9}$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

1. $x^{2}=9$
$x=\sqrt{9}$ or $x=-\sqrt{9}$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

1. $x^{2}=9$

$$
\begin{aligned}
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& \quad x=3
\end{aligned}
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

1. $x^{2}=9$

$$
\begin{gathered}
x=\sqrt{9} \text { or } x=-\sqrt{9} \\
x=3 \text { or } x=-3
\end{gathered}
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

1. $x^{2}=9$

$$
\begin{gathered}
x=\sqrt{9} \text { or } x=-\sqrt{9} \\
x=3 \text { or } x=-3
\end{gathered}
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

1. $\mathrm{x}^{2}=9$

$$
\begin{gathered}
x=\sqrt{9} \text { or } x=-\sqrt{9} \\
x=3 \text { or } x=-3
\end{gathered}
$$

These solutions are real numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

2. $x^{2}=-9$

These solutions are real numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{gathered}
\text { 1. } \mathbf{x}^{2}=9 \\
\mathbf{x}=\sqrt{9} \text { or } \mathbf{x}=-\sqrt{9} \\
\mathbf{x}=3 \text { or } \mathbf{x}=-3
\end{gathered} \text { These solutions are real numbers. }
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9}
\end{aligned}
$$

These solutions are real numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \quad \mathbf{x}^{2}=-9 \\
& \begin{array}{l}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i
\end{array}
\end{aligned}
$$

These solutions are real numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \mathbf{x}^{2}=-9 \\
& \begin{array}{c}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{array}
\end{aligned}
$$

These solutions are real numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.
2. $x^{2}=-9$

$$
\begin{gathered}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{gathered}
$$

These solutions are imaginary numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.
2. $x^{2}=-9$

$$
\begin{gathered}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{gathered}
$$

These solutions are imaginary numbers.
3. $(x-2)^{2}=9$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 3. }(x-2)^{2}=9 \\
& x-2=\sqrt{9}
\end{aligned}
$$

2. $x^{2}=-9$

$$
\begin{gathered}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{gathered}
$$

These solutions are imaginary numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. } \quad(x-2)^{2}=9 \\
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9}
\end{gathered}
$$

2. $x^{2}=-9$

$$
\begin{gathered}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{gathered}
$$

These solutions are imaginary numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 3. } \quad(x-2)^{2}=9 \\
& x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
& x-2=3
\end{aligned}
$$

2. $x^{2}=-9$

$$
\begin{gathered}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{gathered}
$$

These solutions are imaginary numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. } \quad(x-2)^{2}=9 \\
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3
\end{gathered}
$$

2. $x^{2}=-9$

$$
\begin{gathered}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{gathered}
$$

These solutions are imaginary numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 3. } \quad(x-2)^{2}=9 \\
& \begin{aligned}
& x-2= \sqrt{9} \text { or } x-2=-\sqrt{9} \\
& x-2=3 \text { or } x-2=-3 \\
& x=5
\end{aligned}
\end{aligned}
$$

2. $x^{2}=-9$

$$
\begin{gathered}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{gathered}
$$

These solutions are imaginary numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{aligned}
& x-2= \sqrt{9} \text { or } x-2=-\sqrt{9} \\
& x-2=3 \text { or } x-2=-3 \\
& x=5 \text { or } x=-1
\end{aligned}
\end{gathered}
$$

2. $x^{2}=-9$

$$
\begin{gathered}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{gathered}
$$

These solutions are imaginary numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
& x=3 i \text { or } x=-3 i
\end{aligned}
$$

These solutions are imaginary numbers.
4. $(x-2)^{2}=-9$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
& x=3 i \text { or } x=-3 i
\end{aligned}
$$

These solutions are imaginary numbers.
4. $(x-2)^{2}=-9$
$x-2=\sqrt{-9}$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
& x=3 i \text { or } x=-3 i
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9}
\end{gathered}
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
& x=3 i \text { or } x=-3 i
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{aligned}
& \text { 4. } \quad(x-2)^{2}=-9 \\
& x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
& x-2=3 i
\end{aligned}
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
& x=3 i \text { or } x=-3 i
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{aligned}
& \text { 4. }(x-2)^{2}=-9 \\
& x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
& x-2=3 i \text { or } x-2=-3 i
\end{aligned}
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
& x=3 i \text { or } x=-3 i
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{aligned}
& \text { 4. }(x-2)^{2}=-9 \\
& x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
& x-2=3 i \text { or } x-2=-3 i \\
& x=2+3 i
\end{aligned}
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{aligned}
x-2= & \sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2 & =3 \text { or } x-2=-3 \\
x=5 & \text { or } x=-1
\end{aligned}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& \begin{array}{l}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{array}
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
x-2=3 i \text { or } x-2=-3 i \\
x=2+3 i \text { or } x=2+-3 i
\end{gathered}
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.'

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
& x=3 i \text { or } x=-3 i
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
x-2=3 i \text { or } x-2=-3 i \\
x=2+3 i \text { or } x=2+-3 i
\end{gathered}
$$

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{aligned}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{aligned}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
& x=3 i \text { or } x=-3 i
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
x-2=3 i \text { or } x-2=-3 i \\
x=2+3 i \text { or } x=2+-3 i
\end{gathered}
$$

These solutions are the sum of a real number

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{aligned}
& x-2= \sqrt{9} \text { or } x-2=-\sqrt{9} \\
& x-2=3 \text { or } x-2=-3 \\
& x=5 \text { or } x=-1
\end{aligned}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& \begin{array}{l}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{array}
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
x-2=3 i \text { or } x-2=-3 i \\
x=2+3 i \text { or } x=2+-3 i
\end{gathered}
$$

These solutions are the sum of a real number

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 3. }(x-2)^{2}=9 \\
& \begin{aligned}
& x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
& x-2=3 \text { or } x-2=-3 \\
& x=5 \text { or } x=-1
\end{aligned}
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& \begin{array}{l}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{array}
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
x-2=3 i \text { or } x-2=-3 i \\
x=2+3 i \text { or } x=2+-3 i
\end{gathered}
$$

These solutions are the sum of a real number and an imaginary number.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{aligned}
& x-2= \sqrt{9} \text { or } x-2=-\sqrt{9} \\
& x-2=3 \text { or } x-2=-3 \\
& x=5 \text { or } x=-1
\end{aligned}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& \begin{array}{l}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{array}
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
x-2=3 i \text { or } x-2=-3 i \\
x=2+3 i \text { or } x=2+-3 i
\end{gathered}
$$

These solutions are the sum of a real number and an imaginary number.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.
2. $x^{2}=-9$

$$
\begin{gathered}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{gathered}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
x-2=3 i \text { or } x-2=-3 i \\
x=2+3 i \text { or } x=2+-3 i
\end{gathered}
$$

These solutions are the sum of a real number and an imaginary number. They are complex numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{\mathbf{k}}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. } \quad(x-2)^{2}=9 \\
\begin{aligned}
x-2= & \sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2 & =3 \text { or } x-2=-3 \\
x & =5 \text { or } x=-1
\end{aligned}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& \begin{array}{l}
x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
x=3 i \text { or } x=-3 i
\end{array}
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
x-2=3 i \text { or } x-2=-3 i \\
x=2+3 i \text { or } x=2+-3 i
\end{gathered}
$$

These solutions are the sum of a real number and an imaginary number. They are complex numbers.

The Complex Numbers

The 'Square Root Property' is used to solve equations of the form $\mathbf{N}^{2}=\mathbf{k}$. The square root property states 'If $\mathbf{N}^{2}=\mathbf{k}$, then $\mathbf{N}=\sqrt{k}$ or $\mathbf{N}=-\sqrt{\mathbf{k}}$.,

Consider these examples.

$$
\begin{aligned}
& \text { 1. } x^{2}=9 \\
& x=\sqrt{9} \text { or } x=-\sqrt{9} \\
& x=3 \text { or } x=-3
\end{aligned}
$$

These solutions are real numbers.

$$
\begin{gathered}
\text { 3. }(x-2)^{2}=9 \\
\begin{array}{c}
x-2=\sqrt{9} \text { or } x-2=-\sqrt{9} \\
x-2=3 \text { or } x-2=-3 \\
x=5 \text { or } x=-1
\end{array}
\end{gathered}
$$

These solutions are real numbers.

$$
\begin{aligned}
& \text { 2. } x^{2}=-9 \\
& x=\sqrt{-9} \text { or } x=-\sqrt{-9} \\
& x=3 i \text { or } x=-3 i
\end{aligned}
$$

These solutions are imaginary numbers.

$$
\begin{gathered}
\text { 4. }(x-2)^{2}=-9 \\
x-2=\sqrt{-9} \text { or } x-2=-\sqrt{-9} \\
x-2=3 i \text { or } x-2=-3 i \\
x=2+3 i \text { or } x=2+-3 i
\end{gathered}
$$

These solutions are the sum of a real number and an imaginary number. They are complex numbers.

A complex number is defined to be any number that can be expressed in the form $\underline{a}+b \mathbf{i}$ where \underline{a} and \underline{b} are real numbers and $i=\sqrt{-1}$.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{a}+b \mathbf{i}$ where \underline{a} and \underline{b} are real numbers and $i=\sqrt{-1}$.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{a}+b \mathbf{b}$ where \underline{a} and \underline{b} are real numbers and $\mathbf{i}=\sqrt{-1}$.

Clearly, if $\mathbf{b}=0$, then the complex number $\underline{a+b i}$ is a real number.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+\mathbf{b i}}$ where $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $b=0$, then the complex number $\mathbf{a + b i}$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+b \mathbf{b}}$ where $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $b=0$, then the complex number $\underline{a+b i}$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+\mathbf{b i}}$ where $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $b=0$, then the complex number $\underline{a+b i}$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

Also, if $\mathbf{a}=\mathbf{0}$, then the complex number $\underline{\mathbf{a}+\mathbf{b i}}$ is an imaginary number.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+b \mathbf{b}}$ where $\underline{\mathbf{a}}$ and \underline{b} are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $\mathbf{b}=0$, then the complex number $\mathbf{a}+\mathbf{b i}$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

Also, if $\mathbf{a}=0$, then the complex number $\mathbf{a}+\mathbf{b i}$ is an imaginary number. Therefore, the set of imaginary numbers is also a subset of the set of complex numbers.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+b \mathbf{b}}$ where $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $b=0$, then the complex number $a+b i$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

Also, if $\mathbf{a}=\mathbf{0}$, then the complex number $\mathbf{a}+\mathbf{b i}$ is an $\underline{i m a g i n a r y}$ number. Therefore, the set of imaginary numbers is also a subset of the set of complex numbers.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+\mathbf{b i}}$ where $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $b=0$, then the complex number $a+b i$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

Also, if $\mathbf{a}=\mathbf{0}$, then the complex number $\mathbf{a}+\mathbf{b i}$ is an $\underline{i m a g i n a r y}$ number. Therefore, the set of imaginary numbers is also a subset of the set of complex numbers.

You have learned how to do many different 'things' with the real numbers.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+b \mathbf{b}}$ where $\underline{\mathbf{a}}$ and \underline{b} are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $b=0$, then the complex number $a+b i$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

Also, if $\mathbf{a}=\mathbf{0}$, then the complex number $\mathbf{a}+\mathbf{b i}$ is an $\underline{i m a g i n a r y}$ number. Therefore, the set of imaginary numbers is also a subset of the set of complex numbers.

You have learned how to do many different 'things' with the real numbers. This includes graphing them, finding their absolute value, and performing the basic operations.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+b \mathbf{b}}$ where $\underline{\mathbf{a}}$ and \underline{b} are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $b=0$, then the complex number $\underline{a+b i}$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

Also, if $\mathbf{a}=0$, then the complex number $\mathbf{a}+\mathbf{b i}$ is an imaginary number. Therefore, the set of imaginary numbers is also a subset of the set of complex numbers.

You have learned how to do many different 'things' with the real numbers. This includes graphing them, finding their absolute value, and performing the basic operations. You will be learning how to do the same 'things' with the complex numbers.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+b \mathbf{b}}$ where $\underline{\mathbf{a}}$ and \underline{b} are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $b=0$, then the complex number $\underline{a+b i}$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

Also, if $\mathbf{a}=0$, then the complex number $\mathbf{a}+\mathbf{b i}$ is an imaginary number. Therefore, the set of imaginary numbers is also a subset of the set of complex numbers.

You have learned how to do many different 'things' with the real numbers. This includes graphing them, finding their absolute value, and performing the basic operations. You will be learning how to do the same 'things' with the complex numbers. We will begin by reviewing the subsets of the set of real numbers.

The Complex Numbers

A complex number is defined to be any number that can be expressed in the form $\underline{\mathbf{a}+\mathbf{b i}}$ where $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ are real numbers and $\mathbf{i}=\sqrt{\mathbf{- 1}}$.

Clearly, if $b=0$, then the complex number $\underline{a+b i}$ is a real number. Therefore, the set of real numbers is a subset of the set of complex numbers.

Also, if $\mathbf{a}=0$, then the complex number $\mathbf{a}+\mathbf{b i}$ is an imaginary number. Therefore, the set of imaginary numbers is also a subset of the set of complex numbers.

You have learned how to do many different 'things' with the real numbers. This includes graphing them, finding their absolute value, and performing the basic operations. You will be learning how to do the same 'things' with the complex numbers. We will begin by reviewing the subsets of the set of real numbers.

The Real Number System

The Real Number System Subsets of the Real Numbers

The Real Number System Subsets of the Real Numbers

The Natural Numbers:

The Real Number System Subsets of the Real Numbers
The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers:

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$
The Integers:

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$
The Integers:

$$
I=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$
The Integers:

$$
\mathrm{I}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

The Rational Numbers:

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$
The Integers:

$$
\mathrm{I}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

The Rational Numbers: Any number that can be expressed as the ratio of two integers is a rational number.

