Algebra II
 Lesson \#3 Unit 5
 Class Worksheet \#3
 For Worksheet \#3

Introduction to the Imaginary Numbers

Introduction to the Imaginary Numbers
The first numbers children encounter are the natural numbers, also called the counting numbers. After all, they are used to count objects. A child can appreciate the need for numbers to tell 'how many'.

Introduction to the Imaginary Numbers
The first numbers children encounter are the natural numbers, also called the counting numbers. After all, they are used to count objects. A child can appreciate the need for numbers to tell 'how many'.

Children learn the meaning of addition, putting two groups of objects together, early on. That is followed, in an equally concrete way, with subtraction, 'take away'. This leads to the introduction of 'zero' and the set of whole numbers.

Introduction to the Imaginary Numbers
The first numbers children encounter are the natural numbers, also called the counting numbers. After all, they are used to count objects. A child can appreciate the need for numbers to tell 'how many'.

Children learn the meaning of addition, putting two groups of objects together, early on. That is followed, in an equally concrete way, with subtraction, 'take away'. This leads to the introduction of 'zero' and the set of whole numbers.

I am not sure how early students are taught about the integers, but the fact that the temperature can go below zero leads to the need for negative numbers.

Introduction to the Imaginary Numbers

Solving equations, finding the missing number, is used early on to reinforce basic addition facts. One example of this type of equation is ' $5+\ldots=9$ '.

Introduction to the Imaginary Numbers

Solving equations, finding the missing number, is used early on to reinforce basic addition facts. One example of this type of equation is ' $5+\ldots=9$ '.

The meaning of, and the need for, the number zero can be reinforced with the equation ' $5+\ldots=5$ '. As the mathematics becomes more advanced, the equation becomes ' $5+\ldots=3$ ', which leads the students to appreciate the need for negative integers.

Introduction to the Imaginary Numbers

Solving equations, finding the missing number, is used early on to reinforce basic addition facts. One example of this type of equation is ' $5+\ldots=9$ '.

The meaning of, and the need for, the number zero can be reinforced with the equation ' $5+\ldots=5$ '. As the mathematics becomes more advanced, the equation becomes ' $5+\ldots=3$ ', which leads the students to appreciate the need for negative integers.

> Repeated addition leads to the concept of multiplication and to equations like $5 \times \ldots=20$. Once again, as the mathematics advances, equations like $5 \times \ldots=3$ leads to the concept of, and the notation used for, fractions.

Introduction to the Imaginary Numbers
Exponents are eventually introduced, leading to equations like $x^{2}=49$. However, when equations like $\mathbf{x}^{2}=5$ are first encountered, students can only approximate the solution. The only way to represent the exact value of the irrational number solutions involves the use of the radical sign, a symbol that was created for that purpose.

Introduction to the Imaginary Numbers
Exponents are eventually introduced, leading to equations like $x^{2}=49$. However, when equations like $x^{2}=5$ are first encountered, students can only approximate the solution. The only way to represent the exact value of the irrational number solutions involves the use of the radical sign, a symbol that was created for that purpose.

Now the mathematics has advanced to the point that we need to introduce a new type of number. A number that will be a solution of the equation $x^{2}=\mathbf{- 1}$. Certainly, this number is not a real number. If k represents any real number, $k^{2} \geq 0$!! The new number we need is i. Yes, the number i.

Introduction to the Imaginary Numbers

Introduction to the Imaginary Numbers
Definition: The Number i

Introduction to the Imaginary Numbers
Definition: The Number i
$\mathbf{i}=$

Introduction to the Imaginary Numbers

$$
\begin{aligned}
& \text { Definition: The Number } \mathbf{i} \\
& \qquad \mathbf{i}=\sqrt{-1}
\end{aligned}
$$

Introduction to the Imaginary Numbers

$$
\begin{aligned}
& \text { Definition: The Number } \mathbf{i} \\
& \qquad \mathbf{i}=\sqrt{-1}
\end{aligned}
$$

Note: Electrical engineering students call this number \mathbf{j}. They use the symbol ' \mathbf{i} ' for the measure of the current flowing in a circuit.

