Algebra II Lesson #2 Unit 5 Class Worksheet #2 For Worksheet #2

Square Root

Square Root

$$\sqrt{\frac{9}{16}} = \frac{3}{4}$$

Square Root

$$\sqrt{\frac{9}{16}} = \frac{3}{4}$$
, since $\left(\frac{3}{4}\right)^2 = \frac{9}{16}$

Square Root

$$\sqrt{\frac{9}{16}} = \frac{3}{4}$$
, since $\left(\frac{3}{4}\right)^2 = \frac{9}{16}$
Note that $\sqrt{\frac{9}{16}} = \frac{\sqrt{9}}{\sqrt{16}}$

Square Root

Consider the following problem.

$$\sqrt{\frac{9}{16}} = \frac{3}{4}$$
, since $\left(\frac{3}{4}\right)^2 = \frac{9}{16}$
Note that $\sqrt{\frac{9}{16}} = \frac{\sqrt{9}}{\sqrt{16}}$

This illustrates an important property concerning the square root of a fraction.

Square Root

Consider the following problem.

$$\sqrt{\frac{9}{16}} = \frac{3}{4}$$
, since $\left(\frac{3}{4}\right)^2 = \frac{9}{16}$

Note that $\sqrt{\frac{9}{16}} = \frac{\sqrt{9}}{\sqrt{16}}$

This illustrates an important property concerning the square root of a fraction.

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Square Root

Cube Root

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Square Root

Cube Root

Consider the following problem.

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

Square Root

Cube Root

Consider the following problem.

$$\sqrt[3]{\frac{27}{64}} = \frac{3}{4}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Square Root

Cube Root

Consider the following problem.

$$\sqrt[3]{\frac{27}{64}} = \frac{3}{4}$$
, since $\left(\frac{3}{4}\right)^3 = \frac{27}{64}$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Square Root

Cube Root

Consider the following problem.

$$\sqrt[3]{\frac{27}{64}} = \frac{3}{4}$$
, since $\left(\frac{3}{4}\right)^3 = \frac{27}{64}$

Note that
$$\sqrt[3]{\frac{27}{64}} = \frac{\sqrt[3]{27}}{\sqrt[3]{64}}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Square Root

Cube Root

Consider the following problem.

$$\sqrt[3]{\frac{27}{64}} = \frac{3}{4}$$
, since $\left(\frac{3}{4}\right)^3 = \frac{27}{64}$

Note that
$$\sqrt[3]{\frac{27}{64}} = \frac{\sqrt[3]{27}}{\sqrt[3]{64}}$$

This illustrates an important property concerning the cube root of a fraction.

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Square Root

Cube Root

Consider the following problem.

$$\sqrt[3]{\frac{27}{64}} = \frac{3}{4}$$
, since $\left(\frac{3}{4}\right)^3 = \frac{27}{64}$

Note that
$$\sqrt[3]{\frac{27}{64}} = \frac{\sqrt[3]{27}}{\sqrt[3]{64}}$$

This illustrates an important property concerning the cube root of a fraction.

The Division Property of Cube Roots

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Square Root

Cube Root

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

=

1.
$$\sqrt{\frac{1}{4}} =$$
 2. $\sqrt[3]{\frac{1}{27}}$

3.
$$\sqrt{\frac{16}{49}} =$$
 4. $\sqrt[3]{\frac{-8}{27}} =$

The Division Property of Cube Roots $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} =$$

3.
$$\sqrt{\frac{16}{49}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} =$$

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{\frac{1}{4}} =$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} =$$

$$=$$
 4. $\sqrt[3]{\frac{-8}{27}} =$

The Division Property of Cube Roots $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1. $\sqrt{\frac{1}{4}} =$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} =$$

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} =$$

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} =$$

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} =$$

3.
$$\sqrt{\frac{16}{49}} =$$
 4. $\sqrt[3]{\frac{-8}{27}} =$

The Division Property of Cube Roots $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} =$$

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Cube Roots $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

2.
$$\sqrt[3]{\frac{1}{27}} =$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

2

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>. If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

2.
$$\sqrt[3]{\frac{1}{27}} =$$

 $\frac{1}{27}$ is a perfect cube.

