Algebra II
 Lesson \#2 Unit 5
 Class Worksheet \#2
 For Worksheet \#2

Square Root and Cube Root of Fractions and Decimals

Square Root and Cube Root of Fractions and Decimals
Square Root
Consider the following problem.

Square Root and Cube Root of Fractions and Decimals

Square Root
Consider the following problem.

$$
\sqrt{\frac{9}{16}}=\frac{3}{4}
$$

Square Root and Cube Root of Fractions and Decimals

Square Root
Consider the following problem.

$$
\sqrt{\frac{9}{16}}=\frac{3}{4}, \text { since }\left(\frac{3}{4}\right)^{2}=\frac{9}{16}
$$

Square Root and Cube Root of Fractions and Decimals

Square Root
Consider the following problem.

$$
\sqrt{\frac{9}{16}}=\frac{3}{4}, \text { since }\left(\frac{3}{4}\right)^{2}=\frac{9}{16}
$$

Note that $\sqrt{\frac{9}{16}}=\frac{\sqrt{9}}{\sqrt{16}}$

Square Root and Cube Root of Fractions and Decimals

Square Root
Consider the following problem.

$$
\sqrt{\frac{9}{16}}=\frac{3}{4}, \text { since }\left(\frac{3}{4}\right)^{2}=\frac{9}{16}
$$

Note that $\sqrt{\frac{9}{16}}=\frac{\sqrt{9}}{\sqrt{16}}$
This illustrates an important property concerning the square root of a fraction.

Square Root and Cube Root of Fractions and Decimals

Square Root
Consider the following problem.

$$
\sqrt{\frac{9}{16}}=\frac{3}{4}, \text { since }\left(\frac{3}{4}\right)^{2}=\frac{9}{16}
$$

Note that $\sqrt{\frac{9}{16}}=\frac{\sqrt{9}}{\sqrt{16}}$
This illustrates an important property concerning the square root of a fraction.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

Square Root and Cube Root of Fractions and Decimals
Square Root

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

Square Root and Cube Root of Fractions and Decimals

The Division Property of Square Roots

$$
\sqrt{\frac{1}{2}}-\frac{\sqrt{1 / 2}}{\sqrt{10}}
$$

Square Root and Cube Root of Fractions and Decimals
Square Root
Cube Root
Consider the following problem.

The Division Property of Square Roots

$$
\sqrt{\frac{1}{2}}=\frac{\sqrt{10}}{\sqrt{6}}
$$

Square Root and Cube Root of Fractions and Decimals

Square Root
Cube Root
Consider the following problem.

$$
\sqrt[3]{\frac{27}{64}}=\frac{3}{4}
$$

The Division Property of Square Roots

$$
\sqrt{\frac{1}{5}}=\frac{1 \pi}{\sqrt{10}}
$$

Square Root and Cube Root of Fractions and Decimals

Square Root
Cube Root
Consider the following problem.

$$
\sqrt[3]{\frac{27}{64}}=\frac{3}{4}, \text { since }\left(\frac{3}{4}\right)^{3}=\frac{27}{64}
$$

The Division Property of Square Roots

$$
\sqrt{\frac{1}{2}-\sqrt{\frac{1}{1}}}
$$

Square Root and Cube Root of Fractions and Decimals

Square Root
Cube Root
Consider the following problem.

$$
\begin{aligned}
& \sqrt[3]{\frac{27}{64}}=\frac{3}{4}, \text { since }\left(\frac{3}{4}\right)^{3}=\frac{27}{64} \\
& \text { Note that } \sqrt[3]{\frac{27}{64}}=\frac{\sqrt[3]{27}}{\sqrt[3]{64}}
\end{aligned}
$$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Square Root
Cube Root
Consider the following problem.