Introduction to the Imaginary Numbers

$$
\begin{aligned}
& \text { Definition: The Number } \mathbf{i} \\
& \qquad \mathbf{i}=\sqrt{-1}
\end{aligned}
$$

Introduction to the Imaginary Numbers
Definition: The Number i

$$
i=\sqrt{-1}
$$

Definition: Imaginary Number

Introduction to the Imaginary Numbers
Definition: The Number i

$$
i=\sqrt{-1}
$$

Definition: Imaginary Number
Any number that can be expressed in the form bi

Introduction to the Imaginary Numbers

$$
\begin{aligned}
& \text { Definition: The Number } \mathbf{i} \\
& \qquad i=\sqrt{-1}
\end{aligned}
$$

Definition: Imaginary Number
Any number that can be expressed in the form bi where b is a real number

Introduction to the Imaginary Numbers

$$
\begin{aligned}
& \text { Definition: The Number } \mathbf{i} \\
& \qquad \mathbf{i}=\sqrt{-1}
\end{aligned}
$$

Definition: Imaginary Number

Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$

Introduction to the Imaginary Numbers

$$
\begin{aligned}
& \text { Definition: The Number } \mathbf{i} \\
& \qquad \mathbf{i}=\sqrt{-1}
\end{aligned}
$$

Definition: Imaginary Number
Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Introduction to the Imaginary Numbers
Definition: The Number i

$$
i=\sqrt{-1}
$$

> Definition: Imaginary Number
> Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers.

Introduction to the Imaginary Numbers
Definition: The Number i

$$
i=\sqrt{-1}
$$

> Definition: Imaginary Number
> Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers. $5 i$

Introduction to the Imaginary Numbers
Definition: The Number i

$$
i=\sqrt{-1}
$$

> Definition: Imaginary Number
> Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers.
$5 i \quad-3 i$

Introduction to the Imaginary Numbers
Definition: The Number i

$$
i=\sqrt{-1}
$$

> Definition: Imaginary Number
> Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers.

$5 i$	$-3 i$	$\sqrt{3}$ i

Introduction to the Imaginary Numbers
Definition: The Number \mathbf{i}

$$
i=\sqrt{-1}
$$

Definition: Imaginary Number

Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers.
$5 i \quad-3 i \quad \sqrt{3} i \quad-2 \sqrt{2} i$

Introduction to the Imaginary Numbers
Definition: The Number \mathbf{i}

$$
i=\sqrt{-1}
$$

Definition: Imaginary Number

Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers.

$5 i$	$-3 i$	$\sqrt{3} i$	$-2 \sqrt{2} i$

Introduction to the Imaginary Numbers

Definition: The Number \mathbf{i}

$$
i=\sqrt{-1}
$$

> Definition: Imaginary Number
> Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers.

$5 i$	$-3 i$	$\sqrt{3} \mathbf{i}$	$-2 \sqrt{2} i$

The last two examples are sometimes written in another form to avoid any confusion.

Introduction to the Imaginary Numbers

Definition: The Number \mathbf{i}

$$
i=\sqrt{-1}
$$

Definition: Imaginary Number

Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers.

$5 i$	$-3 i$	$\sqrt{3} i$
	$i \sqrt{3}$	

The last two examples are sometimes written in another form to avoid any confusion.

Introduction to the Imaginary Numbers

Definition: The Number \mathbf{i}

$$
i=\sqrt{-1}
$$

Definition: Imaginary Number

Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers.

$5 i$	$-3 i$	$\sqrt{3} i$
	$i \sqrt{3}$	$-2 \sqrt{2} i$

The last two examples are sometimes written in another form to avoid any confusion.

Introduction to the Imaginary Numbers

Definition: The Number i

$$
i=\sqrt{-1}
$$

Definition: Imaginary Number

Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Here are several examples of imaginary numbers.

$5 i$	$-3 i$	$\sqrt{3} i$
	$i \sqrt{3}$	$-2 \sqrt{2} i \sqrt{2}$

The last two examples are sometimes written in another form to avoid any confusion. The vinculum, the horizontal bar, can not extend above the number \mathbf{i}.

Introduction to the Imaginary Numbers

$$
\begin{aligned}
& \text { Definition: The Number } \mathbf{i} \\
& \qquad \mathbf{i}=\sqrt{-1}
\end{aligned}
$$

Definition: Imaginary Number
Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

Introduction to the Imaginary Numbers
Definition: The Number i

$$
i=\sqrt{-1}
$$

> Definition: Imaginary Number
> Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

The square root of a negative number is an imaginary number.

Introduction to the Imaginary Numbers
Definition: The Number \mathbf{i}

$$
i=\sqrt{-1}
$$

> Definition: Imaginary Number
> Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

The square root of a negative number is an imaginary number. Writing these numbers in simplest form will be considered next.