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$
The Integers:

$$
\mathrm{I}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

The Rational Numbers: Any number that can be expressed as the ratio of two integers is a rational number.
As decimals, rational numbers are either terminating decimals or repeating decimals.

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$
The Integers: $\quad \mathrm{I}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
The Rational Numbers: Any number that can be expressed as the ratio of two integers is a rational number.
As decimals, rational numbers are either terminating decimals or repeating decimals.

The Irrational Numbers:

The Real Number System Subsets of the Real Numbers

The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$
The Integers: $\quad \mathrm{I}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
The Rational Numbers: Any number that can be expressed as the ratio of two integers is a rational number.
As decimals, rational numbers are either terminating decimals or repeating decimals.

The Irrational Numbers: Any real number that can not be expressed as the ratio of two integers is an irrational number.

The Real Number System Subsets of the Real Numbers
The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$
The Integers: $\quad \mathrm{I}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
The Rational Numbers: Any number that can be expressed as the ratio of two integers is a rational number.
As decimals, rational numbers are either terminating decimals or repeating decimals.

The Irrational Numbers: Any real number that can not be expressed as the ratio of two integers is an irrational number.
As decimals, irrational numbers are non-terminating, non-repeating decimals.

The Real Number System Subsets of the Real Numbers
The Natural Numbers: $\mathrm{N}=\{1,2,3,4, \ldots\}$
(These are also called the counting numbers.)
The Whole Numbers: $\quad \mathrm{W}=\{0,1,2,3,4, \ldots\}$
The Integers: $\quad \mathrm{I}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
The Rational Numbers: Any number that can be expressed as the ratio of two integers is a rational number.
As decimals, rational numbers are either terminating decimals or repeating decimals.

The Irrational Numbers: Any real number that can not be expressed as the ratio of two integers is an irrational number.
As decimals, irrational numbers are non-terminating, non-repeating decimals.
The set of Real Numbers can be represented by a number line.

The Real Number System

The Complex Number System

The Complex Number System
Subsets of the Complex Numbers

The Complex Number System
Subsets of the Complex Numbers
The Real Numbers

The Complex Number System
Subsets of the Complex Numbers
The Real Numbers
The Imaginary Numbers

The Complex Number System
 Subsets of the Complex Numbers

The Real Numbers

The Imaginary Numbers
Any number that can be represented in the form $\mathbf{b i}$, where b is a real number and $i=\sqrt{-1}$, is an imaginary number.

The Complex Number System
 Subsets of the Complex Numbers

The Real Numbers

The Imaginary Numbers
Any number that can be represented in the form $\mathbf{b i}$, where b is a real number and $i=\sqrt{-1}$, is an imaginary number.

The Complex Numbers

The Complex Number System
 Subsets of the Complex Numbers

The Real Numbers

The Imaginary Numbers

Any number that can be represented in the form $\mathbf{b i}$, where b is a real number and $i=\sqrt{-1}$, is an imaginary number.

The Complex Numbers
Any number that can be represented in the form $\mathbf{a}+\mathbf{b i}$, where a and b are real numbers and $\mathrm{i}=\sqrt{-1}$, is a complex number.

The Complex Number System
 Subsets of the Complex Numbers

The Real Numbers

The Imaginary Numbers

Any number that can be represented in the form bi, where b is a real number and $i=\sqrt{-1}$, is an imaginary number.

The Complex Numbers

Any number that can be represented in the form $\mathbf{a}+\mathbf{b i}$, where a and b are real numbers and $\mathrm{i}=\sqrt{-1}$, is a complex number.

Note: If $\mathbf{a}=\mathbf{0}$, then $\mathbf{a}+\mathbf{b i}$ represents an imaginary number, and if $\mathbf{b}=\mathbf{0}$, then $\mathbf{a}+\mathbf{b i}$ represents a real number.

The Complex Number System
 Subsets of the Complex Numbers

The Real Numbers

The Imaginary Numbers

Any number that can be represented in the form $\mathbf{b i}$, where b is a real number and $i=\sqrt{-1}$, is an imaginary number.

The Complex Numbers

Any number that can be represented in the form $\mathbf{a}+\mathbf{b i}$, where a and b are real numbers and $\mathrm{i}=\sqrt{-1}$, is a complex number.
Note: If $\mathbf{a}=\mathbf{0}$, then $\mathbf{a}+\mathbf{b i}$ represents an imaginary number, and if $\mathbf{b}=\mathbf{0}$, then $\mathbf{a}+\mathbf{b i}$ represents a real number.

The set of Complex Numbers can be represented by a number plane.

The Complex Number System

The Complex Number System

The Complex Number System

The Complex Number System

The Complex Number System

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 \mathrm{i}$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 7.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 7.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 7 .
The 'imaginary component' of this number is $4 i$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 7.
The 'imaginary component' of this number is 4 i .

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 7.
The 'imaginary component' of this number is 4 i .

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 7.
The 'imaginary component' of this number is 4 i .

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 \mathrm{i}$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 3}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-\mathbf{3}+5 \mathbf{i}$
3. $-6-8 i$
4. $9-4 \mathrm{i}$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 3}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 3}$.
The 'imaginary component' of this number is $\mathbf{5 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 3}$.
The 'imaginary component' of this number is $\mathbf{5 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 3}$.
The 'imaginary component' of this number is $\mathbf{5 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 3}$.
The 'imaginary component' of this number is $\mathbf{5 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-\mathbf{3}+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 \mathrm{i}$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 6}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 \mathrm{i}$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 6}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 6}$.
The 'imaginary component' of this number is $\mathbf{- 8 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 6}$.
The 'imaginary component' of this number is $\mathbf{- 8 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 6}$.
The 'imaginary component' of this number is $\mathbf{- 8 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is $\mathbf{- 6}$.
The 'imaginary component' of this number is $\mathbf{- 8 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 9 .

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 9 .

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 9 .
The 'imaginary component' of this number is $\mathbf{- 4 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 9 .
The 'imaginary component' of this number is $\mathbf{- 4 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 9 .
The 'imaginary component' of this number is $\mathbf{- 4 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The 'real component' of the number is 9 .
The 'imaginary component' of this number is $\mathbf{- 4 i}$.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

Any real number is associated with a unique point on the real number line.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

Any real number is associated with a unique point on the real number line.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

Any real number is associated with a unique point on the real number line.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. $-5 \mathbf{i}$

Graphing Complex Numbers

Any imaginary number is associated with a unique point on the imaginary number line.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. $-5 \mathbf{i}$

Graphing Complex Numbers

Any imaginary number is associated with a unique point on the imaginary number line.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 \mathrm{i}$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

Graphing Complex Numbers

Any imaginary number is associated with a unique point on the imaginary number line.

Algebra II Class Worksheet \#4 Unit 5

Graph each of the following numbers on the complex number plane. Label your graphs properly.

1. $7+4 i$
2. $-3+5 i$
3. $-6-8 i=-6+-8 i$
4. $9-4 i=9+-4 i$
5. 7
6. -5 i

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad
9. $|3-6 i|=$ \qquad
10. $|-1-4 i|=$ \qquad
11. $|-4 \mathbf{i}|=$ \qquad
12. $|7|=$ \qquad

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad
9. $|3-6 i|=$ \qquad
10. $|-1-4 i|=$ \qquad
11. $|-4 i|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad
9. $|3-6 i|=$ \qquad
10. $|-1-4 i|=$ \qquad
11. $|-4 i|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of a real number gives its distance from zero on the real number line.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad
9. $|3-6 i|=$ \qquad
10. $|-1-4 i|=$ \qquad
11. $|-4 i|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of a real number gives its distance from zero on the real number line. This 'definition' holds true for complex numbers as well.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad
9. $|3-6 i|=$ \qquad
10. $|-1-4 i|=$ \qquad
11. $|-4 i|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of a real number gives its distance from zero on the real number line. This 'definition' holds true for complex numbers as well. Of course, distance is never negative

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad
9. $|3-6 i|=$ \qquad
10. $|-1-4 i|=$ \qquad
11. $|-4 i|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of a real number gives its distance from zero on the real number line. This 'definition' holds true for complex numbers as well. Of course, distance is never negative and is always a real number.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
$|4+3 i|=$
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad $|4+3 i|=\sqrt{ }$
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad

$$
|4+3 i|=\sqrt{4^{2}}
$$

8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
$|4+3 i|=\sqrt{4^{2}+}$
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
$|4+3 i|=\sqrt{4^{2}+3^{2}}$
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=$
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}$
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=$ \qquad
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 7. }|4+3 i|=\frac{5}{|4+3 i|=\sqrt{4^{2}+3^{2}}=} \\
& |4+3 i|=\sqrt{16+9}=\sqrt{25}
\end{aligned}
$$

8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 7. }|4+3 i|=\frac{5}{|4+3 i|=\sqrt{4^{2}+3^{2}}=} \\
& |4+3 i|=\sqrt{16+9}=\sqrt{25} \\
& 4+3 i \text { is } 5 \text { units from } 0!
\end{aligned}
$$

8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

The absolute value of the complex number $4+3 \mathrm{i}$ is the distance this number is from zero. This is equal to the length of the hypotenuse of the right triangle shown. The Pythagorean Theorem can be used to find this distance.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Notice that $|4+3 i|=$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Notice that $|4+3 i|=\sqrt{4^{2}+3^{2}}$.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Notice that $|4+3 i|=\sqrt{4^{2}+3^{2}}$. In general, $|a+b i|=$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Notice that $|4+3 i|=\sqrt{4^{2}+3^{2}}$. In general, $|a+b i|=\sqrt{a^{2}+b^{2}}$.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
Notice that $|4+3 i|=\sqrt{4^{2}+3^{2}}$. In general, $|a+b i|=\sqrt{a^{2}+b^{2}}$.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|-2+3 i|=$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{ }$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|a+b i|=\sqrt{a^{2}+b^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{ }$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|a+b i|=\sqrt{a^{2}+b^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|a+b i|=\sqrt{a^{2}+b^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|a+b i|=\sqrt{a^{2}+b^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|a+b i|=\sqrt{a^{2}+b^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}=$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=$ \qquad
$|a+b i|=\sqrt{a^{2}+b^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}=\sqrt{13}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=\sqrt{13}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}=\sqrt{13}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=\sqrt{13}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}=\sqrt{13}$

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

The distance from $-2+3 i$ to zero

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=\sqrt{13}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}=\sqrt{13}$

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

The distance from $-2+3 i$ to zero

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=\sqrt{13}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}=\sqrt{13}$

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

The distance from $\mathbf{- 2}+3 i$ to zero is $\sqrt{13}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=\sqrt{13}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}=\sqrt{13}$

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

The distance from $\mathbf{- 2}+3 i$ to zero is $\sqrt{13} \approx 3.6$ units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=\sqrt{13}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}=\sqrt{13}$

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

The distance from $\mathbf{- 2}+3 i$ to zero is $\sqrt{13} \approx 3.6$ units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
7. $|4+3 i|=\underline{5}$
$|4+3 i|=\sqrt{4^{2}+3^{2}}=$
$|4+3 i|=\sqrt{16+9}=\sqrt{25}$
$4+3 i$ is 5 units from 0 !
8. $|-2+3 i|=\sqrt{13}$ $|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-2+3 i|=\sqrt{(-2)^{2}+3^{2}}=$
$=\sqrt{4+9}=\sqrt{13}$

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{ }$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|3+-6 i|=\sqrt{3^{2}}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|3+-6 i|=\sqrt{3^{2}+}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{ }$
10. $|-\mathbf{1}-\mathbf{4 i}|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|= \\
& |\mathbf{a}+b \mathbf{b i}|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=
\end{aligned}
$$

10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|= \\
& |a+b i|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=\sqrt{45}
\end{aligned}
$$

10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$
$|a+b i|=\sqrt{a^{2}+b^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$
$|3-6 i|=\sqrt{45}=$
10. $|-1-4 i|=$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|= \\
& |\mathbf{a}+b i|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=\sqrt{45}=\sqrt{9} \\
& \text { 10. }|-1-4 i|=
\end{aligned}
$$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|= \\
& |\mathbf{a}+b i|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5} \\
& \text { 10. }|-1-4 i|=
\end{aligned}
$$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|=\frac{3 \sqrt{5}}{} \\
& |a+b i|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}
\end{aligned}
$$

10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|=\frac{3 \sqrt{5}}{\mid} \\
& |a+b i|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}
\end{aligned}
$$

10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

The distance from 3-6i to zero

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|=\frac{3 \sqrt{5}}{\mid} \\
& |a+b i|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}
\end{aligned}
$$

10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

The distance from 3-6i to zero

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|=\frac{3 \sqrt{5}}{\mid} \\
& |a+b i|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}
\end{aligned}
$$

10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
The distance from $3-6 i$ to zero is $3 \sqrt{5}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|=\frac{3 \sqrt{5}}{\mid} \\
& |a+b i|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}
\end{aligned}
$$

10. $|-\mathbf{1}-4 \mathrm{i}|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The distance from $3-6 i$ to zero is $3 \sqrt{5} \approx 6.7$ units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 9. }|3-6 i|=\frac{3 \sqrt{5}}{\mid} \\
& |a+b i|=\sqrt{a^{2}+b^{2}} \\
& |3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}= \\
& |3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}
\end{aligned}
$$

10. $|-\mathbf{1}-4 \mathrm{i}|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The distance from $3-6 i$ to zero is $3 \sqrt{5} \approx 6.7$ units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=$