$$
\begin{aligned}
& \sqrt[3]{\frac{27}{64}}=\frac{3}{4}, \text { since }\left(\frac{3}{4}\right)^{3}=\frac{27}{64} \\
& \text { Note that } \sqrt[3]{\frac{27}{64}}=\frac{\sqrt[3]{27}}{\sqrt[3]{64}}
\end{aligned}
$$

This illustrates an important property concerning the cube root of a fraction.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Square Root
Cube Root
Consider the following problem.

$$
\begin{aligned}
& \sqrt[3]{\frac{27}{64}}=\frac{3}{4}, \text { since }\left(\frac{3}{4}\right)^{3}=\frac{27}{64} \\
& \text { Note that } \sqrt[3]{\frac{27}{64}}=\frac{\sqrt[3]{27}}{\sqrt[3]{64}}
\end{aligned}
$$

This illustrates an important property concerning the cube root of a fraction.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

Square Root and Cube Root of Fractions and Decimals
Square Root
Cube Root

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=$
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=$
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=$
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=$
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=$
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=$
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=$
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=$
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=$
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}=\frac{4}{7}$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}=\frac{4}{7}$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}=\frac{4}{7}$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}=\frac{4}{7}$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$
$\frac{-8}{27}$ is a perfect cube.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}=\frac{4}{7}$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=$
$\frac{-8}{27}$ is a perfect cube.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}=\frac{4}{7}$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=\frac{\sqrt[3]{-8}}{\sqrt[3]{27}}$
$\frac{-8}{27}$ is a perfect cube.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}=\frac{4}{7}$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=\frac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\frac{-2}{3}$
$\frac{-8}{27}$ is a perfect cube.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{4}$ is a perfect square.
2. $\sqrt{\frac{16}{49}}=\frac{\sqrt{16}}{\sqrt{49}}=\frac{4}{7}$
$\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}$
$\frac{1}{27}$ is a perfect cube.
4. $\sqrt[3]{\frac{-8}{27}}=\frac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\frac{-2}{3}$
$\frac{-8}{27}$ is a perfect cube.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{\frac{5}{9}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{\frac{5}{9}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{\frac{5}{9}}=$
$\frac{5}{9}$ is not a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{\frac{5}{9}}=$

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{\frac{5}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

5. $\sqrt{\frac{5}{9}}=$

The denominator is already a perfect square.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{\frac{5}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{\frac{5}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}
\end{aligned}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}
\end{aligned}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}
\end{aligned}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}
\end{aligned}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$
$\frac{7}{8}$ is not a perfect cube.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{\mathbf{a}}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

> The denominator is already a perfect cube.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{b}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{\frac{7}{8}}=$

$$
=\frac{\sqrt[3]{7}}{\sqrt[3]{8}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{\frac{7}{8}}= \\
& =\frac{\sqrt[3]{7}}{\sqrt[3]{8}}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{\frac{7}{8}}= \\
& =\frac{\sqrt[3]{7}}{\sqrt[3]{8}}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{\frac{7}{8}}= \\
& =\frac{\sqrt[3]{7}}{\sqrt[3]{8}}=\frac{\sqrt[3]{7}}{2}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{\frac{7}{8}}= \\
& =\frac{\sqrt[3]{7}}{\sqrt[3]{8}}=\frac{\sqrt[3]{7}}{2}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{\frac{7}{8}}= \\
& =\frac{\sqrt[3]{7}}{\sqrt[3]{8}}=\frac{\sqrt[3]{7}}{2}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{\frac{7}{8}}=\begin{array}{c}
\text { The numerator is already } \\
\text { in standard radical form. }
\end{array} \\
& =\frac{\sqrt[3]{7}}{\sqrt[3]{8}}=\frac{\sqrt[3]{7}}{2}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{\frac{7}{8}}= \\
& =\frac{\sqrt[3]{7}}{\sqrt[3]{8}}=\frac{\sqrt[3]{7}}{2}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{\frac{7}{8}}= \\
& =\frac{\sqrt[3]{7}}{\sqrt[3]{8}}=\frac{\sqrt[3]{7}}{2}=\frac{1}{2} \sqrt[3]{7}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \begin{array}{l}
\sqrt[3]{\frac{7}{8}}= \\
=\frac{\sqrt[3]{7}}{\sqrt[3]{8}}=\frac{\sqrt[3]{7}}{2}=\frac{1}{2} \sqrt[3]{7}
\end{array} .=\text { Either answer i }
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{\frac{5}{9}}= \\
& =\frac{\sqrt{5}}{\sqrt{9}}=\frac{\sqrt{5}}{3}=\frac{1}{3} \sqrt{5}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{\frac{7}{8}}= \\
& =\frac{\sqrt[3]{7}}{\sqrt[3]{8}}=\frac{\sqrt[3]{7}}{2}=\frac{1}{2} \sqrt[3]{7}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{\frac{2}{3}}=
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{\frac{2}{3}}=
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{\frac{2}{3}}=
$$