Introduction to the Imaginary Numbers
Definition: The Number \mathbf{i}

$$
i=\sqrt{-1}
$$

> Definition: Imaginary Number
> Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

The square root of a negative number is an imaginary number. Writing these numbers in simplest form will be considered next. Make sure that you understand that the cube root of a negative number

Introduction to the Imaginary Numbers
Definition: The Number \mathbf{i}

$$
i=\sqrt{-1}
$$

Definition: Imaginary Number

Any number that can be expressed in the form bi where b is a real number and $i=\sqrt{-1}$ is an imaginary number.

The square root of a negative number is an imaginary number. Writing these numbers in simplest form will be considered next. Make sure that you understand that the cube root of a negative number is a (negative) real number.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=$
2. $\sqrt{-64}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=$
2. $\sqrt{-64}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=$
2. $\sqrt{-64}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=$
2. $\sqrt{-64}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \quad \sqrt{-9}=
$$

$$
\text { 2. } \sqrt{-64}=
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=
$$

$$
\text { 2. } \sqrt{-64}=
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=
$$

$$
\text { 2. } \sqrt{-64}=
$$

\qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=
$$

$$
\text { 2. } \sqrt{-64}=
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=3 \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3$
2. $\sqrt{-64}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=3 \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 2. } \sqrt{-64}=
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=3 i \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathbf{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=3 i \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=\mathbf{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{\mathbf{k}} \cdot \sqrt{-1}$, where $\mathbf{k}>\mathbf{0}$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=-3 i \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\text { 2. } \sqrt{-64}=
$$

\qquad

$$
\sqrt{9} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=$ \qquad

$$
\sqrt{64}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathbf{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}= \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{array}{lc}
\text { 1. } \sqrt{-9}=-3 i \\
\sqrt{9} \cdot \sqrt{-1} & \text { 2. } \sqrt{-64}= \\
\sqrt{64} \cdot \sqrt{-1}
\end{array}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=\mathbf{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \quad \sqrt{-64}=
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{array}{ll}
\text { 1. } \sqrt{-9}=-3 i \\
\sqrt{9} \cdot \sqrt{-1} & \text { 2. } \sqrt{-64}=\underline{8} \\
\sqrt{64} \cdot \sqrt{-1}
\end{array}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{array}{ll}
\text { 1. } \sqrt{-9}=-3 i \\
\sqrt{9} \cdot \sqrt{-1} & \text { 2. } \sqrt{-64}=-8 \\
\sqrt{64} \cdot \sqrt{-1}
\end{array}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{array}{ll}
\text { 1. } \sqrt{-9}=3 i \\
\sqrt{9} \cdot \sqrt{-1} & \text { 2. } \sqrt{-64}=\begin{array}{l}
8 \\
\sqrt{64} \cdot \sqrt{-1}
\end{array}
\end{array}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{array}{ll}
\text { 1. } \sqrt{-9}=-3 i \\
\sqrt{9} \cdot \sqrt{-1} & \text { 2. } \sqrt{-64}= \\
\sqrt{64} \cdot \sqrt{-1}
\end{array}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{array}{ll}
\text { 1. } \sqrt{-9}=\sqrt{3 i} & \text { 2. } \sqrt{-64}=\xrightarrow[8 i]{\sqrt{64} \cdot \sqrt{-1}}
\end{array}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $\mathbf{k}>\mathbf{0}$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=
$$

$$
\text { 4. } \sqrt{-24}=
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

3. $\sqrt{-2}=$ \qquad
4. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 4. } \sqrt{-24}=
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

3. $\sqrt{-2}=$ \qquad
4. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 4. } \sqrt{-24}=
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=3 i \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=
$$

\qquad

$$
\sqrt{2}
$$

Step 1: Factor - Express the expression in the form $\sqrt{\mathbf{k}} \cdot \sqrt{-1}$, where $\mathbf{k}>\mathbf{0}$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=
$$

$$
\text { 4. } \sqrt{-24}=
$$

\qquad

$$
\sqrt{2} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=3 i \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=
$$

$$
=
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=
$$

\qquad

Step 1: Factor - Express the expression in the form $\sqrt{\mathbf{k}} \cdot \sqrt{-1}$, where $\mathbf{k}>\mathbf{0}$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=
$$

$$
\text { 4. } \sqrt{-24}=
$$

\qquad

$$
\sqrt{2} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=3 i \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=
$$

$$
=
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=-8 \mathrm{i}$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=
$$

\qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 i
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2}
$$

$$
\text { 4. } \sqrt{-24}=
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=-8 \mathrm{i}$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=-8 \mathrm{i}$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=
$$

\qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=-8 \mathrm{i}$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=
$$

\qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=-8 \mathrm{i}$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathbf{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 \mathrm{i}$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=
$$

$$
\sqrt{24}
$$

Step 1: Factor - Express the expression in the form $\sqrt{\mathbf{k}} \cdot \sqrt{-1}$, where $\mathbf{k}>\mathbf{0}$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=8 \mathrm{i} \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}= \\
& \sqrt{24} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}= \\
& \sqrt{24} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}= \\
& \sqrt{24} \cdot \sqrt{-1}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}= \\
& \sqrt{24} \cdot \sqrt{-1}=
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}= \\
& \sqrt{24} \cdot \sqrt{-1}=\sqrt{4}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}=2 \\
& \sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=8 \mathrm{Bi} \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}=2 \\
& \sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}= \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}= \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=\sqrt{8 i} \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}=2 \sqrt{6} i \\
& \sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=3 i \\
& \sqrt{9} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=\sqrt{8 i} \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}=2 \sqrt{6} i \\
& \sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=8 \mathrm{Bi} \\
& \sqrt{64} \cdot \sqrt{-1} \\
& \text { 4. } \sqrt{-24}=2 \sqrt{6} i \\
& \sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 i
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=
$$

\qquad
6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathbf{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 i
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=
$$

\qquad
6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 \mathrm{i}
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\underline{\sqrt{2} i} \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

5. $\sqrt{-50}=$ \qquad
6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 \mathrm{i}
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\underline{\sqrt{2} i} \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

5. $\sqrt{-50}=$ \qquad
6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 i
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\underline{\sqrt{2} i} \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=
$$

\qquad 6. $\sqrt{-54}=$ \qquad

$$
\sqrt{50} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 i
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\underline{\sqrt{2}} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=
$$

$$
\sqrt{50} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

5. $\sqrt{-50}=$ $\sqrt{50} \cdot \sqrt{-1}$
6. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

5. $\sqrt{-50}=$

$$
\sqrt{50} \cdot \sqrt{-1}=
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathbf{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 i
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

5. $\sqrt{-50}=$ \qquad 6. $\sqrt{-54}=$ \qquad

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 5. } \sqrt{-50}= \\
& \sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2}
\end{aligned}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 5. } \quad \sqrt{-50}= \\
& \sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2}
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 5. } \quad \sqrt{-50}= \\
& \sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2}
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6} i}$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=-8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\begin{aligned}
& \text { 5. } \quad \sqrt{-50}= \\
& \sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} \\
& i
\end{aligned}
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

5. $\sqrt{-50}=$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=-8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\begin{aligned}
& \text { 5. } \quad \sqrt{-50}= \\
& \sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
\end{aligned}
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2}
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathrm{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor-Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=8 \mathrm{i} \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

4. $\sqrt{-24}=2 \sqrt{6} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ $\underline{\square}$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\text { 1. } \sqrt{-9}=3 i
$$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 i
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1} \\
& \text { 5. } \sqrt{-50}=5 \sqrt{2} i \\
& \sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} \mathbf{i}$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

4. $\sqrt{-24}=2 \sqrt{6} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad $\sqrt{54}$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

$$
\sqrt{54} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

$$
\sqrt{54} \cdot \sqrt{-1}
$$

Step 1: Factor-Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

$$
\sqrt{54} \cdot \sqrt{-1}
$$

Step 1: Factor - Express the expression in the form $\sqrt{\mathbf{k}} \cdot \sqrt{-1}$, where $\mathbf{k}>\mathbf{0}$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=\mathrm{i}$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

$$
\sqrt{54} \cdot \sqrt{-1}=
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathbf{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 2. } \sqrt{-64}=8 i
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}}$ i

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

6. $\sqrt{-54}=$ \qquad

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=$ \qquad

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6}
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

6. $\sqrt{-54}=$

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathbf{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{-2}=\sqrt{2} i \\
& \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

6. $\sqrt{-54}=$

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathbf{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 2. } \sqrt{-64}=8 i
$$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}}$ i

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

5. $\sqrt{-50}=5 \sqrt{2} i$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

6. $\sqrt{-54}=$

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathbf{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

6. $\sqrt{-54}=3$

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

6. $\sqrt{-54}=3$

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathbf{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

6. $\sqrt{-54}=\underline{3} \sqrt{6}$

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 \mathbf{i}$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