The Absolute Value of Complex Numbers

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-\mathbf{1}+-4 i|=\sqrt{ }$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-\mathbf{1}-\mathbf{4 i}|=\sqrt{ }$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}=$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}=\sqrt{17}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=\sqrt{17}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}=\sqrt{17}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$

The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=\sqrt{17}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}=\sqrt{17}$

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$

The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=\sqrt{17}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}=\sqrt{17}$

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$

The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=\sqrt{17}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}=\sqrt{17}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
The distance from - $\mathbf{- 4 i}$ to zero is $\sqrt{17}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$

The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=\sqrt{17}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}=\sqrt{17}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
The distance from - $1-4 i$ to zero is $\sqrt{17} \approx 4.1$ units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$

The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=\sqrt{17}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}=\sqrt{17}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
The distance from $\mathbf{- 1}-4 i$ to zero is $\sqrt{17} \approx 4.1$ units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
9. $|3-6 i|=3 \sqrt{5}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|3+-6 i|=\sqrt{3^{2}+(-6)^{2}}=\sqrt{9+36}=$ $|3-6 i|=\sqrt{45}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
10. $|-1-4 i|=\sqrt{17}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|-1+-4 i|=\sqrt{(-1)^{2}+(-4)^{2}}=$
$|-1-4 i|=\sqrt{1+16}=\sqrt{17}$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 \mathbf{i}|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 \mathbf{i}|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

Clearly, the distance from -4i to zero is 4 units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 i|=4
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

Clearly, the distance from -4i to zero is 4 units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 i|=4
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 i|=4
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 \mathbf{i}|=$ \qquad
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|0+-4 i|=\sqrt{ }$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}}$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|0+-4 i|=\sqrt{0^{2}+}$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=$ \qquad
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 i|=4
$$

$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$ $|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{ }$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 i|=4
$$

$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0}$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 i|=4
$$

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+}$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

The Complex Number Plane

What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=\frac{4}{\sqrt{a^{2}+b^{2}}}$
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 i|=4
$$

$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$

$$
|-4 i|=
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 11. }|-4 i|=\frac{4}{|a+b i|=\sqrt{a^{2}+b^{2}}} \\
& |0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
& |-4 i|=\sqrt{16}=
\end{aligned}
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 11. }|-4 i|=\frac{4}{|a+b i|=\sqrt{a^{2}+b^{2}}} \\
& |a+4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
& |-4 i|=\sqrt{16}=4
\end{aligned}
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|-4 i|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 11. }|-4 i|=\frac{4}{|a+b i|=\sqrt{a^{2}+b^{2}}} \\
& |\mathbf{a}+4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
& |-4 i|=\sqrt{16}=4
\end{aligned}
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane
$\boldsymbol{\sim}^{\text {Imaginary Number Line }}$

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

Of course, you don't need to use the formula to find the absolute value of any imaginary number.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=\frac{4}{\sqrt{a^{2}+b^{2}}}$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$

$$
|-4 i|=\sqrt{16}=4
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=$ \qquad Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$

$$
|-4 i|=\sqrt{16}=4
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$

$$
|-4 i|=\sqrt{16}=4
$$

12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Clearly, the distance from 7 to zero

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=$ \qquad

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Clearly, the distance from 7 to zero is 7 units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Clearly, the distance from 7 to zero is 7 units.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|7+0 i|=$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|7+0 i|=\sqrt{ }$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|7+0 i|=\sqrt{7^{2}}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|7+0 i|=\sqrt{7^{2}+}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|7+0 i|=\sqrt{7^{2}+0^{2}}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}=$ $|-4 i|=\sqrt{16}=4$
12. $|7|=7$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|7+0 i|=\sqrt{7^{2}+0^{2}}=$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 i|=4 \quad \text { The Complex Number Plane }
$$

$$
\begin{gathered}
|a+b i|=\sqrt{a^{2}+b^{2}} \\
|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
|-4 i|=\sqrt{16}=4
\end{gathered}
$$

12. $|7|=7$
$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
$|7+0 i|=\sqrt{7^{2}+0^{2}}=\sqrt{ }$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 \mathbf{i}|=4 \quad \text { The Complex Number Plane }
$$

$$
\begin{gathered}
|a+b i|=\sqrt{a^{2}+b^{2}} \\
|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
|-4 i|=\sqrt{16}=4
\end{gathered}
$$

12. $|7|=\underline{7}$
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|7+0 i|=\sqrt{7^{2}+0^{2}}=\sqrt{49}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 \mathbf{i}|=4 \quad \text { The Complex Number Plane }
$$

$$
\begin{gathered}
|a+b i|=\sqrt{a^{2}+b^{2}} \\
|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
|-4 i|=\sqrt{16}=4
\end{gathered}
$$

12. $|7|=\underline{7}$
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|7+0 i|=\sqrt{7^{2}+0^{2}}=\sqrt{49+}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\text { 11. }|-4 \mathbf{i}|=4 \quad \text { The Complex Number Plane }
$$

$$
\begin{gathered}
|a+b i|=\sqrt{a^{2}+b^{2}} \\
|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
|-4 i|=\sqrt{16}=4
\end{gathered}
$$

12. $|7|=\underline{7}$
$|a+b i|=\sqrt{\mathbf{a}^{2}+b^{2}}$
$|7+0 i|=\sqrt{7^{2}+0^{2}}=\sqrt{49+0}$

The Absolute Value of Complex Numbers

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 11. }|-4 i|=\frac{4}{|a+b i|=\sqrt{a^{2}+b^{2}}} \\
& |a+4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
& |0+-4 i|=\sqrt{16}=4 \\
& \text { 12. }|7|=\frac{7}{|a+b i|=\sqrt{a^{2}+b^{2}}} \\
& |7+0 i|=\sqrt{7^{2}+0^{2}}=\sqrt{49+0}= \\
& |7|=
\end{aligned}
$$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 11. } \left.|-4 i|=\frac{4}{|c|} \right\rvert\,=\sqrt{a^{2}+b^{2}} \\
& |\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+(-4)^{2}}=\sqrt{0+16}= \\
& |0+-4 i|=\sqrt{0^{2}}= \\
& |-4 i|=\sqrt{16}=4 \\
& \text { 12. }|7|=\frac{7}{|a+b i|=\sqrt{a^{2}+b^{2}}} \\
& |7+0 i|=\sqrt{7^{2}+0^{2}}=\sqrt{49+0}= \\
& |7|=\sqrt{49}=
\end{aligned}
$$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 11. } \left.|-4 i|=\frac{4}{|c|} \right\rvert\,=\sqrt{a^{2}+b^{2}} \\
& |0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
& |-4 i|=\sqrt{16}=4 \\
& \text { 12. }|7|=\frac{7}{|a+b i|=\sqrt{a^{2}+b^{2}}} \\
& |7+0 i|=\sqrt{7^{2}+0^{2}}=\sqrt{49+0}= \\
& |7|=\sqrt{49}=7
\end{aligned}
$$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$

What if we used the formula to find $|7|$?

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 11. }|-4 i|=\frac{4}{|a+b i|=\sqrt{a^{2}+b^{2}}} \\
& |a+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
& |-4 i|=\sqrt{16}=4 \\
& \mid 0+3 \\
& \text { 12. }|7|=\frac{7}{|a+b i|=\sqrt{a^{2}+b^{2}}} \\
& |7+0 i|=\sqrt{7^{2}+0^{2}}=\sqrt{49+0}= \\
& |7|=\sqrt{49}=7
\end{aligned}
$$

The Absolute Value of Complex Numbers

The Complex Number Plane

$|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$
Of course, you don't need to use the formula to find the absolute value of any real number.

Algebra II Class Worksheet \#4 Unit 5

Find the indicated absolute values. Express your answers in simplest form.
11. $|-4 i|=4$
The Complex Number Plane

$$
\begin{gathered}
|a+b i|=\sqrt{a^{2}+b^{2}} \\
|0+-4 i|=\sqrt{0^{2}+(-4)^{2}}=\sqrt{0+16}= \\
|-4 i|=\sqrt{16}=4
\end{gathered}
$$

12. $|7|=$

$$
|\mathbf{a}+\mathbf{b} \mathbf{i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

$$
|7+0 i|=\sqrt{7^{2}+0^{2}}=\sqrt{49+0}=
$$

$$
|7|=\sqrt{49}=7
$$

The Absolute Value of Complex Numbers

$$
|\mathbf{a}+\mathbf{b i}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}
$$

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$ \qquad 14. $3-7 i$ \qquad 15. $-2+i$
16. 9 \qquad 17. - -3 i \qquad 18. -1 - i

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$ \qquad 14. $3-7 i$ \qquad 15. $-2+i$
16. 9 \qquad 17. - -3 i \qquad 18. -1 - i

If k represents any real number,

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$ \qquad 14. 3-7i \qquad 15. $-2+i$
16. 9 \qquad 17. -3i \qquad 18. -1 -i

If \mathbf{k} represents any real number, the additive inverse of \mathbf{k},

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$ \qquad 14. 3-7i \qquad 15. $-2+i$
16. 9 \qquad 17. -3i \qquad 18. -1 - i

If k represents any real number, the additive inverse of $k,-k$

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$ \qquad 14. 3-7i \qquad 15. $-2+i$
16. 9 \qquad 17. -3i \qquad

If k represents any real number, the additive inverse of $k,-k=-1 k$.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$ \qquad 14. 3-7i \qquad 15. $-2+i$
16. 9 \qquad 17. -3i \qquad 18. -1 -i

If k represents any real number, the additive inverse of $k,-k=-1 k$.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$ \qquad 14. $3-7 i$ \qquad 15. $-2+i$
16. 9 \qquad 17. - -3 i \qquad

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$
16. 9 \qquad 17. -3i \qquad

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$
$-(6+8 i)=$
16. 9 \qquad 17. -3i \qquad

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i$
$-(6+8 i)=-1(6+8 i)$
14. $3-7 i$ \qquad 15. $-2+i$
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i-6$
$-(6+8 i)=-1(6+8 i)$
14. $3-7 i$ \qquad 15. $-2+i$
18. -1 - i \qquad

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \underline{-6-8 i}$
$-(6+8 i)=-1(6+8 i)$
16. 9
17. - -3 i
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$
$-(6+8 i)=-1(6+8 i)$
16. 9
17. - -3 i
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.

$$
\begin{aligned}
& \text { 13. } 6+8 i \underline{-6-8 i} \\
& -(6+8 i)=-1(6+8 i)
\end{aligned}
$$

14. $3-7 i$
15. $-2+i$
16. -1 - i \qquad

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i-6-8 i$
$-(6+8 i)=-1(6+8 i)$
14. $3-7 i$
$-(3-7 i)=$
16. 9 \qquad 17. - $-3 i$
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i-6-8 i$
$-(6+8 i)=-1(6+8 i)$
14. $3-7 i$
$-(3-7 i)=-1(3-7 i)$
16. 9 \qquad 17. - -3 i
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \underline{-6-8 i}$
$-(6+8 i)=-1(6+8 i)$
14. $3-7 i \quad-3$
$-(3-7 i)=-1(3-7 i)$
16. 9 \qquad 17. - -3 i \qquad 18. -1 - i

If k represents any real number, the additive inverse of k, $-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$
14. $\mathbf{3 - 7 i}-3+7 \mathbf{i}$
$-(6+8 i)=-1(6+8 i) \quad-(3-7 i)=-1(3-7 i)$
15. $-2+i$
16. 9
17. - -3 i
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \underline{-6-8 i}$
$-(6+8 i)=-1(6+8 i)$

$$
\begin{aligned}
& \text { 14. } 3-7 i \quad-3+7 i \\
& -(3-7 i)=-1(3-7 i)
\end{aligned}
$$

$$
\text { 15. }-2+i
$$

16. 9
17. - -3 i
18. - $-1-\mathrm{i}$

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i-6-8 i$

$$
-(6+8 i)=-1(6+8 i) \quad-(3-7 i)=-1(3-7 i)
$$

16. 9
17. - -3 i
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.

$$
\begin{aligned}
& \text { 13. } 6+8 i-6-8 i \\
&-(6+8 i)=-1(6+8 i) \text { 14. } 3-7 i \\
&-(3-7 i)=-1(3-7 i)
\end{aligned}
$$

16. 9 \qquad

$$
\text { 17. }-3 i
$$

\qquad
17. - -3 i
15. $-2+i$

$$
-(-2+i)=
$$

18. - $-1-\mathrm{i}$ \qquad

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.

$$
\begin{aligned}
& \text { 13. } 6+8 i \underline{-6-8 i} \text { 14. } 3-7 i \underline{-3+7 i} \\
& -(6+8 i)=-1(6+8 i) \\
& -(3-7 i)=-1(3-7 i)
\end{aligned}
$$

$$
\text { 17. }-3 i
$$

\qquad

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \underline{-6-8 i}$

$$
\text { 14. } 3-7 \mathbf{i}-3+7 i
$$

$$
-(6+8 \mathbf{i})=-1(6+8 \mathbf{i}) \quad-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

15. $-2+i \quad 2$

$$
-(-2+i)=-1(-2+i)
$$

16. 9
17. - -3 i
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \underline{-6-8 i}$
14. $3-7 \mathbf{i}-3+7 \mathbf{i}$
$-(3-7 i)=-1(3-7 i)$

$$
\begin{aligned}
& \text { 15. }-2+i \frac{2-i}{-(-2+i)}=-1(-2+i)
\end{aligned}
$$

18. -1 - i \qquad

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$
$-(6+8 i)=-1(6+8 i)$

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

15. $-2+\mathbf{i} \xrightarrow{2-i}$

$$
-(-2+i)=-1(-2+i)
$$

18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$
$-(6+8 i)=-1(6+8 i)$
16. 9