$\frac{2}{3}$ is not a perfect square.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{\frac{2}{3}}=
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{\frac{2}{3}}=
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{\mathbf{b}}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{array}{r}
\text { 7. } \sqrt{\frac{2}{3}}= \\
=\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}
\end{array}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{array}{r}
\text { 7. } \sqrt{\frac{2}{3}}= \\
=\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}
\end{array}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{gathered}
\text { 7. } \sqrt{\frac{2}{3}}= \\
=\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}
\end{gathered}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{gathered}
\text { 7. } \sqrt{\frac{2}{3}}= \\
=\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}
\end{gathered}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

> The numerator is already in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 8. } \sqrt[3]{\frac{2}{3}}=
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

$$
\frac{2}{3} \text { is not a perfect cube. }
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{\frac{2}{3}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& 8 . \quad \sqrt[3]{\frac{2}{3}}= \\
= & \sqrt[3]{\frac{18}{27}}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& 8 . \quad \sqrt[3]{\frac{2}{3}}= \\
= & \sqrt[3]{\frac{18}{27}}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& 8 . \quad \sqrt[3]{\frac{2}{3}}= \\
= & \sqrt[3]{\frac{18}{27}}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{array}{r}
8 . \sqrt[3]{\frac{2}{3}}= \\
=\sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}
\end{array}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{array}{r}
8 . \sqrt[3]{\frac{2}{3}}= \\
=\sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}
\end{array}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{array}{r}
8 . \sqrt[3]{\frac{2}{3}}= \\
=\sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}
\end{array}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 8. } \sqrt[3]{\frac{2}{3}}= \\
=\sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}=\frac{\sqrt[3]{18}}{3}
\end{gathered}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 8. } \sqrt[3]{\frac{2}{3}}= \\
=\sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}=\frac{\sqrt[3]{18}}{3}
\end{gathered}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 8. } \sqrt[3]{\frac{2}{3}}= \\
=\sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}=\frac{\sqrt[3]{18}}{3}
\end{gathered}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \quad \sqrt[3]{\frac{2}{3}}=\begin{array}{l}
\text { The numerator is already } \\
\text { in standard radical form. }
\end{array} \\
& =\sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}=\frac{\sqrt[3]{18}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 8. } \sqrt[3]{\frac{2}{3}}= \\
=\sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}=\frac{\sqrt[3]{18}}{3}
\end{gathered}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \\
&=\sqrt[3]{\frac{2}{3}}= \\
&= \sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}=\frac{\sqrt[3]{18}}{3}=\frac{1}{3} \sqrt[3]{18}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{\frac{2}{3}} \\
&= \sqrt[3]{\frac{18}{27}} \\
&=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}=\frac{\sqrt[3]{18}}{3}=\frac{1}{3} \sqrt[3]{18}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{\frac{2}{3}}= \\
& =\sqrt{\frac{6}{9}}=\frac{\sqrt{6}}{\sqrt{9}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 8. } \sqrt[3]{\frac{2}{3}}= \\
=\sqrt[3]{\frac{18}{27}}=\frac{\sqrt[3]{18}}{\sqrt[3]{27}}=\frac{\sqrt[3]{18}}{3}=\frac{1}{3} \sqrt[3]{18}
\end{gathered}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{\frac{9}{10}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{\mathbf{a}}{\mathbf{b}}}=\frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}=
$$