6. $\sqrt{-54}=3 \sqrt{6} i$

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

1. $\sqrt{-9}=3 i$

$$
\sqrt{9} \cdot \sqrt{-1}
$$

$$
\begin{aligned}
& \text { 2. } \sqrt{-64}=-8 i \\
& \sqrt{64} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\text { 3. } \sqrt{-2}=\sqrt{2} i
$$

$$
\text { 4. } \sqrt{-24}=2 \sqrt{6} i
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

6. $\sqrt{-54}=3 \sqrt{6} i$

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following as imaginary numbers in bi form. (Simplify any square roots.)

$$
\begin{aligned}
& \text { 1. } \sqrt{-9}=-3 i \\
& \sqrt{9} \cdot \sqrt{-1} \\
& \text { 3. } \sqrt{-2}=\sqrt{2} i
\end{aligned}
$$

$$
\sqrt{2} \cdot \sqrt{-1}
$$

$$
\text { 5. } \sqrt{-50}=5 \sqrt{2} i
$$

$$
\sqrt{50} \cdot \sqrt{-1}=\sqrt{25} \cdot \sqrt{2} i
$$

2. $\sqrt{-64}=8 i$

$$
\sqrt{64} \cdot \sqrt{-1}
$$

4. $\sqrt{-24}=\underline{2 \sqrt{6}} i$

$$
\sqrt{24} \cdot \sqrt{-1}=\sqrt{4} \cdot \sqrt{6} i
$$

6. $\sqrt{-54}=3 \sqrt{6} i$

$$
\sqrt{54} \cdot \sqrt{-1}=\sqrt{9} \cdot \sqrt{6} i
$$

Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$. Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

7. $\sqrt{-72}=$
8. $\sqrt[3]{-72}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

7. $\sqrt{-72}=$

\qquad 8. $\sqrt[3]{-72}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

8. $\sqrt[3]{-72}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

7. $\sqrt{-72}=$ \qquad
8. $\sqrt[3]{-72}=$ \qquad

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
7. $\sqrt{-72}=$
$\sqrt{72}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
7. $\sqrt{-72}=$ $\sqrt{72} \cdot \sqrt{-1}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
7. $\sqrt{-72}=$
$\sqrt{72} \cdot \sqrt{-1}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\sqrt{72} \cdot \sqrt{-1}=
$$

8. $\sqrt[3]{-72}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
\sqrt{}{72}}\cdot\sqrt{}{-1}
\sqrt{}{72}}\cdot\sqrt{}{-1}
8. $\sqrt[3]{-72}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
\sqrt{}{72}}\cdot\sqrt{}{-1}=\sqrt{}{36
\sqrt{}{72}}\cdot\sqrt{}{-1}=\sqrt{}{36
8. $\sqrt[3]{-72}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$. -
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

8. $\sqrt[3]{-72}=$ \qquad

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$. -
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$. -
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
7. $\begin{aligned} & \sqrt{-72}=6 \sqrt{2} i \\ & \sqrt{72} \cdot \sqrt{-1}=\sqrt{36} \cdot \sqrt{2} i\end{aligned}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$. -
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$. -
8. $\sqrt[3]{-72}=$ \qquad

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 7. } \begin{aligned}
\sqrt{-72} & =6 \sqrt{2} i \\
\sqrt{72} \cdot \sqrt{-1} & =\sqrt{36} \cdot \sqrt{2} i
\end{aligned}
$$

8. $\sqrt[3]{-72}=$ \qquad

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 7. } \begin{aligned}
\sqrt{-72} & =6 \sqrt{2} i \\
\sqrt{72} \cdot \sqrt{-1} & =\sqrt{36} \cdot \sqrt{2} i
\end{aligned}
$$

8. $\sqrt[3]{-72}=$ \qquad

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

8. $\sqrt[3]{-72}=$
$\sqrt[4]{-8}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

8. $\sqrt[3]{-72}=$ $\sqrt[3]{-8} \cdot \sqrt[3]{9}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

8. $\sqrt[3]{-72}=-2$
$\sqrt[3]{-8} \cdot \sqrt[3]{9}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{-72}=\underline{-2 \sqrt[3]{9}} \sqrt[3]{-8} \cdot \sqrt[3]{9}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 7. } \begin{aligned}
\sqrt{-72} & =6 \sqrt{2} i \\
\sqrt{72} \cdot \sqrt{-1} & =\sqrt{36} \cdot \sqrt{2} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

9. $\sqrt{\frac{-4}{5}}=$
10. $\sqrt[3]{\frac{-7}{9}}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