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

15. $-2+i \xrightarrow{2-i}$

$$
-(-2+i)=-1(-2+i)
$$

17. $-3 i$
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$
14. $3-7 \mathbf{i}-3+7 \mathbf{i}$
$-(3-7 i)=-1(3-7 i)$

$$
\begin{aligned}
& \text { 15. }-2+i \xlongequal{2-i} \\
& -(-2+i)=-1(-2+i)
\end{aligned}
$$

16. $9 \xrightarrow{-9}$
17. $-3 i$
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$
14. $3-7 \mathbf{i}-3+7 \mathbf{i}$

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

$$
\begin{aligned}
& \text { 15. }-2+i \underline{2-i} \\
& -(-2+i)=-1(-2+i)
\end{aligned}
$$

16. 9 \square 17. -3 i
17. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i-6-8 i$

$$
-(6+8 i)=-1(6+8 i)
$$

16. 9

17. $3-7 \mathbf{i}-3+7 \mathbf{i}$

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

$$
\begin{aligned}
& \text { 15. }-2+i=2-i \\
& -(-2+i)=-1(-2+i)
\end{aligned}
$$

17. $-3 i$
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$
$-(6+8 i)=-1(6+8 i)$
16. 9

14. $3-7 \mathbf{i}-3+7 \mathbf{i}$

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

15. $-2+i \quad 2-i$

$$
-(-2+i)=-1(-2+i)
$$

17. -3 i
$3 i$
18. -1 - i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i-6-8 i$
14. $3-7 \mathbf{i} \underline{\underline{-3+7 i}}$

$$
-(6+8 i)=-1(6+8 i)
$$

$$
\begin{aligned}
& \text { 15. }-2+i \xlongequal{2-i} \\
& -(-2+i)=-1(-2+i)
\end{aligned}
$$

16. 9

$$
-(3-7 i)=-1(3-7 i)
$$

$$
\text { 17. }-3 i \quad 3 i
$$

18. -1-i

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i-6-8 i$
$-(6+8 i)=-1(6+8 i)$
16. 9

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

15. $-2+i \xrightarrow{2-i}$

$$
-(-2+i)=-1(-2+i)
$$

17. -3 i $3 i$
18. -1-i \qquad

If k represents any real number, the additive inverse of k, $-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$

$$
-(6+8 i)=-1(6+8 i)
$$

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

$$
\begin{aligned}
& \text { 15. }-2+i \xlongequal{2-i} \\
& -(-2+i)=-1(-2+i)
\end{aligned}
$$

16. 9

17. $-3 i$ $3 i$
18. $-1-\mathrm{i}$ \qquad

$$
-(-1-i)=
$$

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$

$$
-(6+8 i)=-1(6+8 i)
$$

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

$$
\begin{aligned}
& \text { 15. }-2+i \xlongequal[2-i]{-(-2+i)=} \begin{array}{l}
-1(-2+i)
\end{array} \\
& -(-2+i
\end{aligned}
$$

16. 9

17. $-3 i$ $3 i$
18. $-1-\mathbf{i}$

$$
-(-1-i)=-1(-1-i)
$$

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$

$$
-(6+8 i)=-1(6+8 i)
$$

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

$$
\begin{aligned}
& \text { 15. }-2+i \xlongequal[2-i]{-(-2+i)=-1(-2+i)}
\end{aligned}
$$

16. 9

17. $-3 i$ $3 i$
18. $-1-\mathrm{i} \quad 1$

$$
-(-1-i)=-1(-1-i)
$$

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \underline{-6-8 i}$
$-(6+8 i)=\mathbf{- 1}(6+8 i)$

$$
-(3-7 i)=-1(3-7 i)
$$

$$
\begin{aligned}
& \text { 15. }-2+i \xlongequal{2-i}=-(-2+i)=-1(-2+i)
\end{aligned}
$$

16. 9

17. - -3 i $3 i$

$$
\begin{aligned}
& \text { 18. }-1-i \frac{1+i}{-(-1-i)}=-1(-1-i)
\end{aligned}
$$

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \underline{-6-8 i}$
14. $3-7 \mathbf{i} \underline{\underline{-3+7 i}}$

$$
\text { 15. }-2+i \xlongequal{2-i}
$$

16. 9

17. - -3 i $3 i$

$$
\text { 18. } \begin{array}{rl}
-1-i & 1+i \\
-(-1-i) & =-1(-1-i)
\end{array}
$$

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Find the additive inverse (opposite) of each of the following.
13. $6+8 i \quad-6-8 i$
$-(6+8 i)=-1(6+8 i)$

$$
-(3-7 \mathbf{i})=-1(3-7 \mathbf{i})
$$

$$
\begin{aligned}
& \text { 15. }-2+i=2-i \\
& -(-2+i)=-1(-2+i)
\end{aligned}
$$

16. 9

17. $-3 i$ $3 i$
18. $-\mathbf{1 - i}-1+i$

$$
-(-1-i)=-1(-1-i)
$$

If k represents any real number, the additive inverse of $k,-k=-1 k$. The same property holds for complex numbers.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 \mathbf{i})+(-3-5 i)=$ \qquad

When writing a complex number in a+biform,

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 \mathbf{i})+(-3-5 i)=$ \qquad

When writing a complex number in $\underline{a}+\mathbf{b i}$ form, if \underline{b} is a negative number,

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When writing a complex number in $\underline{a+b i}$ form, if \underline{b} is a negative number, it is customary to avoid the double sign.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When writing a complex number in $\underline{\mathbf{a}+\mathbf{b}} \mathbf{f o r m}$, if $\underline{\mathbf{b}}$ is a negative number, it is customary to avoid the double sign. For example, $3+-2 i$

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When writing a complex number in $\underline{\mathbf{a}+\mathbf{b}} \mathbf{f o r m}$, if $\underline{\mathbf{b}}$ is a negative number, it is customary to avoid the double sign. For example, $3+-2 i$ is written as $3-2 i$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers,

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad
\qquad
22. $(9-7 \mathbf{i})+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 \mathbf{i})+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 \mathbf{i})+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 \mathbf{i})+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 \mathbf{i})+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$ 20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=6$
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=6$
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=6+0 i$
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number ilike a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=$ \qquad 22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number ilike a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=1$
22. $(9-7 \mathbf{i})+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number ilike a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=1$
22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number ilike a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=\underline{1-7 i} \quad 22 .(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number ilike a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=\underline{1-7 i}$
22. $(9-7 i)+(-3-5 i)=$ \qquad

When adding complex numbers, treat the number ilike a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i} \quad$ 20. $(7-3 i)+(-1+3 i)=\underline{6}$
21. $(-3-8 i)+(4+i)=\underline{1-7 i}$
22. $(9-7 i)+(-3-5 i)=$

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \qquad
21. $(-3-8 i)+(4+i)=\underline{1-7 i}$
22. $\underset{\uparrow}{(9-7 \mathbf{i})}+\underset{\uparrow}{(-3-5 i)}=$

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i} \quad$ 20. $(7-3 i)+(-1+3 i)=\underline{6}$
21. $(-3-8 i)+(4+i)=\underline{1-7 i}$
22. $(9-7 i)+(-3-5 i)=6$

When adding complex numbers, treat the number ilike a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i} \quad$ 20. $(7-3 i)+(-1+3 i)=\underline{6}$
21. $(-3-8 i)+(4+i)=\underline{1-7 i}$
22. $(9-7 i)+(-3-5 i)=6$

When adding complex numbers, treat the number ilike a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i} \quad$ 20. $(7-3 i)+(-1+3 i)=\underline{6}$
21. $(-3-8 i)+(4+i)=\underline{1-7 i}$
22. $(9-7 i)+(-3-5 i)=6-12 i$

When adding complex numbers, treat the number ilike a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i} \quad$ 20. $(7-3 i)+(-1+3 i)=\underline{6}$
21. $(-3-8 i)+(4+i)=\underline{1-7 i}$
22. $(9-7 i)+(-3-5 i)=6-12 i$

When adding complex numbers, treat the number i like a variable and simply add like terms.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
19. $(3+7 i)+(5+2 i)=\underline{8+9 i}$
20. $(7-3 i)+(-1+3 i)=$ \square
21. $(-3-8 i)+(4+i)=$ $1-7 i$
22. $(9-7 i)+(-3-5 i)=\underline{6-12 i}$

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$ \qquad 24. $(8+3 i)-(5+6 i)=$ \qquad
25. $(5-\mathrm{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$ \qquad 24. $(8+3 i)-(5+6 i)=$ \qquad
25. $(5-\mathrm{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers,

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$ \qquad 24. $(8+3 i)-(5+6 i)=$ \qquad
25. $(5-\mathrm{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$ \qquad 24. $(8+3 i)-(5+6 i)=$ \qquad
25. $(5-\mathbf{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$ \qquad 24. $(8+3 i)-(5+6 i)=$ \qquad
25. $(5-\mathrm{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$ $=(2+8 i)$
25. $(5-i)-(5-7 i)=$ \qquad
24. $(8+3 i)-(5+6 i)=$ \qquad
\square
26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$

$$
=(2+8 i)+
$$

25. $(5-i)-(5-7 i)=$ \qquad
26. $(8+3 i)-(5+6 i)=$ \qquad
27. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$
$=(2+8 i)+(-5-3 i)$
25. $(5-\mathrm{i})-(5-7 i)=$ \qquad
24. $(8+3 i)-(5+6 i)=$ \qquad
26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$
$=(2+8 i)+(-5-3 i)=$
25. $(5-\mathrm{i})-(5-7 i)=$ \qquad
24. $(8+3 i)-(5+6 i)=$ \qquad
26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=$
$=(2+8 i)+(-5-3 i)=$

25. $(5-\mathrm{i})-(5-7 i)=$ \qquad
24. $(8+3 i)-(5+6 i)=$ \qquad
26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3$
$=(2+8 i)+(-5-3 i)=$

25. $(5-\mathrm{i})-(5-7 i)=$ \qquad
24. $(8+3 i)-(5+6 i)=$ \qquad
26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3$
$=(2+8 i)+(-5-3 i)=$
\uparrow
25. $(5-i)-(5-7 i)=$ \qquad

24. $(8+3 i)-(5+6 i)=$ \qquad
26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$
$=(2+8 i)+(-5-3 i)=$
\uparrow
25. $(5-i)-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=\underline{-3+5 i}$
$=(2+8 i)+(-5-3 i)=$
25. $(5-\mathrm{i})-(5-7 i)=$ \qquad
24. $(8+3 i)-(5+6 i)=$ \qquad
26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+-\mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad
26. $(8+3 i)-(5+6 i)=$ \qquad
\square
27. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad

$$
\text { 24. } \begin{aligned}
& (8+3 i)-(5+6 i)= \\
= & (8+3 i)
\end{aligned}
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad

$$
\text { 24. } \begin{aligned}
& (8+3 i)-(5+6 i)= \\
= & (8+3 i)+
\end{aligned}
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad

$$
\text { 24. } \begin{aligned}
& (8+3 i)-(5+6 i)= \\
= & (8+3 i)+(-5-6 i)
\end{aligned}
$$

\qquad
26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 24. }(8+3 i)-(5+6 i)=
$$

$$
=(8+3 i)+(-5-6 i)=
$$ \uparrow

25. $(5-\mathrm{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+-\mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. }(2+8 i)-(5+3 i)=-3+5 i
$$

$$
\text { 24. }(8+3 i)-(5+6 i)=3
$$

$$
=(8+3 i)+(-5-6 i)=
$$

$$
\uparrow
$$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. }(2+8 i)-(5+3 i)=-3+5 i
$$

$$
\text { 24. }(8+3 i)-(5+6 i)=\underline{3}
$$

$$
\begin{gathered}
(8+\underset{\uparrow}{3 i})+(-5-6 i) \\
\uparrow
\end{gathered}
$$

25. $(5-\mathrm{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad

$$
\begin{aligned}
& \text { 24. } \left.\begin{array}{l}
(8+3 i)-(5+6 i)=3-3 i \\
=(8+3 i)+(-5-6 i)= \\
\uparrow
\end{array}\right) .
\end{aligned}
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-\underline{-3+5 i} \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad

$$
\begin{aligned}
& \text { 24. }(8+3 i)-(5+6 i)=3-3 i \\
& =(8+3 i)+(-5-6 i)=
\end{aligned}
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 25. }(5-i)-(5-7 i)=
$$

\qquad
24. $(8+3 i)-(5+6 i)=3-3 i$

$$
=(8+3 \mathbf{i})+(-5-6 \mathbf{i})=
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 24. }(8+3 i)-(5+6 i)=3-3 i
$$

$$
=(8+3 i)+(-5-6 i)=
$$

25. $(5-\mathrm{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+-\mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 24. }(8+3 i)-(5+6 i)=3-3 i
$$

$$
=(8+3 i)+(-5-6 i)=
$$

25. $(5-\mathrm{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 25. }(5-i)-(5-7 i)=
$$

\qquad

$$
=(5-i)+(-5+7 i)
$$

24. $(8+3 i)-(5+6 i)=\underline{3-3 i}$

$$
=(8+3 i)+(-5-6 i)=
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+-\mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 25. }(5-i)-(5-7 i)=
$$