4. $\sqrt[3]{\frac{-8}{27}} =$

The Division Property of Cube Roots

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{\frac{1}{\sqrt[3]{27}}}}{\sqrt[3]{27}}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Cube Roots

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{3}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$
 4. $\sqrt[3]{\frac{-8}{27}}$

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ The Division Property of Cube Roots $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{3}$$

 $\frac{1}{27}$ is a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{3}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

 $\frac{16}{49}$ is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{3}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Square Roots \sqrt{a}

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} =$$

1

 $\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{3}$$

 $\frac{1}{27}$ is a perfect cube.

4. $\sqrt[3]{\frac{-8}{27}} =$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}}$$

 $\frac{16}{49}$ is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{3}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

1

3.
$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$

 $\frac{16}{49}$ is a perfect square

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{3}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$

 $\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{3}$$

 $\frac{1}{27}$ is a perfect cube.

4. $\sqrt[3]{\frac{-8}{27}} =$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$

 $\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{3}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

3.
$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$

 $\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{\frac{3}{3}}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

 $\frac{-8}{27}$ is a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

1

3.
$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$

 $\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{\frac{3}{3}}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} =$$

 $\frac{-8}{27}$ is a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

1

3.
$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$

 $\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{\frac{3}{3}}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} = \frac{\sqrt[3]{-8}}{\sqrt[3]{27}}$$

 $\frac{-8}{27}$ is a perfect cube

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

1

3.
$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$

 $\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{1}}{\sqrt[3]{27}} = \frac{1}{\frac{3}{3}}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} = \frac{\sqrt[3]{-8}}{\sqrt[3]{27}} = \frac{-2}{3}$$

 $\frac{-8}{27}$ is a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

1.
$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\frac{1}{2}}$$

 $\frac{1}{4}$ is a perfect square.

1

3.
$$\sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$

 $\frac{16}{49}$ is a perfect square.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

2.
$$\sqrt[3]{\frac{1}{27}} = \frac{\sqrt[3]{\frac{1}{\sqrt[3]{27}}}}{\sqrt[3]{27}} = \frac{1}{\frac{3}{3}}$$

 $\frac{1}{27}$ is a perfect cube.

4.
$$\sqrt[3]{\frac{-8}{27}} = \frac{\sqrt[3]{-8}}{\sqrt[3]{27}} = \frac{-2}{3}$$

 $\frac{-8}{27}$ is a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

5.
$$\sqrt{\frac{5}{9}} =$$

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

The Division Property of Cube Roots $\sqrt[3]{a} \sqrt[3]{a}$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{\frac{5}{9}} =$

 $\frac{5}{9}$ is not a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{\frac{5}{9}} =$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{\frac{5}{9}} =$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{\frac{5}{9}} =$

The denominator is already a perfect square.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{\frac{5}{9}} =$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{\frac{5}{9}} =$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

 $5. \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{9}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

> 5. $\sqrt{\frac{5}{9}} =$ = $\frac{\sqrt{5}}{\sqrt{9}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

 $5. \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{9}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

 $5. \quad \sqrt{\frac{5}{9}} =$ $= \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

 $5. \quad \sqrt{\frac{5}{9}} =$ $= \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

 $5. \quad \sqrt{\frac{5}{9}} =$ $= \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5. $\sqrt{\frac{5}{9}} =$ $= \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3}$ The numerator is already in standard radical form.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

 $5. \quad \sqrt{\frac{5}{9}} =$ $= \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

> 5. $\sqrt{\frac{5}{9}} =$ = $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5 1 5 -	Either answer is correct.
5. $\sqrt{9}$ –	
$= \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}}$	$=\frac{1}{2}\sqrt{5}$
$\sqrt{9}$ 3	3 4 5

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Cube Roots $3\sqrt{3}$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

 $\frac{7}{8}$ is not a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The Division Property of Cube Roots $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{\frac{a}{3}}}{\sqrt[3]{\frac{a}{5}}}$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

The denominator is already a perfect cube.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

= $\frac{\sqrt[3]{7}}{\sqrt[3]{8}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} = \frac{\sqrt[3]{7}}{\sqrt[3]{8}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} = \frac{\sqrt[3]{7}}{\sqrt[3]{8}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