$=\frac{\sqrt{90}}{10}$
Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}=
$$

$$
=\frac{\sqrt{90}}{10}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}=
$$

$$
=\frac{\sqrt{90}}{10}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9 \cdot \sqrt{10}}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$ $\frac{-8}{9}$ is not a perfect cube.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 10. } \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 10. } \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 10. } \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& 10 . \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}= \\
= & \frac{\sqrt[3]{-24}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& 10 . \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}= \\
= & \frac{\sqrt[3]{-24}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& 10 . \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}= \\
= & \frac{\sqrt[3]{-24}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 10. } \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}= \\
= & \frac{\sqrt[3]{-24}}{3}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 10. } \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}= \\
= & \frac{\sqrt[3]{-24}}{3}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3}=\frac{-2 \sqrt[3]{3}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 10. } \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}= \\
= & \frac{\sqrt[3]{-24}}{3}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3}=\frac{-2 \sqrt[3]{3}}{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 10. } \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}= \\
= & \frac{\sqrt[3]{-24}}{3}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3}=\frac{-2 \sqrt[3]{3}}{3}=\frac{-2}{3} \sqrt[3]{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& 10 . \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}= \\
= & \frac{\sqrt[3]{-24}}{3}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3}=\frac{-2 \sqrt[3]{3}}{3}=\frac{-2}{3} \sqrt[3]{3}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{\frac{9}{10}}=\sqrt{\frac{90}{100}}=\frac{\sqrt{90}}{\sqrt{100}}= \\
& =\frac{\sqrt{90}}{10}=\frac{\sqrt{9} \cdot \sqrt{10}}{10}=\frac{3 \sqrt{10}}{10}=\frac{3}{10} \sqrt{10}
\end{aligned}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Square Roots

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
10 . \sqrt[3]{\frac{-8}{9}}=\sqrt[3]{\frac{-24}{27}}=\frac{\sqrt[3]{-24}}{\sqrt[3]{27}}= \\
=\frac{\sqrt[3]{-24}}{3}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3}=\frac{-2 \sqrt[3]{3}}{3}=\frac{-2}{3} \sqrt[3]{3}
\end{gathered}
$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.
Step 4: Express the numerator in standard radical form.

The Division Property of Cube Roots

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{\mathbf{a}}}{\sqrt[3]{b}}
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[7]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{0.36}=$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[2]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{0.36}=$
0.36 is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[7]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{0.36}=$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[2]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[2]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[2]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[7]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[7]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[7]{\mathbf{0 . 1 2 5}}=$
0.125 is a perfect cube.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[7]{0.125}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 12. } \sqrt[3]{0.125}=0.5
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[7]{\mathbf{0 . 1 2 5}}=0.5$
$0.5^{3}=0.125$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 12. } \sqrt[3]{0.125}=0.5
$$

$$
0.5^{3}=0.125
$$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{0.36}=0.6
$$

$$
0.6^{2}=0.36
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{\mathbf{0 . 1 2 5}}=0.5$
$0.5^{3}=0.125$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
13. $\sqrt{1.5}=$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

13. $\sqrt{1.5}=$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

13. $\sqrt{1.5}=$

1.5 is not a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[3]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
13. $\sqrt{1.5}=$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
13. $\sqrt{1.5}=$

Step 1: Express the decimal as a fraction in lowest terms.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[3]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
13. $\sqrt{1.5}=\sqrt{\frac{3}{2}}$