\qquad

$$
=(5-i)+(-5+7 i)=
$$

$$
\uparrow \quad \uparrow
$$

24. $(8+3 i)-(5+6 i)=3-3 i$

$$
=(8+3 i)+(-5-6 i)=
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 25. }(5-i)-(5-7 i)=\underline{0}
$$

$$
=(5-i)+(-5+7 i)=
$$

$$
\uparrow \quad \uparrow
$$

24. $(8+3 i)-(5+6 i)=3-3 i$

$$
=(8+3 \mathbf{i})+(-5-6 \mathbf{i})=
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 25. }(5-i)-(5-7 i)=\underline{0}
$$

$$
=(5-i)+(-5+7 i)=
$$

24. $(8+3 i)-(5+6 i)=3-3 i$

$$
=(8+3 i)+(-5-6 i)=
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 25. }(5-i)-(5-7 i)=\underline{0}+6 i
$$

$$
=(5-i)+(-5+7 i)=
$$

24. $(8+3 i)-(5+6 i)=3-3 i$

$$
=(8+3 \mathbf{i})+(-5-6 \mathbf{i})=
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 23. } \begin{aligned}
& (2+8 i)-(5+3 i)=-3+5 i \\
= & (2+8 i)+(-5-3 i)=
\end{aligned}
$$

$$
\text { 25. }(5-i)-(5-7 i)=
$$

\square

$$
=(5-i)+(-5+7 i)=
$$

24. $(8+3 i)-(5+6 i)=3-3 i$

$$
=(8+3 \mathbf{i})+(-5-6 \mathbf{i})=
$$

26. $(4-6 i)-(-8+5 i)=$ \qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$

$$
\text { 24. } \begin{aligned}
&(8+3 i)-(5+6 i)=3-3 i \\
&=(8+3 i)+(-5-6 i)=
\end{aligned}
$$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=$

$$
=(5-i)+(-5+7 i)=
$$

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$

$$
\text { 24. } \begin{aligned}
(8+3 i)-(5+6 i)=3-3 i \\
=(8+3 i)+(-5-6 i)=
\end{aligned}
$$

25. $(5-\mathrm{i})-(5-7 \mathrm{i})=$

$$
\text { 26. } \begin{aligned}
& (4-6 i)-(-8+5 i)= \\
= & (4-6 i)
\end{aligned}
$$

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$

$$
\text { 24. } \begin{aligned}
(8+3 i)-(5+6 i)=3-3 i \\
=(8+3 i)+(-5-6 i)=
\end{aligned}
$$

25. $(5-\mathrm{i})-(5-7 \mathrm{i})=$

$$
\text { 26. } \begin{aligned}
& (4-6 \mathbf{i})-(-8+5 \mathbf{i})= \\
= & (4-6 \mathbf{i})+
\end{aligned}
$$

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+-\mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$

$$
\text { 24. } \begin{aligned}
& (8+3 i)-(5+6 i)=3-3 i \\
= & (8+3 i)+(-5-6 i)=
\end{aligned}
$$

25. $(5-\mathrm{i})-(5-7 \mathrm{i})=$

$=(5-i)+(-5+7 i)=$

$$
\text { 26. } \begin{aligned}
& (4-6 i)-(-8+5 i)= \\
= & (4-6 i)+(8-5 i)
\end{aligned}
$$

When subtracting complex numbers, change the subtraction to addition. $P-Q=P+-Q$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$

$$
=(2+8 i)+(-5-3 i)=
$$

$$
\text { 24. } \begin{aligned}
(8+3 i)-(5+6 i) & =3-3 i \\
=(8+3 i)+(-5-6 i) & =
\end{aligned}
$$

25. $(5-\mathbf{i})-(5-7 i)=$

$$
=(5-i)+(-5+7 i)=
$$

\qquad

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$

$$
\text { 24. } \begin{aligned}
(8+3 i)-(5+6 i)=3-3 i \\
=(8+3 i)+(-5-6 i)=
\end{aligned}
$$

25. $(5-\mathrm{i})-(5-7 \mathrm{i})=$ \qquad

$$
=(5-i)+(-5+7 i)=
$$

$$
\text { 26. } \begin{aligned}
(4-6 i)-(-8+5 i) & =12 \\
=(4-6 i) & (8-5 i)= \\
& \uparrow
\end{aligned}
$$

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$

$$
=(2+8 i)+(-5-3 i)=
$$

$$
\text { 24. } \begin{aligned}
& (8+3 i)-(5+6 i)=3-3 i \\
= & (8+3 i)+(-5-6 i)=
\end{aligned}
$$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad

$$
=(5-i)+(-5+7 i)=
$$

$$
\text { 26. } \begin{aligned}
&(4-6 i)-(-8+5 i)=12 \\
&=(4-6 i)+(8-5 i)= \\
& \uparrow
\end{aligned}
$$

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$

$$
=(2+8 i)+(-5-3 i)=
$$

$$
\text { 24. } \begin{aligned}
& (8+3 i)-(5+6 i)=3-3 i \\
= & (8+3 i)+(-5-6 i)=
\end{aligned}
$$

25. $(5-\mathrm{i})-(5-7 \mathrm{i})=$ \qquad

$$
\text { 26. } \begin{aligned}
&(4-6 i)-(-8+5 i)=12-11 i \\
&=(4-6 i)+(8-5 i)= \\
& \uparrow
\end{aligned}
$$

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=-3+5 i$

$$
=(2+8 i)+(-5-3 i)=
$$

$$
\text { 24. } \begin{aligned}
& (8+3 i)-(5+6 i)=3-3 i \\
= & (8+3 i)+(-5-6 i)=
\end{aligned}
$$

25. $(5-\mathrm{i})-(5-7 \mathrm{i})=$

$$
\text { 26. } \begin{aligned}
& (4-6 i)-(-8+5 i)=12-11 i \\
= & (4-6 i)+(8-5 i)=
\end{aligned}
$$

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{-} \mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
23. $(2+8 i)-(5+3 i)=\underline{-3+5 i}$

$$
\text { 24. } \begin{aligned}
& (8+3 i)-(5+6 i)=3-3 i \\
= & (8+3 i)+(-5-6 i)=
\end{aligned}
$$ $=(2+8 i)+(-5-3 i)=$

25. $(5-\mathbf{i})-(5-7 i)=$ \qquad 26. $(4-6 i)-(-8+5 i)=12-11 i$
$=(5-i)+(-5+7 i)=$
$=(4-6 i)+(8-5 i)=$

When subtracting complex numbers, change the subtraction to addition. $\mathbf{P}-\mathbf{Q}=\mathbf{P}+\mathbf{Q}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers,

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 \mathbf{i})=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer,

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note:

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}$,

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ \qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=$ -
\qquad
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=15$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=$ \qquad
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 \mathbf{i})=$ -
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 \mathrm{i})=-12$
-
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 \mathbf{i})=-12$

30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
28. $-3(4-7 i)=\underline{-12+21 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad 30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
28. $-3(4-7 i)=\underline{-12+21 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad L =
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
28. $-3(4-7 i)=\underline{-12+21 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad 30. $-5 i(6+4 i)=$ \qquad

$$
=4 \mathbf{i}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
28. $-3(4-7 i)=\underline{-12+21 i}$
29. $2 \mathbf{i}(2+3 i)=$ \qquad 30. $-5 i(6+4 i)=$ \qquad

$$
=4 \mathbf{i}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
28. $-3(4-7 i)=\underline{-12+21 i}$
29. $2 \mathbf{i}(2+3 i)=$ \qquad 30. $-5 i(6+4 i)=$ \qquad

$$
=4 \mathbf{i}+6 \mathbf{i}^{2}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
$=4 i+6 i^{2}=$
28. $-3(4-7 i)=\underline{-12+21 i}$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
$=4 i+6 i^{2}=4 i$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
$=4 i+6 i^{2}=4 i$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$

$$
=4 i+6 i^{2}=4 i-6
$$

28. $-3(4-7 i)=-12+21 i$
29. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 \mathbf{i})=$ \qquad
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=-6$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=-6+4 i$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 \mathbf{i}(2+3 i)=-6+4 i$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$ $=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$

$$
\text { 30. } \begin{gathered}
-5 i(6+4 i)= \\
=
\end{gathered}
$$

\qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $\mathbf{i}=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$ $=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$

$$
\text { 30. } \begin{gathered}
-5 i(6+4 i)= \\
L \\
=-30 i
\end{gathered}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $\mathbf{i}=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$ $=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$

$$
\text { 30. } \begin{gathered}
-5 i(6+4 i) \\
=-30 i
\end{gathered}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $\mathbf{i}=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$ $=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$

$$
\text { 30. } \left.\begin{array}{rl}
-5 i(6+4 i) \\
=-30 i-20 i^{2}
\end{array}\right)=
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$ \qquad

$$
=-30 i-20 i^{2}=
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$

$$
=-30 i-20 i^{2}=-30 i
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$
$=-\mathbf{3 0} i-20 i^{2}=-\mathbf{3 0 i}$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$
30. $-5 i(6+4 i)=$

$$
=-30 i-20 i^{2}=-30 i+20
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$

$$
\text { 30. } \begin{aligned}
& -5 i(6+4 i)= \\
= & -30 i-20 i^{2}=-30 i+20=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 \mathrm{i}$

$$
\text { 30. } \begin{aligned}
& -5 i(6+4 i)=20 \\
= & -30 i-20 i^{2}=-30 i+20=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 \mathrm{i}$

$$
\text { 30. } \begin{aligned}
&-5 i(6+4 i)=\underline{20-30 i} \\
&=-30 i-20 i^{2}=-30 i+20=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$
28. $-3(4-7 i)=-12+21 i$

$$
\text { 30. } \begin{aligned}
& -5 i(6+4 i)=\underline{20-30 i} \\
= & -30 i-20 i^{2}=-30 i+20=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
27. $5(3+2 i)=\underline{15+10 i}$ 28. $-3(4-7 i)=-12+21 i$
29. $2 i(2+3 i)=\underline{-6+4 i}$
$=4 i+6 i^{2}=4 i-6=$

$$
\text { 30. } \begin{aligned}
& -5 i(6+4 i)=\underline{20-30 i} \\
=- & -30 i-20 i^{2}=-30 i+20=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=$ \qquad
33. $(7-3 i)(2-5 i)=$ \qquad 34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=$ \qquad
33. $(7-3 i)(2-5 i)=$ \qquad 34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

\qquad
=
33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$ \qquad
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

31. $(2+3 i)(5+i)=$
 $=10$

33. $(7-3 i)(2-5 i)=$ \qquad
\qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=$
$=10$
33. $(7-3 i)(2-5 i)=$ \qquad 34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$ \qquad
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$=10+2 i$
33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$ \qquad
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. } \begin{aligned}
& (2+3 i)(5+i) \\
= & \text { (} 10+2 i+15 i
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad
34. $(3-7 i)(1+4 i)=$ \qquad
35. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$=10+\mathbf{2 i}+\mathbf{1 5 i}$
33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$ \qquad
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. } \begin{aligned}
(2+3 i) & (5+i) \\
= & 10+2 i+15 i
\end{aligned}+3 i^{2}
$$

33. $(7-3 i)(2-5 i)=$ \qquad
34. $(3-7 i)(1+4 i)=$ \qquad
35. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=$ \qquad
$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=$ \qquad 34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$ \qquad
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$ \qquad
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$ \qquad
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. }(2+3 i)(5+i)=\underline{7} \\
& =10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad
34. $(3-7 i)(1+4 i)=$ \qquad
35. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. } \begin{gathered}
(2+3 i)(5+i)= \\
\downarrow \\
=10+2 i+15 i+3 i^{2}=
\end{gathered}
$$

33. $(7-3 i)(2-5 i)=$ \qquad
34. $(3-7 i)(1+4 i)=$ \qquad
35. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$ \qquad
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$ \qquad
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. } \begin{aligned}
&(2+3 i)(5+i)= \\
&= 10+2 i+17 i \\
& i n i+3 i^{2}=
\end{aligned}
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \quad\left(\begin{array}{l}
(3-7 i)(1+4 i) \\
= \\
=
\end{array}\right.
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. } \begin{aligned}
& (2+3 i)(5+i)=-17+17 \\
= & 10+2 i+15 i+3 i^{2}=
\end{aligned}
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
&(3-7 i)(1+4 i)= \\
&= 3
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. }(2+3 i)(5+i)=\underline{7+17 i} \\
& =10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
&(3-7 i)(1+4 i) \\
&= \\
&=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. }(2+3 i)(5+i)=1+17 i \\
& =10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)= \\
& =3+12 i
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. } \begin{array}{l}
(2+3 i)(5+i)=-1+17 i \\
=10+2 i+15 i+3 i^{2}=
\end{array} .
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\text {. } \\
= & 3+12 i
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. }(2+3 i)(5+i)=-1+17 i \\
& =10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)= \\
= & 3+12 i-7 i
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. }(2+3 i)(5+i)=-1+17 i \\
& =10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)= \\
= & (3+12 i-7 i
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. }(2+3 i)(5+i)=-1+17 i \\
& =10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i \\
= & \\
= & 3+12 i-7 i-28 i^{2}
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=$ \qquad
32. $(3-7 i)(1+4 i)=$
$=3+12 i-7 i-28 i^{2}=$
34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. } \begin{aligned}
& (2+3 i)(5+i)=\underline{7+17 i} \\
= & 10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
&(3-7 i)(1+4 i)= \\
& \downarrow \\
&= 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. } \begin{aligned}
& (2+3 i)(5+i)=-1+17 i \\
= & 10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
&(3-7 i)(1+4 i)= \\
& \downarrow \\
&= 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
\text { 31. } & (2+3 i)(5+i)=\underline{7+17 i} \\
= & 10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