= $\frac{\sqrt[3]{7}}{\sqrt[3]{8}} = \frac{\sqrt[3]{7}}{2}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

= $\frac{\sqrt[3]{7}}{\sqrt[3]{8}} = \frac{\sqrt[3]{7}}{2}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

= $\frac{\sqrt[3]{7}}{\sqrt[3]{8}} = \frac{\sqrt[3]{7}}{2}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} = \frac{\sqrt[3]{7}}{\sqrt[3]{\frac{7}{8}}} = \frac{\sqrt[3]{7}}{\sqrt[3]{\frac{7}{8}}} = \frac{\sqrt[3]{7}}{\frac{\sqrt[3]{7}}{2}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

= $\frac{\sqrt[3]{7}}{\sqrt[3]{8}} = \frac{\sqrt[3]{7}}{2}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

> 6. $\sqrt[3]{\frac{7}{8}} =$ = $\frac{\sqrt[3]{7}}{\sqrt[3]{8}} = \frac{\sqrt[3]{7}}{2} = \frac{1}{2}\sqrt[3]{7}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

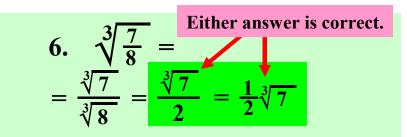
If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.


Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

5.
$$\sqrt{\frac{5}{9}} =$$

= $\frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3} = \frac{1}{3}\sqrt{5}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

6.
$$\sqrt[3]{\frac{7}{8}} =$$

= $\frac{\sqrt[3]{7}}{\sqrt[3]{8}} = \frac{\sqrt[3]{7}}{2} = \frac{1}{2}\sqrt[3]{7}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{\frac{2}{3}} =$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{\frac{2}{3}} = \frac{2}{3}$ is not a perfect square.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{\frac{2}{3}} =$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{\frac{2}{3}} =$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{\frac{2}{3}} =$ = $\sqrt{\frac{6}{9}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

 $7. \quad \sqrt{\frac{2}{3}} = \sqrt{\frac{6}{9}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{\frac{2}{3}} =$ = $\sqrt{\frac{6}{9}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{\frac{2}{3}} =$ $= \sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{\frac{2}{3}} =$ $= \sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7. $\sqrt{\frac{2}{3}} =$ $= \sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

 $= \sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8. $\sqrt[3]{\frac{2}{3}} =$ $\frac{2}{3}$ is not a perfect cube.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} = \sqrt[3]{\frac{18}{27}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$8. \quad \sqrt[3]{\frac{2}{3}} = \\ = \sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Cube Roots $3\sqrt{2}$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}} = \frac{\sqrt[3]{18}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}} = \frac{\sqrt[3]{18}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}} = \frac{\sqrt[3]{18}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

$$= \sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}} = \frac{\sqrt[3]{18}}{3}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}} = \frac{\sqrt[3]{18}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}} = \frac{\sqrt[3]{18}}{3} = \frac{1}{3}\sqrt[3]{18}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}} = \frac{\sqrt[3]{18}}{3} = \frac{1}{3}\sqrt[3]{18}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

7.
$$\sqrt{\frac{2}{3}} =$$

= $\sqrt{\frac{6}{9}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3} = \frac{1}{3}\sqrt{6}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

8.
$$\sqrt[3]{\frac{2}{3}} =$$

= $\sqrt[3]{\frac{18}{27}} = \frac{\sqrt[3]{18}}{\sqrt[3]{27}} = \frac{\sqrt[3]{18}}{3} = \frac{1}{3}\sqrt[3]{18}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{\frac{9}{10}} =$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9. $\sqrt{\frac{9}{10}} =$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} = \frac{\sqrt{90}}{\sqrt{100}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

=

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} = \frac{\sqrt{90}}{\sqrt{100}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

=

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} = \frac{\sqrt{90}}{\sqrt{100}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

=

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$

= $\frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$

= $\frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10. $\sqrt[3]{\frac{-8}{9}} =$ $\frac{-8}{9}$ is not a perfect cube.