9. $\sqrt{\frac{-4}{5}}=$
10. $\sqrt[3]{\frac{-7}{9}}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
9. $\sqrt{\frac{-4}{5}}=$
10. $\sqrt[3]{\frac{-7}{9}}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
9. $\sqrt{\frac{-4}{5}}=$
10. $\sqrt[3]{\frac{-7}{9}}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
9. $\sqrt{\frac{-4}{5}}=$
$=\sqrt{\frac{4}{5}}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
9. $\sqrt{\frac{-4}{5}}=$
10. $\sqrt[3]{\frac{-7}{9}}=$
$=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
9. $\sqrt{\frac{-4}{5}}=$
$=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
9. $\sqrt{\frac{-4}{5}}=$
$=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
9. $\sqrt{\frac{-4}{5}}=$
$=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=$
10. $\sqrt[3]{\frac{-7}{9}}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}}
\end{aligned}
$$

$$
\text { 10. } \sqrt[3]{\frac{-7}{9}}=
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
9. $\sqrt{\frac{-4}{5}}=$
$=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathbf{i}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
9. $\sqrt{\frac{-4}{5}}=$
$=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathbf{i}=$
$=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \begin{array}{l}
\sqrt{\frac{-4}{5}}= \\
=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
=\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=
\end{array} \text { = }
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \begin{array}{l}
\sqrt{\frac{-4}{5}}= \\
=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
=\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{}
\end{array} \text { = }
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}=
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
& =
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
& =\frac{\sqrt[3]{\frac{-7}{9}}=}{}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
& =\frac{\sqrt[3]{\frac{-7}{9}}=}{}=\sqrt{5}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \begin{array}{l}
\sqrt{\frac{-4}{5}}= \\
=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
=\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
=\frac{\sqrt{4} \cdot \sqrt{5}}{5} \mathrm{i}=
\end{array} \text { = }
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \begin{array}{l}
\sqrt{\frac{-4}{5}}= \\
=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
=\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
=\frac{\sqrt{4} \cdot \sqrt{5}}{5} \mathrm{i}=
\end{array} \text { = }
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathbf{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2}{}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathbf{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} \mathrm{i}=\frac{2 \sqrt{5}}{5}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}= \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathbf{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathbf{i}=\frac{\sqrt{20}}{5} \mathbf{i}= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} \mathbf{i}=\frac{2 \sqrt{5}}{5} \mathbf{i}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{array}{ll}
\text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} \mathrm{i} & \text { 10. } \sqrt[3]{\frac{-7}{9}}= \\
=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
=\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
=\frac{\sqrt{4} \cdot \sqrt{5}}{5} \mathrm{i}=\frac{2 \sqrt{5}}{5} \mathrm{i}
\end{array}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} \mathrm{i} \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= \\
& =\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} \mathrm{i}=\frac{2 \sqrt{5}}{5} \mathrm{i}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$
$=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
=\sqrt[3]{\frac{-21}{27}}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{array}{ll}
\text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i & \text { 10. } \sqrt[3]{\frac{-7}{9}}= \\
=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= & =\sqrt[3]{\frac{-21}{27}}= \\
=\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= & \\
=\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i &
\end{array}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
=\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
=\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
=\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}=
$$

$$
=
$$

$$
=
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
=\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}=
$$

$$
=\sqrt[3]{-21}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
& =\frac{\sqrt[3]{-21}}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
& =\frac{\sqrt[3]{-21}}{3}=
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
& =\frac{\sqrt[3]{-21}}{3}=\frac{}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
& =\frac{\sqrt[3]{-21}}{3}=\frac{\sqrt[3]{-1}}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
& =\frac{\sqrt[3]{-21}}{3}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{21}}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
& =\frac{\sqrt[3]{-21}}{3}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{21}}{3}=
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
& =\frac{\sqrt[3]{-21}}{3}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{21}}{3}=\frac{}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
& =\frac{\sqrt[3]{-21}}{3}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{21}}{3}=\frac{-1}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
10. $\sqrt[3]{\frac{-7}{9}}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
& =\frac{\sqrt[3]{-21}}{3}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{21}}{3}=\frac{-1 \sqrt[3]{21}}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} i \\
& =\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} i= \\
& =\frac{\sqrt{20}}{\sqrt{25}} i=\frac{\sqrt{20}}{5} i= \\
& =\frac{\sqrt{4} \cdot \sqrt{5}}{5} i=\frac{2 \sqrt{5}}{5} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