32. $(3-7 i)(1+4 i)=31$

$$
=3+12 i-7 i-28 i^{2}=
$$

34. $(1-8 i)(5+3 i)=$ \qquad
35. $(7-3 i)(2-5 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 31. }(2+3 i)(5+i)=\underline{7+17 i} \\
&=10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

$$
\text { 32. } \begin{gathered}
(3-7 i)(1+4 i)=31 \\
\downarrow \\
\downarrow \\
=3+12 i-7 i-28 i^{2}=
\end{gathered}
$$

33. $(7-3 i)(2-5 i)=$ \qquad 34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. } \begin{aligned}
& (2+3 i)(5+i)=\underline{7+17 i} \\
= & 10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

32. $(3-7 i)(1+4 i)=31+5 i$

$$
=3+12 i-7 i-28 i^{2}=
$$

33. $(7-3 i)(2-5 i)=$ \qquad 34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. } \begin{aligned}
& (2+3 i)(5+i)=\underline{7+17 i} \\
= & 10+2 i+15 i+3 i^{2}=
\end{aligned}
$$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

33. $(7-3 i)(2-5 i)=$ \qquad 34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=$ \qquad

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=$ $=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=$ $=14$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
=10+2 i+15 i+3 i^{2}=
$$

33. $(7-3 i)(2-5 i)=$ $=14$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=$ $=14-35 i$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=$ $=14-35 i$
32. $(3-7 i)(1+4 i)=31+5 i$

$$
=3+12 i-7 i-28 i^{2}=
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=$ -$=14-35 i-6 i$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$=10+2 i+15 i+3 i^{2}=$
33. $(7-3 i)(2-5 i)=$ $=14-35 i-6 i$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=7+17 i$
$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=$ $=14-35 i-6 i+15 i^{2}$
32. $(3-7 i)(1+4 i)=31+5 i$

$$
=3+12 i-7 i-28 i^{2}=
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=$ \qquad
$=14-35 i-6 i+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=$ $=14-35 i-6 i+15 i^{2}=$
32. $(3-7 i)(1+4 i)=31+5 i$

$$
=3+12 i-7 i-28 i^{2}=
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=$ $=14-35 i-6 i+15 i^{2}=$
32. $(3-7 i)(1+4 i)=31+5 i$

$$
=3+12 i-7 i-28 i^{2}=
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$

32. $(3-7 i)(1+4 i)=31+5 i$

$$
=3+12 i-7 i-28 i^{2}=
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
=10+2 i+15 i+3 i^{2}=
$$

$=14-35 i-6 i+15 i^{2}=$
32. $(3-7 i)(1+4 i)=31+5 i$

$$
=3+12 \mathbf{i}-7 \mathbf{i}-28 \mathbf{i}^{2}=
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=14-35 i-6 i+15 i^{2}=$
32. $(3-7 i)(1+4 i)=31+5 i$

$$
=3+12 i-7 i-28 i^{2}=
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=14-\mathbf{3 5 i}-6 i+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=14-35 i-6 i+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

$$
\text { 34. } \begin{aligned}
(1-8 i)(5+3 i) \\
= \\
=
\end{aligned}
$$

\qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=14-35 i-6 i+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$

$$
=5
$$

\qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=14-35 i-6 i+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$

$$
=5
$$

\qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=14-35 i-6 i+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$

$$
=\mathbf{5}+\mathbf{3 i}
$$

\qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

$$
\text { 34. } \begin{aligned}
& (1-8 i)(5+3 i)= \\
& =5+3 i
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=14-35 i-6 i+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

$$
\text { 34. } \left.\begin{array}{rl}
(1-8 i)(5+3 i
\end{array}\right)=.
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

$$
\text { 34. } \begin{aligned}
(1-8 i)(5+3 i
\end{aligned} \underbrace{1}=.
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

$$
\text { 34. } \begin{aligned}
(1-8 i)(5+3 i) & = \\
= & 5+3 i-40 i-24 i^{2}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=10+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=$

$$
=5+3 i-40 i-24 i^{2}=
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=10+\mathbf{i}+\mathbf{1 5 i}+3 i^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=14-35 i-6 i+15 i^{2}=$

$$
\text { 32. } \left.\begin{array}{rl}
(3-7 i)(1+4 i)= \\
=31+5 i
\end{array}\right)
$$

$$
\text { 34. } \begin{aligned}
&(1-8 i)(5+3 i)= \\
& \downarrow \\
& \downarrow \downarrow+3 i-40 i-24 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 31. }(2+3 i)(5+i)=7+17 i
$$

$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

$$
\text { 34. } \begin{aligned}
& (1-8 i)(5+3 i)= \\
& \downarrow \\
= & 5+3 i-40 i-24 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$=10+2 i+15 i+3 i^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=14-35 i-6 i+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

$$
\text { 34. } \begin{gathered}
(1-8 i)(5+3 i)=29 \\
\downarrow \\
=5+3 i-40 i-24 i^{2}=
\end{gathered}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

$$
\text { 34. } \begin{aligned}
&(1-8 i)(5+3 i)=29-37 i \\
& \downarrow \\
&= 5+3 i-40 i-24 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=\mathbf{1 0}+\mathbf{2 i}+\mathbf{1 5 i}+3 \mathbf{i}^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+15 i^{2}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

$$
\text { 34. }(1-8 i)(5+3 i)=\underline{29-37 i}
$$

$$
=5+3 i-40 i-24 i^{2}=
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
31. $(2+3 i)(5+i)=\underline{7+17 i}$
$=10+2 i+15 i+3 i^{2}=$
33. $(7-3 i)(2-5 i)=-1-41 i$ $=\mathbf{1 4}-\mathbf{3 5 i} \mathbf{- 6 i}+\mathbf{1 5 i}^{\mathbf{2}}=$

$$
\text { 32. } \begin{aligned}
& (3-7 i)(1+4 i)=\underline{31+5 i} \\
= & 3+12 i-7 i-28 i^{2}=
\end{aligned}
$$

34. $(1-8 i)(5+3 i)=\underline{29-37 i}$ $=5+3 i-40 i-24 i^{2}=$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad
=
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ $=64$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ $=64$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$

$$
=64-40 i
$$

37. $(6-4 i)(2-3 i)=$ \qquad
38. $(-2+i)(-2-i)=$ \qquad
39. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ $=64-40 i$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$

$$
=64-40 i+40 i
$$

37. $(6-4 i)(2-3 i)=$ \qquad
38. $(-2+i)(-2-i)=$ \qquad
39. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$
$=64-40 i+40 i$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$
$=64-40 i+40 i-25 i^{2}$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=$ \qquad
38. $(-2+i)(-2-i)=$ \qquad
39. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ $=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ $=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

$$
\text { Note: } \text { since } i=\sqrt{-1}, i^{2}=-1
$$

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

$$
\text { Note: } \text { since } i=\sqrt{-1}, i^{2}=-1
$$

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=\mathbf{8 9 + 0 i}$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad 38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=$ \qquad
38. $(-2+i)(-2-i)=$ \qquad
39. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad $=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad

$$
\begin{aligned}
& \text { 36. }(-2+i)(-2-i)= \\
& =
\end{aligned}
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad $=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad

$$
\begin{aligned}
& \text { 36. }(-2+i)(-2-i)= \\
& =4
\end{aligned}
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35.

$$
\begin{aligned}
& (8+5 i)(8-5 i)=-\frac{89}{} \\
& =64-40 i+40 i-25 i^{2}=
\end{aligned}
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{aligned}
& (-2+i)(-2-i)= \\
& =4
\end{aligned}
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35.

$$
\begin{aligned}
& (8+5 i)(8-5 i)=-\frac{89}{} \\
& =64-40 i+40 i-25 i^{2}=
\end{aligned}
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{aligned}
& (-2+i)(-2-i)= \\
& =4+2 i
\end{aligned}
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{aligned}
& (-2+i)(-2-i)= \\
= & 4+2 i
\end{aligned}
$$

38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{aligned}
& (-2+i)(-2-i)=\text {. } \\
& =4+2 i-2 i
\end{aligned}
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35.

$$
\begin{aligned}
& (8+5 i)(8-5 i)=-\frac{89}{} \\
& =64-40 i+40 i-25 i^{2}=
\end{aligned}
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{gathered}
(-2+i)(-2-i)= \\
=4+2 i-2 i
\end{gathered}
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35.

$$
\begin{aligned}
& (8+5 i)(8-5 i)=-\frac{89}{} \\
& =64-40 i+40 i-25 i^{2}=
\end{aligned}
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{aligned}
& (-2+i)(-2-i)= \\
= & 4+2 i-2 i-i^{2}
\end{aligned}
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=$ \qquad
38. $(-2+i)(-2-i)=$

$$
=4+2 i-2 i-i^{2}=
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad $=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad $=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad $=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{gathered}
(-2+i)(-2-i)=5 \\
\downarrow \downarrow \\
=4+2 i-2 i-i^{2}=
\end{gathered}
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{gathered}
(-2+i)(-2-i)=5+0 i \\
\downarrow \\
=4+2 i-2 i-i^{2}=
\end{gathered}
$$

38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{aligned}
& (-2+i)(-2-i)= \\
& =4+2 i-2 i-i^{2}=
\end{aligned}
$$

38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=5$ $=4+2 i-2 i-i^{2}=$
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad
36. $(-2+i)(-2-i)=$ \qquad $=4+2 i-2 i-i^{2}=$
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ $=12$
36. $(-2+i)(-2-i)=5$ $=4+2 i-2 i-i^{2}=$
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad $=12$
36. $(-2+i)(-2-i)=5$
$=4+2 i-2 i-i^{2}=$
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ $=12-18 i$
36. $(-2+i)(-2-i)=5$
$=4+2 i-2 i-i^{2}=$
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{aligned}
& (-2+i)(-2-i)=5 \\
= & 4+2 i-2 i-i^{2}=
\end{aligned}
$$

38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad

$$
\text { 36. } \begin{aligned}
& (-2+i)(-2-i)=5 \\
= & 4+2 i-2 i-i^{2}=
\end{aligned}
$$

38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ $=12-18 i-8 i$
36. $(-2+i)(-2-i)=5$ $=4+2 i-2 i-i^{2}=$
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ $=12-18 i-8 i+12 i^{2}$
36. $(-2+i)(-2-i)=5$ $=4+2 i-2 i-i^{2}=$
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=$ \qquad

$$
=12-18 i-8 i+12 i^{2}=
$$

36. $(-2+i)(-2-i)=5$
$=4+2 i-2 i-i^{2}=$
37. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ $=\mathbf{1 2}-\mathbf{1 8 i} \mathbf{i} \mathbf{8 i}+12 \mathbf{i}^{\mathbf{2}}=$
36. $(-2+i)(-2-i)=5$ $=4+2 i-2 i-i^{2}=$
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$
37. $(6-4 i)(2-3 i)=$ $=\mathbf{1 2}-\mathbf{1 8 i} \mathbf{i} \mathbf{8 i}+12 \mathbf{i}^{\mathbf{2}}=$
36. $(-2+i)(-2-i)=5$
$=4+2 i-2 i-i^{2}=$
38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$
$=64-40 i+40 i-25 i^{2}=$

$=12-18 i-8 i+12 i^{2}=$
36. $(-2+i)(-2-i)=5$

$$
=4+2 i-2 i-i^{2}=
$$

38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=0$
$=12-18 i-8 i+12 i^{2}=$
38. $(-2+i)(-2-i)=5$
$=4+2 i-2 i-i^{2}=$
39. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=64-40 i+40 i-25 i^{2}=
$$

$$
=4+2 i-2 i-i^{2}=
$$

37. $(6-4 i)(2-3 i)=0-26 i$ $=12-18 i-8 i+12 i^{2}=$
38. $(1-\mathbf{i})(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=64-40 i+40 i-25 i^{2}=
$$

$$
=4+2 i-2 i-i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$

$$
=12-18 i-8 i+12 i^{2}=
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

38. $(1-i)(1+3 i)=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$
38. $(-2+i)(-2-i)=5$

$$
=4+2 i-2 i-i^{2}=
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

$$
\text { 38. } \begin{aligned}
& (1-i)(1+3 i)= \\
& =1
\end{aligned}
$$

$$
=
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

$$
\text { 38. } \begin{aligned}
& (1-i)(1+3 i)= \\
& =1
\end{aligned}
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

$$
\text { 38. } \begin{aligned}
& (1-i)(1+3 i)= \\
& =1+3 i
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

$$
\text { 38. } \begin{aligned}
& (1-i)(1+3 i)= \\
& =1+3 i
\end{aligned}
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

$$
\text { 38. } \begin{aligned}
& (1-i)(1+3 i)= \\
& =1+3 i-i
\end{aligned}
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

$$
\text { 38. } \begin{gathered}
(1-i)(1+\underset{i}{3 i})= \\
=1+3 i-i
\end{gathered}
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

$$
\text { 38. } \begin{aligned}
&(1-i) \\
&=(1+3 i) \\
&= 1+3 i-i-3 i^{2}
\end{aligned}
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$
38. $(-2+i)(-2-i)=5$

$$
=4+2 i-2 i-i^{2}=
$$

38. $(1-i)(1+3 i)=$

$$
=\mathbf{1}+\mathbf{3 i}-\mathbf{i}-3 \mathbf{i}^{2}=
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=89$

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$
$=12-18 i-8 i+12 i^{2}=$
38. $(-2+i)(-2-i)=5$

$$
=4+2 i-2 i-i^{2}=
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 \mathbf{i}$
$=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

38. $(1-i)(1+3 i)=$

$$
=\mathbf{1}+\mathbf{3 i}-\mathbf{i}-\mathbf{3 i ^ { 2 }}=
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35.

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 \mathbf{i}-2 i-i^{2}=
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35.