Step 1: Express the decimal as a fraction in lowest terms.
14. $\sqrt[8]{-1.6}=$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
13. $\sqrt{1.5}=\sqrt{\frac{3}{2}}$

Step 1: Express the decimal as a fraction in lowest terms.
14. $\sqrt[3]{-1.6}=$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
13. $\sqrt{1.5}=\sqrt{\frac{3}{2}}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
14. $\sqrt[8]{-1.6}=$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
= & \sqrt{\frac{6}{4}}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
= & \sqrt{\frac{6}{4}}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
= & \sqrt{\frac{6}{4}}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}
$$

13. $\sqrt{1.5}=\sqrt{\frac{3}{2}}=$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}
$$

13. $\sqrt{1.5}=\sqrt{\frac{3}{2}}=$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}
$$

13. $\sqrt{1.5}=\sqrt{\frac{3}{2}}=$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{array}{r}
\text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}
\end{array}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{array}{r}
\text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}
\end{array}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{array}{r}
\text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}
\end{array}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
= & \sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2} \quad \begin{array}{l}
\text { The numerator is already } \\
\text { in standard radical form. }
\end{array}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.
Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{array}{r}
\text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}
\end{array}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[8]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=$

- 1.6 is not a perfect cube.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[4]{-1.6}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt{-1.6}=$

Step 1: Express the decimal as a fraction in lowest terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt{-1.6}=\sqrt[3]{\frac{-8}{5}}$

Step 1: Express the decimal as a fraction in lowest terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt{-1.6}=\sqrt[3]{\frac{-8}{5}}$

Step 1: Express the decimal as a fraction in lowest terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt{-1.6}=\sqrt[3]{\frac{-8}{5}}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[2]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[8]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.
Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
14. $\sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
13. $\sqrt{1.5}=\sqrt{\frac{3}{2}}=$

$$
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.
Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}= \\
& =\frac{\sqrt[3]{-200}}{5}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
13. $\sqrt{1.5}=\sqrt{\frac{3}{2}}=$

$$
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.
Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}= \\
& =\frac{\sqrt[3]{-200}}{5}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
13. $\sqrt{1.5}=\sqrt{\frac{3}{2}}=$

$$
=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.
Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}= \\
& =\frac{\sqrt[3]{-200}}{5}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.
Step 5: Express the numerator in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}= \\
& =\frac{\sqrt[3]{-200}}{5}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.
Step 5: Express the numerator in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}= \\
& =\frac{\sqrt[3]{-200}}{5}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5}=\frac{-2 \sqrt[3]{25}}{5}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.
Step 5: Express the numerator in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}= \\
& =\frac{\sqrt[3]{-200}}{5}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5}=\frac{-2 \sqrt[3]{25}}{5}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.
Step 5: Express the numerator in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}= \\
& =\frac{\sqrt[3]{-200}}{5}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5}=\frac{-2 \sqrt[3]{25}}{5}=\frac{-2}{5} \sqrt[3]{25}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.
Step 5: Express the numerator in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}= \\
& =\frac{\sqrt[3]{-200}}{5}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5}=\frac{-2 \sqrt[3]{25}}{5}=\frac{-2}{5} \sqrt[3]{25}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.
Step 5: Express the numerator in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 13. } \sqrt{1.5}=\sqrt{\frac{3}{2}}= \\
& =\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2} \sqrt{6}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.
Step 3: Apply the division property of square roots to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.
Step 5: Express the numerator in standard radical form.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{-1.6}=\sqrt[3]{\frac{-8}{5}}=\sqrt[3]{\frac{-200}{125}}=\frac{\sqrt[3]{-200}}{\sqrt[3]{125}}= \\
& =\frac{\sqrt[3]{-200}}{5}=\frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5}=\frac{-2 \sqrt[3]{25}}{5}=\frac{-2}{5} \sqrt[3]{25}
\end{aligned}
$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.
Step 3: Apply the division property of cube roots to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.
Step 5: Express the numerator in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5
Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5
Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5
Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5
Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5
Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}=
\end{aligned}
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt[3]{\frac{3}{8}}}{5}+\sqrt[3]{\frac{1}{9}}=
\end{aligned}
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=}{5}+
\end{aligned}
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}=$
$=\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}=$
$=\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{15}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}=$
$=\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}=$