$$
\text { 10. } \begin{aligned}
& \sqrt[3]{\frac{-7}{9}}=\frac{-\sqrt[3]{21}}{3} \\
= & \sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
= & \frac{\sqrt[3]{-21}}{3}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{21}}{3}=\frac{-1 \sqrt[3]{21}}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\begin{array}{ll}
\text { 9. } \sqrt{\frac{-4}{5}}=\frac{2 \sqrt{5}}{5} \mathrm{i} & \text { 10. } \sqrt[3]{\frac{-7}{9}}=\frac{-\sqrt[3]{21}}{3} \\
=\sqrt{\frac{4}{5}} \cdot \sqrt{-1}=\sqrt{\frac{20}{25}} \mathrm{i}= & =\sqrt[3]{\frac{-21}{27}}=\frac{\sqrt[3]{-21}}{\sqrt[3]{27}}= \\
=\frac{\sqrt{20}}{\sqrt{25}} \mathrm{i}=\frac{\sqrt{20}}{5} \mathrm{i}= & =\frac{\sqrt[3]{-21}}{3}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{21}}{3}=\frac{-1 \sqrt[3]{21}}{3} \\
=\frac{\sqrt{4} \cdot \sqrt{5}}{5} \mathrm{i}=\frac{2 \sqrt{5}}{5} \mathrm{i} &
\end{array}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

11. $\sqrt{-1.5}=$

12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

11. $\sqrt{-1.5}=$

12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

11. $\sqrt{-1.5}=$
12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

11. $\sqrt{-1.5}=$ $=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathbf{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$ $=\sqrt{1.5}$
12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=$
12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=$
12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$

$$
=\sqrt{1.5} \cdot \sqrt{-1}=
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$

$$
=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}}$
12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}}$
12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}$
12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$ $=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$ $=\sqrt{\frac{6}{4}}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$ $=\sqrt{\frac{6}{4}} \mathrm{i}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$ $=\sqrt{\frac{6}{4}} \mathrm{i}=$
12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} i=\frac{\sqrt{6}}{}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} i=\frac{\sqrt{6}}{\sqrt{4}}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} \mathrm{i}=\frac{\sqrt{6}}{\sqrt{4}}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$ $=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$ $=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=$
12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} i=\frac{\sqrt{6}}{\sqrt{4}} i=\frac{\sqrt{6}}{}
$$

12. $\sqrt[3]{-1.5}=$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} i=\frac{\sqrt{6}}{2}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} i=\frac{\sqrt{6}}{\sqrt{4}} i=\frac{\sqrt{6}}{2}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} i=\frac{\sqrt{6}}{\sqrt{4}} i=\frac{\sqrt{6}}{2} i
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} i=\frac{\sqrt{6}}{\sqrt{4}} i=\frac{\sqrt{6}}{2} i
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$

$$
\begin{aligned}
& =\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}= \\
& =\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$
$=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$
$=\sqrt[3]{\frac{-3}{2}}$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$
$=\sqrt[3]{\frac{-3}{2}}=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

$$
=\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

$$
=\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

$$
=\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\sqrt[3]{-12}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

$$
=\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$
$=\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}=$
$=$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\underline{\sqrt[3]{-12}}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$

$$
=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} i=
$$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
-
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\frac{\sqrt[3]{-12}}{2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$

$$
=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} i=
$$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
-
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\frac{\sqrt[3]{-12}}{2}=
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$

$$
=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} i=
$$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
-
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\frac{\sqrt[3]{-12}}{2}=\frac{2}{2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
-
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1}}{2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\quad \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$

$$
=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} i=
$$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.
-
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\quad \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$

$$
\begin{aligned}
& =\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} i= \\
& =\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} i=\frac{\sqrt{6}}{2} i
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
-
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\quad \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{}{2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\quad \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1}{2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\quad \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}=$

$$
=\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.
12. $\sqrt[3]{-1.5}=$

$$
\begin{aligned}
& =\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& =\frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1 \sqrt[3]{12}}{2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathbf{i}$

$$
\begin{aligned}
& =\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathbf{i}= \\
& =\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathbf{i}=\frac{\sqrt{6}}{2} \mathbf{i}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express \sqrt{k} in simplest form and $\sqrt{-1}=i$.

$$
\text { 12. } \begin{aligned}
& \sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2} \\
&= \sqrt[3]{-3} \\
&= \frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
& 2
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$

$$
\begin{aligned}
& =\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}= \\
& =\sqrt{\frac{6}{4}} \mathbf{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathrm{i}=\frac{\sqrt{6}}{2} \mathrm{i}
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2} \\
= & \sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
= & \frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1 \sqrt[3]{12}}{2}
\end{aligned}
$$

Simplifying the Square Root of Negative Numbers
Step 1: Factor - Express the expression in the form $\sqrt{k} \cdot \sqrt{-1}$, where $k>0$.