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 i-2 i-i^{2}=
$$

$$
\begin{aligned}
& \text { 38. }(1-\mathbf{i})(1+3 i)=4 \\
& \downarrow \downarrow \\
& =1+3 i-i-3 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35.

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$

$$
\text { 36. }(-2+i)(-2-i)=5
$$

$$
=4+2 \mathbf{i}-2 i-i^{2}=
$$

$$
\text { 38. } \begin{gathered}
(1-i)(1+3 i)=4+2 i \\
\downarrow \downarrow \\
=1+3 i-i-3 i^{2}=
\end{gathered}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35.

$$
=64-40 i+40 i-25 i^{2}=
$$

37. $(6-4 i)(2-3 i)=-26 i$ $=12-18 i-8 i+12 i^{2}=$
38. $(-2+i)(-2-i)=5$

$$
=4+2 i-2 i-i^{2}=
$$

$$
\text { 38. }(1-i)(1+3 i)=4+2 i
$$

$$
=\mathbf{1}+\mathbf{3 i}-\mathbf{i}-\mathbf{3} \mathbf{i}^{2}=
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
35. $(8+5 i)(8-5 i)=$ \qquad 36. $(-2+i)(-2-i)=5$ $=4+2 i-2 i-i^{2}=$
37. $(6-4 i)(2-3 i)=$ \qquad 38. $(1-i)(1+3 i)=-4+2 i$
$=12-18 i-8 i+12 i^{2}=$ $=\mathbf{1}+\mathbf{3 i}-\mathbf{i}-\mathbf{3 i}^{2}=$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=$ \qquad
41. $(-5+i)^{2}=$ \qquad
40. $(4-3 i)^{2}=$ \qquad
42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=$ \qquad
41. $(-5+i)^{2}=$ \qquad
40. $(4-3 i)^{2}=$ \qquad
42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=$ \qquad
$=(2+5 i)(2+5 i)$
40. $(4-3 i)^{2}=$ \qquad
42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
&(2+5 i)^{2}= \\
&=(2+5 i)(2+5 i)= \\
&=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}= \\
= & (2+5 i)(2+5 i)= \\
= & 4
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}= \\
= & (2+5 i)(2+5 i)= \\
= & 4
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}= \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=$
$=(2+5 i)(2+5 i)=$
$=4+10 \mathrm{i}$
41. $(-5+i)^{2}=$ \qquad
40. $(4-3 i)^{2}=$ \qquad
42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=$

$$
\begin{aligned}
& =(2+5 i)(2+5 i)= \\
& =4+10 i+10 i
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=$ \qquad
$=(2+5 i)(2+5 i)=$ \square
$=\mathbf{4 + 1 0 i}+10 i$
41. $(-5+i)^{2}=$ \qquad
40. $(4-3 i)^{2}=$ \qquad
42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=$ \qquad
$=(2+5 i)(2+5 i)=$
$=\mathbf{4}+\mathbf{1 0 i}+\mathbf{1 0 i}+\mathbf{2 5} \mathrm{i}^{\mathbf{2}}$
41. $(-5+i)^{2}=$ \qquad
40. $(4-3 i)^{2}=$ \qquad
42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}= \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}= \\
= & (2+5 i)(2+5 i)= \\
& \downarrow \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}= \\
= & (2+5 i)(2+5 i)= \\
& \downarrow \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

$$
\text { Note: } \text { since } i=\sqrt{-1}, i^{2}=-1
$$

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

41. $(-5+i)^{2}=$ \qquad
40. $(4-3 i)^{2}=$ \qquad
42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
&(2+5 i)^{2}=-21 \\
&=(2+5 i)(2+5 i)= \\
& \downarrow \\
& \downarrow 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
\downarrow & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad
43. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
(4-3 i)^{2}= \\
=(4-3 i)(4-3 i)
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad
42. $(4-3 i)^{2}=$ \qquad

$$
=(4-3 i)(4-3 i)=
$$

$$
=
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\begin{aligned}
& \text { 40. }(4-3 i)^{2}= \\
& =(4-3 i)(4-3 i)= \\
& =16
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
& (4-3 i)^{2}= \\
& =(4-3 i)(4-3 i)= \\
& =16
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
&(4-3 i)^{2}= \\
&=(4-3 i)(4-3 i)= \\
&= 16-12 i
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
&(4-3 i)^{2}= \\
&=(4-3 i)(4-3 i)= \\
&= 16-12 i
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
& (4-3 i)^{2}= \\
= & (4-3 i)(4-3 i)= \\
= & 16-12 i-12 i
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
&(4-3 i)^{2}= \\
&=(4-3 i)(4-3 i)= \\
&= 16-12 i-12 i
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\begin{aligned}
\text { 40. } & (4-3 i)^{2}= \\
= & (4-3 i)(4-3 i)= \\
= & 16-12 i-12 i+9 i^{2}
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\begin{aligned}
& \text { 40. }(4-3 i)^{2}= \\
& =(4-3 i)(4-3 i)= \\
& =\left(16-12 i-12 i+9 i^{2}=\right.
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
& (4-3 i)^{2}= \\
= & (4-3 i)(4-3 i)= \\
& \downarrow \\
= & 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
& (4-3 i)^{2}= \\
= & (4-3 i)(4-3 i)= \\
= & 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
& (4-3 i)^{2}=\frac{7}{=} \\
= & (4-3 i)(4-3 i)= \\
& \downarrow \\
= & 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
&(4-3 i)^{2}=\frac{7}{3} \\
&=(4-3 i)(4-3 i)= \\
& \downarrow \\
&= 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\text { 40. } \begin{aligned}
& (4-3 i)^{2}= \\
= & (4-3 i)(4-3 i)= \\
= & 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\begin{aligned}
\text { 40. } & (4-3 i)^{2}=\frac{7-24 i}{} \\
= & (4-3 i)(4-3 i)= \\
= & 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{array}{rlr}
(2+5 i)^{2}=-21+20 i & \text { 40. }(4-3 i)^{2}=\underline{7-24 i} \\
=(2+5 i)(2+5 i)= & =(4-3 i)(4-3 i)= \\
= & 4+10 i+10 i+25 i^{2}= & =16-12 i-12 i+9 i^{2}=
\end{array}
$$

41. $(-5+i)^{2}=$ \qquad 42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
(2+5 i)^{2}=-21+20 i & \text { 40. }(4-3 i)^{2}= \\
=(2+5 i)(2+5 i)= & =(4-3 i)(4-3 i)= \\
=4+10 i+10 i+25 i^{2}= & =16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
=(-5+i)(-5+i)
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=-21+20 i$

$$
=(2+5 i)(2+5 i)=
$$

$$
=4+10 i+10 i+25 i^{2}=
$$

41. $(-5+i)^{2}=$ \qquad

$$
\begin{aligned}
& =(-5+i)(-5+i)= \\
& =
\end{aligned}
$$

$$
\text { 40. } \begin{aligned}
& (4-3 i)^{2}= \\
= & (4-3 i)(4-3 i)= \\
= & 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =4+10 i+10 i+25 i^{2}= \\
& \text { 41. }(-5+i)^{2}= \\
& =(-5+i)(-5+i)= \\
& =25 \\
& \text { 42. }(-3-2 i)^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 39. } \begin{array}{ll}
(2+5 i)^{2}=-21+20 i & \text { 40. }(4-3 i)^{2}=\underline{7-24 i} \\
=(2+5 i)(2+5 i)= & \\
=(4-3 i)(4-3 i)= \\
= & 4+10 i+10 i+25 i^{2}= \\
& =16-12 i-12 i+9 i^{2}= \\
\text { 41. }(-5+i)^{2}= & \text { 42. }(-3-2 i)^{2}= \\
=(-5+i)(-5+i)= & \\
=25 &
\end{array}
\end{array}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. } \begin{array}{ll}
(2+5 i)^{2}=-21+20 i & \text { 40. }(4-3 i)^{2}=\underline{7-24 i} \\
=(2+5 i)(2+5 i)= & \\
=(4-3 i)(4-3 i)= \\
= & 4+10 i+10 i+25 i^{2}= \\
& =16-12 i-12 i+9 i^{2}= \\
\text { 41. }(-5+i)^{2}= & \text { 42. }(-3-2 i)^{2}= \\
=(-5+i)(-5+i)= \\
= &
\end{array} \\
&=25-5 i
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
\text { 39. } \begin{aligned}
&(2+5 i)^{2}=-21+20 i \\
&=(2+5 i)(2+5 i)=
\end{aligned} & \begin{array}{l}
\text { 40. }(4-3 i)^{2}=\underline{7-24 i} \\
=(4-3 i)(4-3 i)= \\
=
\end{array} \\
& 4+10 i+10 i+25 i^{2}= \\
\text { 41. }(-5+i)^{2}= & 16-12 i-12 i+9 i^{2}= \\
=(-5+i)(-5+i)= & \text { 42. }(-3-2 i)^{2}= \\
= &
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =4+10 i+10 i+25 i^{2}= \\
& \text { 41. }(-5+i)^{2}= \\
& =(-5+i)(-5+i)= \\
& \text { - } \\
& =25-5 i-5 i \\
& \text { 42. }(-3-2 i)^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
(2+5 i)^{2}=-21+20 i & \text { 40. }(4-3 i)^{2}= \\
=(2+5 i)(2+5 i)= & =(4-3 i)(4-3 i)= \\
=4+10 i+10 i+25 i^{2}= & =16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

41. $(-5+i)^{2}=$ \qquad

$$
\begin{aligned}
& =(-5+\underbrace{i)}_{-}(-5+\underbrace{i}_{i})= \\
& =25-5 i-5 i
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =4+10 i+10 i+25 i^{2}= \\
& \text { 41. }(-5+i)^{2}= \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2} \\
& \text { 42. }(-3-2 i)^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. } \begin{aligned}
&(2+5 i)^{2}=-21+20 i \text { 40. }(4-3 i)^{2}=-7-24 i \\
&=(2+5 i)(2+5 i)= \\
&=(4-3 i)(4-3 i)= \\
&= 4+10 i+10 i+25 i^{2}=
\end{aligned}=16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}= \text { 42. }(-3-2 i)^{2}= \\
&=(-5+i)(-5+i)= \\
&= \\
&
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=-21+20 i$

$$
=(2+5 i)(2+5 i)=
$$

$$
=4+10 i+10 i+25 i^{2}=
$$

41. $(-5+i)^{2}=$ \qquad

$$
\begin{aligned}
& \text { 40. }(4-3 i)^{2}=\frac{7-24 i}{} \\
&=(4-3 i)(4-3 i)= \\
&= 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=-21+20 i$

$$
=(2+5 i)(2+5 i)=
$$

$$
=4+10 i+10 i+25 i^{2}=
$$

41. $(-5+i)^{2}=$ \qquad

$$
\begin{aligned}
& \text { 40. }(4-3 i)^{2}=\frac{7-24 i}{} \\
&=(4-3 i)(4-3 i)= \\
&= 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
39. $(2+5 i)^{2}=-21+20 i$

$$
=(2+5 i)(2+5 i)=
$$

$$
=4+10 i+10 i+25 i^{2}=
$$

41. $(-5+i)^{2}=24$

$$
\begin{aligned}
& \text { 40. }(4-3 i)^{2}=\frac{7-24 i}{} \\
&=(4-3 i)(4-3 i)= \\
&= 16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =4+10 i+10 i+25 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24} \\
& =(-5+i)(-5+i)= \\
& \downarrow \downarrow \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =4+10 i+10 i+25 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& \downarrow \downarrow \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
\text { 39. } \begin{aligned}
&(2+5 i)^{2}=-21+20 i \\
&=(2+5 i)(2+5 i)= \\
&=\left(40 .(4-3 i)^{2}=\frac{7-24 i}{}\right. \\
&=(4-3 i)(4-3 i)= \\
&=\left(10 i+10 i+25 i^{2}=\right. \\
& \text { (} 4+16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=-24-10 i \text { 42. }(-3-2 i)^{2}= \\
&=(-5+i)(-5+i)= \\
&=25-5 i-5 i+i^{2}=
\end{aligned}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=-21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}= \\
\text { 41. } & (-5+i)^{2}=24-10 i \\
= & (-5+i)(-5+i)= \\
= & 25-5 i-5 i+i^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 40. }(4-3 i)^{2}=\frac{7-24 i}{=} \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=\underline{-21+20 i} \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}= \\
& =(-3-2 i)(-3-2 i)
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\text { 39. } \begin{aligned}
& (2+5 i)^{2}=--21+20 i \\
= & (2+5 i)(2+5 i)= \\
= & 4+10 i+10 i+25 i^{2}= \\
\text { 41. } & (-5+i)^{2}=-24-10 i \\
= & (-5+i)(-5+i)= \\
= & 25-5 i-5 i+i^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 40. }(4-3 i)^{2}=\frac{7-24 i}{=} \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}=
\end{aligned}
$$