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} =$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} = \frac{\sqrt[3]{-24}}{3}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} =$$
$$= \frac{\sqrt[3]{-24}}{3}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} = \frac{\sqrt[3]{-24}}{3}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} =$$

= $\frac{\sqrt[3]{-24}}{3} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} =$$

= $\frac{\sqrt[3]{-24}}{3} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3} = \frac{-2\sqrt[3]{3}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} =$$

= $\frac{\sqrt[3]{-24}}{3} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3} = \frac{-2\sqrt[3]{3}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} =$$

= $\frac{\sqrt[3]{-24}}{3} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3} = \frac{-2\sqrt[3]{3}}{3} = \frac{-2\sqrt[3]{3}}{3} = \frac{-2\sqrt[3]{3}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{b}}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$10. \quad \sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} =$$
$$= \frac{\sqrt[3]{-24}}{3} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3} = \frac{-2\sqrt[3]{3}}{3} = \frac{-$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

9.
$$\sqrt{\frac{9}{10}} = \sqrt{\frac{90}{100}} = \frac{\sqrt{90}}{\sqrt{100}} =$$
$$= \frac{\sqrt{90}}{10} = \frac{\sqrt{9} \cdot \sqrt{10}}{10} = \frac{3\sqrt{10}}{10} = \frac{3}{10}\sqrt{10}$$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 2: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 3: Evaluate the square root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

The Division Property of Square Roots

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

10.
$$\sqrt[3]{\frac{-8}{9}} = \sqrt[3]{\frac{-24}{27}} = \frac{\sqrt[3]{-24}}{\sqrt[3]{27}} =$$

= $\frac{\sqrt[3]{-24}}{3} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{3}}{3} = \frac{-2\sqrt[3]{3}}{3} = \frac{-2\sqrt[3]{3}}{3} = \frac{-2\sqrt[3]{3}}{3}$

Step 1: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 2: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 3: Evaluate the cube root of the denominator.

Step 4: Express the numerator in <u>standard radical</u> <u>form</u>.

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{0.36} =$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[9]{0.125} =$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{0.36} =$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[9]{0.125} =$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{0.36} =$

0.36 is a perfect square.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[n]{0.125} =$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{0.36} =$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[9]{0.125} =$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{0.36} = 0.6$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[9]{0.125} =$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{0.36} = 0.6$$

 $0.6^2 = 0.36$

12.
$$\sqrt[4]{0.125} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{0.36} = 0.6$$

 $0.6^2 = 0.36$

12.
$$\sqrt[4]{0.125} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{0.36} = 0.6$$

 $0.6^2 = 0.36$

12.
$$\sqrt[9]{0.125} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{0.36} = 0.6$

 $0.6^2 = 0.36$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[n]{0.125} =$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{0.36} = 0.6$

 $0.6^2 = 0.36$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[9]{0.125} =$

0.125 is a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{0.36} = 0.6$$

 $0.6^2 = 0.36$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[4]{0.125} =$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{0.36} = 0.6$$

 $0.6^2 = 0.36$

12.
$$\sqrt[4]{0.125} = 0.5$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{0.36} = 0.6$$

 $0.6^2 = 0.36$

12.
$$\sqrt[n]{0.125} = 0.5$$

 $0.5^3 = 0.125$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11. $\sqrt{0.36} = 0.6$

 $0.6^2 = 0.36$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12. $\sqrt[n]{0.125} = 0.5$ $0.5^3 = 0.125$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

11.
$$\sqrt{0.36} = 0.6$$

 $0.6^2 = 0.36$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

12.
$$\sqrt[4]{0.125} = 0.5$$

 $0.5^3 = 0.125$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

14.
$$\sqrt[4]{-1.6} =$$

13.
$$\sqrt{1.5} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} =$$

14.
$$\sqrt[4]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13. $\sqrt{1.5} =$

1.5 is not a perfect square.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} =$$

14.
$$\sqrt[4]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13. $\sqrt{1.5} =$

Step 1: Express the decimal as a fraction in lowest terms.