$$
=\overline{15}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}= \\
& \begin{aligned}
=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
=\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{\sqrt{5}}{15}= \\
=\frac{8 \sqrt{5}}{15}
\end{aligned}
\end{aligned}
$$

$$
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15}$
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}=$
$=\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}=$

$$
=\frac{8 \sqrt{5}}{15}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$

$$
=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$

$$
=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{array}{ll}
\text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= & \text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}= \\
=\frac{\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=}{15}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= & = \\
\begin{array}{ll}
\text { Step 1: Express each square root in }
\end{array} & \begin{array}{l}
\text { Step 1: Express each cube root in } \\
\text { standard radical form. }
\end{array}
\end{array}
$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{array}{ll}
\text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= & \text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}= \\
=\frac{\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=}{}=\frac{8 \sqrt{5}}{15} & =\frac{\sqrt[3]{3}}{2} \\
=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= & \begin{array}{l}
\text { Step 1: Express each cube root in } \\
\text { standard radical form. }
\end{array}
\end{array}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{array}{ll}
\text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= & \text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}= \\
=\frac{\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=}{15}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= & =\frac{\sqrt[3]{3}}{2}+ \\
\begin{array}{ll}
\text { Step 1: Express each square root in } \\
\text { standard radical form. }
\end{array} & \begin{array}{l}
\text { Step 1: Express each cube root in } \\
\text { standard radical form. }
\end{array}
\end{array}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{array}{ll}
\text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= & \text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}= \\
=\frac{\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=}{}=\frac{8 \sqrt{5}}{15} & =\frac{\sqrt[3]{3}}{2}+ \\
\begin{array}{ll}
\text { Step 1: Express each square root in } & \frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
\text { standard radical form. }
\end{array} & \begin{array}{l}
\text { Step 1: Express each cube root in } \\
\text { standard radical form. }
\end{array}
\end{array}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$
$=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$
$=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$
$=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$
$=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$
$=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$
$=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$
$=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$
$=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+\frac{2 \sqrt[3]{3}}{6}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
16. $\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=$
$=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}=$
$=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+\frac{2 \sqrt[3]{3}}{6}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

$$
\begin{gathered}
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}= \\
=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}= \\
=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+\frac{2 \sqrt[3]{3}}{6}= \\
=
\end{gathered}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

$$
\begin{gathered}
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}= \\
=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}= \\
=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+\frac{2 \sqrt[3]{3}}{6}= \\
=\frac{6}{6}
\end{gathered}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

$$
\begin{gathered}
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}= \\
=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}= \\
=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+\frac{2 \sqrt[3]{3}}{6}= \\
=\frac{\sqrt[3]{6}}{6}
\end{gathered}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

$$
\begin{gathered}
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}= \\
=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}= \\
=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+\frac{2 \sqrt[3]{3}}{6}= \\
=\frac{5 \sqrt[3]{3}}{6}
\end{gathered}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} \\
& =\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= \\
& =\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= \\
& =\frac{8 \sqrt{5}}{15}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