42. $(-3-2 i)^{2}=$ \qquad

$$
=(-3-2 i)(-3-2 i)=
$$

$$
=
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 39. } \begin{array}{ll}
(2+5 i)^{2}=-21+20 i \\
=(2+5 i)(2+5 i)= &
\end{array} & \begin{array}{l}
\text { 40. }(4-3 i)^{2}=\underline{7-24 i} \\
=(4-3 i)(4-3 i)= \\
=\left(4+10 i+10 i+25 i^{2}=\right.
\end{array} \\
& =16-12 i-12 i+9 i^{2}= \\
\text { 41. }(-5+i)^{2}=-24-10 i \\
=(-5+i)(-5+i)= & \\
=25-5 i-5 i+i^{2}= & \text { 42. }(-3-2 i)^{2}= \\
=(-3-2 i)(-3-2 i)=
\end{array}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 39. } \begin{array}{ll}
(2+5 i)^{2}=-21+20 i \\
=(2+5 i)(2+5 i)= &
\end{array} & \begin{array}{l}
\text { 40. }(4-3 i)^{2}=\underline{7-24 i} \\
=(4-3 i)(4-3 i)= \\
=\left(4+10 i+10 i+25 i^{2}=\right.
\end{array} \\
& =16-12 i-12 i+9 i^{2}= \\
\text { 41. }(-5+i)^{2}=-24-10 i \\
=(-5+i)(-5+i)= & \\
=25-5 i-5 i+i^{2}= & \text { 42. }(-3-2 i)^{2}= \\
=(-3-2 i)(-3-2 i)=
\end{array}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 39. } \begin{array}{ll}
(2+5 i)^{2}=-21+20 i \\
=(2+5 i)(2+5 i)= &
\end{array} & \begin{array}{l}
\text { 40. }(4-3 i)^{2}=\underline{7-24 i} \\
=(4-3 i)(4-3 i)= \\
=4+10 i+10 i+25 i^{2}=
\end{array} \\
& =16-12 i-12 i+9 i^{2}= \\
\text { 41. }(-5+i)^{2}=-24-10 i \\
=(-5+i)(-5+i)= & \\
=25-5 i-5 i+i^{2}= & \text { 42. }(-3-2 i)^{2}= \\
=(-3-2 i)(-3-2 i)=
\end{array}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 39. } \begin{array}{ll}
(2+5 i)^{2}=-21+20 i \\
=(2+5 i)(2+5 i)= &
\end{array} & \begin{array}{l}
\text { 40. }(4-3 i)^{2}=\underline{7-24 i} \\
=(4-3 i)(4-3 i)= \\
=\left(4+10 i+10 i+25 i^{2}=\right.
\end{array} \\
& =16-12 i-12 i+9 i^{2}= \\
\text { 41. }(-5+i)^{2}=-24-10 i \\
=(-5+i)(-5+i)= & \\
=25-5 i-5 i+i^{2}= & \begin{array}{l}
\text { 42. }(-3-2 i)^{2}= \\
=(-3-2 i)(-3-2 i)= \\
=9+6 i
\end{array}
\end{array}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}= \\
& =(-3-2 i)(-3-2 i)= \\
& =9+6 \mathbf{i}+6 \mathbf{i}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& =(2+5 i)(2+5 i)= \\
& =4+10 i+10 i+25 i^{2}= \\
& \text { 42. }(-3-2 i)^{2}= \\
& =(-3-2 i)(-3-2 i)= \\
& \square \\
& =9+6 \mathrm{i}+6 \mathrm{i}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 39. } \begin{array}{ll}
(2+5 i)^{2}=-21+20 i \\
=(2+5 i)(2+5 i)=
\end{array} & \begin{array}{l}
\text { 40. }(4-3 i)^{2}=\frac{7-24 i}{} \\
=(4-3 i)(4-3 i)= \\
=\left(4+10 i+10 i+25 i^{2}=\right.
\end{array} \\
& =16-12 i-12 i+9 i^{2}= \\
\text { 41. }(-5+i)^{2}=-24-10 i \\
=(-5+i)(-5+i)= & \begin{array}{l}
\text { 42. }(-3-2 i)^{2}= \\
=(-3-2 i)(-3-2 i)= \\
=25-5 i-5 i+i^{2}=
\end{array}
\end{array}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{array}{ll}
\text { 39. } \begin{array}{ll}
(2+5 i)^{2}=-21+20 i \\
=(2+5 i)(2+5 i)=
\end{array} & \begin{array}{l}
\text { 40. }(4-3 i)^{2}=\frac{7-24 i}{} \\
=(4-3 i)(4-3 i)= \\
=\left(4+10 i+10 i+25 i^{2}=\right.
\end{array} \\
& =16-12 i-12 i+9 i^{2}= \\
\text { 41. } \begin{array}{l}
(-5+i)^{2}=-24-10 i \\
=(-5+i)(-5+i)=
\end{array} & \begin{aligned}
& \text { 42. }(-3-2 i)^{2}= \\
&=(-3-2 i)(-3-2 i)= \\
&=25-5 i-5 i+i^{2}==9+6 i+6 i+4 i^{2}=
\end{aligned}
\end{array}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}= \\
& \begin{array}{c}
=(-3-2 i)(-3-2 i)= \\
\downarrow \\
=9+6 i+6 i+4 i^{2}=
\end{array}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}= \\
& \begin{array}{c}
=(-3-2 i)(-3-2 i)= \\
\downarrow \\
=9+6 i+6 i+4 i^{2}=
\end{array}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}=5 \\
& =(-3-2 i)(-3-2 i)= \\
& =9+6 i+6 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}=5 \\
& =(-3-2 i)(-3-2 i)= \\
& \downarrow \downarrow \\
& =9+6 \mathbf{i}+6 \mathbf{i}+4 \mathbf{i}^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}=\underline{5+12 i} \\
& =(-3-2 i)(-3-2 i)= \\
& \downarrow \downarrow \\
& =9+6 i+6 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. }(-3-2 i)^{2}=5+12 i \\
& =(-3-2 i)(-3-2 i)= \\
& =9+6 \mathbf{i}+6 i^{2}+i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 39. }(2+5 i)^{2}=-21+20 i \\
& \text { 40. }(4-3 i)^{2}=7-24 i \\
& =(4-3 i)(4-3 i)= \\
& =16-12 i-12 i+9 i^{2}= \\
& \text { 41. }(-5+i)^{2}=\underline{24-10 i} \\
& =(-5+i)(-5+i)= \\
& =25-5 i-5 i+i^{2}= \\
& \text { 42. } \begin{aligned}
&(-3-2 i)^{2}= \\
&=(-3-2+12 i)(-3-2 i)= \\
&= 9+6 i+6 i+4 i^{2}=
\end{aligned}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
\qquad
43. $(2+i)^{3}=$ 44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get $\mathrm{i}^{\mathbf{i}}$ as part of your answer, replace it with $\mathbf{- 1}$. Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad 44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $\mathbf{i}=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad 44. $(1-2 i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad 44. $(1-2 i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$ $=$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$ $=4$
44. $(1-2 i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$ $=4$
44. $(1-2 i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$=4+2 i$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad

$$
\begin{aligned}
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad

$$
\begin{aligned}
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

$$
\text { Note: since } i=\sqrt{-1}, i^{2}=-1 .
$$

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

$$
\text { Note: since } i=\sqrt{-1}, i^{2}=-1 .
$$

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$

$$
=4+2 i+2 i+i^{2}=3+4 i
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)=$

$=$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$

$$
=4+2 i+2 i+i^{2}=3+4 i
$$

$(2+i)^{3}=(2+i)(3+4 i)=$

$=6$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)=$
$=6$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)=$
$=6+8 i$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)=$
$=6+8 i$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)=$
$=6+8 i+3 i$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$

$$
=4+2 i+2 i+i^{2}=3+4 i
$$

$(2+i)^{3}=(2+i)(3+4 i)=$
$=6+8 i+3 i$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)=$
$=6+8 i+3 i+4 \mathbf{i}^{\mathbf{2}}$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad

$$
\begin{aligned}
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$

$$
=4+2 i+2 i+i^{2}=3+4 i
$$

$$
(2+i)^{3}=(2+i)(3+4 i)=
$$

$$
=6+8 i+3 i+4 i^{2}=
$$

44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=$ \qquad
$(2+i)^{2}=(2+i)(2+i)=$

$$
=4+2 i+2 i+i^{2}=3+4 i
$$

$$
(2+i)^{3}=(2+i)(3+4 i)=
$$

$$
=6+8 i+3 i+4 i^{2}=
$$

44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=\underline{2}$
$(2+i)^{2}=(2+i)(2+i)=$

$$
=4+2 i+2 i+i^{2}=3+4 i
$$

$$
(2+i)^{3}=(2+i)(3+4 i)=
$$

$$
=6+8 i+3 i+4 i^{2}=
$$

44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=\underline{2}$
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)=$
$\downarrow \downarrow$
$=6+8 i+3 i+4 i^{2}=$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=\underline{2+11 i}$
$(2+i)^{2}=(2+i)(2+i)=$
$=4+2 i+2 i+i^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)=$
$\downarrow \downarrow$
$=6+8 i+3 i+4 i^{2}=$
44. $(1-2 i)^{3}=$ \qquad

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=\underline{2+11 i}$
44. $(1-2 i)^{3}=$ \qquad
$=4+2 \mathbf{i}+2 \mathbf{i}+\mathbf{i}^{2}=3+4 i$
$(2+i)^{3}=(2+i)(3+4 i)=$
$=6+8 i+3 i+4 i^{2}=$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 . Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. } \begin{array}{l}
(2+i)^{3}=\underline{2+11 i} \\
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1. Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. } \begin{array}{l}
(2+i)^{3}=\underline{2+11 i} \\
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

44. $(1-2 i)^{3}=$ \qquad

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

44. $(1-2 i)^{3}=$
$(1-2 i)^{2}=$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& (1-2 i)^{2}=(1-2 i)(1-2 i)
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. } \begin{array}{l}
(2+i)^{3}=\underline{2+11 i} \\
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. } \begin{array}{l}
(2+i)^{3}=\underline{2+11 i} \\
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& (1-2 i)^{2}=(1-2 i)(1-2 i)= \\
& =1
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. } \begin{array}{l}
(2+i)^{3}=\underline{2+11 i} \\
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& (1-2 i)^{2}=(1-2 i)(1-2 i)= \\
& =1
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. } \begin{array}{l}
(2+i)^{3}=\underline{2+11 i} \\
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

44. $(1-2 i)^{3}=$

$=1-2 \mathbf{i}$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& (1-2 i)^{2}=(1-2 i)(1-2 i)= \\
& =1-2 i
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& (1-2 i)^{2}=(1-2 i)(1-2 i)= \\
& =1-2 i-2 i
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& (1-2 i)^{2}=(1-2 i)(1-2 i)= \\
& =1-2 i-2 i
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\text { 44. }(1-2 i)^{3}=
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& (1-2 i)^{2}=(1-2 i)(1-2 i)= \\
& =1-2 i-2 i+4 i^{2}=
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& \begin{array}{l}
(1-2 i)^{2}=(1-2 i)(1-2 i)= \\
\downarrow \\
=1-2 i-2 i+4 i^{2}=
\end{array}
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& \begin{array}{l}
(1-2 i)^{2}=(1-2 i)(1-2 i)= \\
\downarrow \\
= \\
1-2 i-2 i+4 i^{2}=
\end{array}
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

$$
\text { Note: since } i=\sqrt{-1}, i^{2}=-1 .
$$

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& \begin{array}{l}
(1-2 i)^{2}=(1-2 i)(1-2 i)= \\
\downarrow \\
= \\
1
\end{array}-2 i-2 i+4 i^{2}=-3
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& \begin{array}{c}
(1-2 i)^{2}=(1-2 i)(1-2 i)= \\
\downarrow \\
=1-2 i-2 i+4 i^{2}=-3
\end{array}
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

44. $(1-2 i)^{3}=$

$$
\begin{gathered}
(1-2 i)^{2}=(1-2 i)(1-2 i)= \\
\downarrow \\
=1-2 i-2 i+4 i^{2}=-3-4 i
\end{gathered}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 44. }(1-2 i)^{3}= \\
& (1-2 i)^{2}=(1-2 i)(1-2 i)= \\
& =1-2 i-2 i+4 i^{2}=-3-4 i
\end{aligned}
$$

Square it first !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& \begin{array}{l}
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=\underline{2+11 i} \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. } \begin{array}{l}
(2+i)^{3}=\underline{2+11 i} \\
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=-1$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. }(2+i)^{3}=2+11 i \\
& (2+i)^{2}=(2+i)(2+i)= \\
& =4+2 i+2 i+i^{2}=3+4 i \\
& (2+i)^{3}=(2+i)(3+4 i)= \\
& =6+8 i+3 i+4 i^{2}=
\end{aligned}
$$

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.

$$
\begin{aligned}
& \text { 43. } \begin{array}{l}
(2+i)^{3}=\underline{2+11 i} \\
(2+i)^{2}=(2+i)(2+i)= \\
=4+2 i+2 i+i^{2}=3+4 i \\
(2+i)^{3}=(2+i)(3+4 i)= \\
=6+8 i+3 i+4 i^{2}=
\end{array}
\end{aligned}
$$

When multiplying complex numbers, first treat the number \mathbf{i} like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1.

Note: since $i=\sqrt{-1}, i^{2}=\mathbf{- 1}$.

Algebra II Class Worksheet \#4 Unit 5

Perform the indicated operations. Express complex answers in a + bi form.
43. $(2+i)^{3}=\underline{2+11 i}$ 44. $(1-2 i)^{3}=-11+2 i$
$(2+i)^{2}=(2+i)(2+i)=$

$$
(1-2 i)^{2}=(1-2 i)(1-2 i)=
$$

$$
=4+2 i+2 i+i^{2}=3+4 i
$$

$$
=1-2 i-2 i+4 i^{2}=-3-4 i
$$

$$
(9+i)^{3}=(9+i)(2+4 i)=
$$

$$
(1-9 i)^{3}=(1-9 i)(-2-4 i)=
$$

Good luck on your homework !!

When multiplying complex numbers, first treat the number i like a variable. Second, remember that i is not a variable. If you get i^{2} as part of your answer, replace it with -1 .

Note: since $i=\sqrt{-1}, i^{2}=-1$.