Step 2: Express $\sqrt{\mathrm{k}}$ in simplest form and $\sqrt{-1}=i$.

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 11. } \begin{aligned}
& \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i} \\
= & \sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}= \\
= & \sqrt{\frac{6}{4}} \mathrm{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathrm{i}=\frac{\sqrt{6}}{2} \mathrm{i}
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2} \\
= & \sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
= & \frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1 \sqrt[3]{12}}{2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 11. } \begin{aligned}
& \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i} \text { 12. } \begin{array}{l}
\sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2} \\
=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}= \\
=\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
=\sqrt{\frac{6}{4}} \mathrm{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathrm{i}=\frac{\sqrt{6}}{2} \mathrm{i}
\end{array} \\
&=\frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1 \sqrt[3]{12}}{2}
\end{aligned}
$$

Make sure you understand the difference !!

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 11. } \begin{aligned}
& \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i} \\
= & \sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}= \\
= & \sqrt{\frac{6}{4}} \mathrm{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathrm{i}=\frac{\sqrt{6}}{2} \mathrm{i}
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2} \\
= & \sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
= & \frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1 \sqrt[3]{12}}{2}
\end{aligned}
$$

Make sure you understand the difference !!

$$
\sqrt{-1}=
$$

$$
\sqrt[3]{-1}=
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 11. } \begin{aligned}
& \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i} \\
= & \sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}= \\
= & \sqrt{\frac{6}{4}} \mathrm{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathrm{i}=\frac{\sqrt{6}}{2} \mathrm{i}
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2} \\
= & \sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
= & \frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1 \sqrt[3]{12}}{2}
\end{aligned}
$$

Make sure you understand the difference !!

$$
\sqrt{-1}=
$$

$$
\sqrt[3]{-1}=
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 11. } \begin{aligned}
& \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i} \\
= & \sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}= \\
= & \sqrt{\frac{6}{4}} \mathrm{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathrm{i}=\frac{\sqrt{6}}{2} \mathrm{i}
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2} \\
= & \sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
= & \frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1 \sqrt[3]{12}}{2}
\end{aligned}
$$

Make sure you understand the difference !!

$$
\sqrt{-1}=i
$$

$$
\sqrt[3]{-1}=
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 11. } \begin{aligned}
& \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i} \\
= & \sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}= \\
= & \sqrt{\frac{6}{4}} \mathrm{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathrm{i}=\frac{\sqrt{6}}{2} \mathrm{i}
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2} \\
= & \sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
= & \frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1 \sqrt[3]{12}}{2}
\end{aligned}
$$

Make sure you understand the difference !!

$$
\sqrt{-1}=i
$$

$$
\sqrt[3]{-1}=
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.

$$
\text { 11. } \begin{aligned}
& \sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i} \\
= & \sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}= \\
= & \sqrt{\frac{6}{4}} \mathrm{i}=\frac{\sqrt{6}}{\sqrt{4}} \mathrm{i}=\frac{\sqrt{6}}{2} \mathrm{i}
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2} \\
= & \sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\frac{\sqrt[3]{-12}}{\sqrt[3]{8}}= \\
= & \frac{\sqrt[3]{-12}}{2}=\frac{\sqrt[3]{-1} \cdot \sqrt[3]{12}}{2}=\frac{-1 \sqrt[3]{12}}{2}
\end{aligned}
$$

Make sure you understand the difference !!

$$
\sqrt{-1}=i
$$

$$
\sqrt[3]{-1}=-1
$$

Algebra II Class Worksheet \#3 Unit 5

Express each of the following in simplest form.
11. $\sqrt{-1.5}=\frac{\sqrt{6}}{2} \mathrm{i}$
12. $\sqrt[3]{-1.5}=\frac{-\sqrt[3]{12}}{2}$
$=\sqrt{1.5} \cdot \sqrt{-1}=\sqrt{\frac{3}{2}} \mathrm{i}=$
$=\sqrt[3]{\frac{-3}{2}}=\sqrt[3]{\frac{-12}{8}}=\sqrt[\frac{3}{-12}]{\sqrt[3]{8}}=$

Good luck on your homework !!

Make sure you understand the difference !!

$$
\sqrt{-1}=i
$$

$$
\sqrt[3]{-1}=-1
$$