$$
\begin{gathered}
\text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=\frac{5 \sqrt[3]{3}}{6} \\
=\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}= \\
=\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+\frac{2 \sqrt[3]{3}}{6}= \\
=\frac{5 \sqrt[3]{3}}{6}
\end{gathered}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{array}{cc}
\text { 15. } \sqrt{\frac{1}{5}}+\sqrt{\frac{5}{9}}=\frac{8 \sqrt{5}}{15} & \text { 16. } \sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{1}{9}}=\frac{5 \sqrt[3]{3}}{6} \\
=\sqrt{\frac{5}{25}}+\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{25}}+\frac{\sqrt{5}}{\sqrt{9}}= & =\sqrt[3]{\frac{3}{8}}+\sqrt[3]{\frac{3}{27}}=\frac{\sqrt[3]{3}}{\sqrt[3]{8}}+\frac{\sqrt[3]{3}}{\sqrt[3]{27}}= \\
=\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=\frac{3 \sqrt{5}}{15}+\frac{5 \sqrt{5}}{15}= & =\frac{\sqrt[3]{3}}{2}+\frac{\sqrt[3]{3}}{3}=\frac{3 \sqrt[3]{3}}{6}+\frac{2 \sqrt[3]{3}}{6}= \\
=\frac{8 \sqrt{5}}{15} & =\frac{5 \sqrt[3]{3}}{6}
\end{array}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
$=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
$=\sqrt{\frac{14}{16}}$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
$=\sqrt{\frac{14}{16}}-$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}= \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}= \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=}{4}-\frac{\sqrt{14}}{7}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}=$
$=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}=$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}= \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}= \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt[3]{9}}{\frac{5}{9}}-\frac{\sqrt[3]{\frac{3}{25}}}{2}= \\
& =\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}=
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{gathered}
\text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}= \\
=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
=\frac{\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=}{\sqrt{14}}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
=\frac{18}{28}
\end{gathered}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}= \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

$$
\text { 18. } \sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}-$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}-$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}-\frac{3 \sqrt[3]{15}}{15}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}-\frac{3 \sqrt[3]{15}}{15}=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}-\frac{3 \sqrt[3]{15}}{15}=$
$=$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& \begin{array}{r}
=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
=\frac{3 \sqrt{14}}{28}
\end{array}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}-\frac{3 \sqrt[3]{15}}{15}=$

$$
=\frac{15}{}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& \begin{array}{r}
=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
=\frac{3 \sqrt{14}}{28}
\end{array}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}-\frac{3 \sqrt[3]{15}}{15}=$

$$
=\frac{15}{}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}-\frac{3 \sqrt[3]{15}}{15}=$
$=\frac{2 \sqrt[3]{15}}{15}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 17. } \sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28} \\
& =\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{49}}= \\
& =\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}=\frac{7 \sqrt{14}}{28}-\frac{4 \sqrt{14}}{28}= \\
& =\frac{3 \sqrt{14}}{28}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=\frac{2 \sqrt[3]{15}}{15}$
$=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$
$=\frac{\sqrt[3]{15}}{3}-\frac{\sqrt[3]{15}}{5}=\frac{5 \sqrt[3]{15}}{15}-\frac{3 \sqrt[3]{15}}{15}=$
$=\frac{2 \sqrt[3]{15}}{15}$

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Square Root and Cube Root of Fractions and Decimals

Algebra II Class Worksheet \#2 Unit 5

Perform the indicated operations. Express your answers in simplest form.
17. $\sqrt{\frac{7}{8}}-\sqrt{\frac{2}{7}}=\frac{3 \sqrt{14}}{28}$
18. $\sqrt[3]{\frac{5}{9}}-\sqrt[3]{\frac{3}{25}}=\frac{2 \sqrt[3]{15}}{15}$
$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-\frac{\sqrt{14}}{\sqrt{10}}=\quad=\sqrt[3]{\frac{15}{27}}-\sqrt[3]{\frac{15}{125}}=\frac{\sqrt[3]{15}}{\sqrt[3]{27}}-\frac{\sqrt[3]{15}}{\sqrt[3]{125}}=$

$$
=\frac{3 \sqrt{14}}{28}
$$

$$
=\frac{2 \sqrt[3]{15}}{15}
$$

Step 1: Express each square root in standard radical form.
Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Use a common denominator and combine like terms.