14.
$$\sqrt[4]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}}$$

Step 1: Express the decimal as a fraction in lowest terms.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}}$$

Step 1: Express the decimal as a fraction in lowest terms.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

14.
$$\sqrt[4]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

14.
$$\sqrt[4]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

14.
$$\sqrt[4]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

14.
$$\sqrt[4]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

=

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$
 14. $\sqrt[4]{-1.6}$
 $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2}$ The numerator is already
in standard radical form.
1: Express the decimal as a fraction in lowest

terms. Step 2: Express the fraction with an equivalent

_

Step

fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

$$=\sqrt{\frac{6}{4}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}=\frac{1}{2}\sqrt{6}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

14.
$$\sqrt[4]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14. √-1.6 =

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14. $\sqrt[n]{-1.6} =$

-1.6 is not a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

14.
$$\sqrt[n]{-1.6} =$$

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[n]{-1.6} =$$

Step 1: Express the decimal as a fraction in lowest terms.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[4]{-1.6} = \sqrt[3]{\frac{-8}{5}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[4]{-1.6} = \sqrt[3]{\frac{-8}{5}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[n]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[4]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[n]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{5}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{5}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{5}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{5} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} =$$
$$= \frac{\sqrt[3]{-200}}{5} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5} = \frac{-2\sqrt[3]{25}}{5}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[n]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} =$$
$$= \frac{\sqrt[3]{-200}}{5} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5} = \frac{-2\sqrt[3]{25}}{5}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} =$$
$$= \frac{\sqrt[3]{-200}}{5} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5} = \frac{-2\sqrt[3]{25}}{5} = \frac{-2}{5}\sqrt[3]{25}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

14.
$$\sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} =$$
$$= \frac{\sqrt[3]{-200}}{5} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5} = \frac{-2\sqrt[3]{25}}{5} = \frac{-2\sqrt[3]{25}}{5} = \frac{-2\sqrt[3]{25}}{5}$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Express each of the following in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using <u>standard radical form</u>.

13.
$$\sqrt{1.5} = \sqrt{\frac{3}{2}} =$$

= $\sqrt{\frac{6}{4}} = \frac{\sqrt{6}}{\sqrt{4}} = \frac{\sqrt{6}}{2} = \frac{1}{2}\sqrt{6}$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect square.

Step 3: Apply the <u>division property of square roots</u> to express the problem as a quotient of square roots.

Step 4: Evaluate the square root of the denominator.

Step 5: Express the numerator in <u>standard radical</u> <u>form</u>.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using <u>standard radical form</u>.

$$14. \sqrt[3]{-1.6} = \sqrt[3]{\frac{-8}{5}} = \sqrt[3]{\frac{-200}{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{\sqrt[3]{125}} = \frac{\sqrt[3]{-200}}{5} = \frac{\sqrt[3]{-8} \cdot \sqrt[3]{25}}{5} = \frac{-2\sqrt[3]{25}}{5} =$$

Step 1: Express the decimal as a fraction in lowest terms.

Step 2: Express the fraction with an equivalent fraction whose denominator is a perfect cube.

Step 3: Apply the <u>division property of cube roots</u> to express the problem as a quotient of cube roots.

Step 4: Evaluate the cube root of the denominator.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Step 1: Express each square root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$

=

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Step 1: Express each square root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$ = $\sqrt{\frac{5}{25}}$

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$\frac{1}{5} + \sqrt{\frac{5}{9}} = 16. \sqrt[3]{\frac{3}{8}} + \sqrt$$

 $=\sqrt{\frac{5}{25}}$ +

15. V

16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$

$$=\sqrt{\frac{5}{25}}+$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$ = $\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}}$

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

Step 1: Express each square root in standard radical form.

 $=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}}$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$

 $= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} =$
16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$

 $=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} =$

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Step 1: Express each square root in standard radical form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$

 $=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}}$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$ 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

$$=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} +$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

 $15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$ $= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} +$

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

$$=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

$$=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$ $=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$ =**Step 1: Express each square root in** standard radical form.

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$ $=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$ $=\frac{\sqrt{5}}{5}$ **Step 1: Express each square root in** standard radical form.

16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$ $=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$ $=\frac{\sqrt{5}}{5}$ + **Step 1: Express each square root in** standard radical form.

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$ $=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$ $=\frac{\sqrt{5}}{5}$ + **Step 1: Express each square root in** standard radical form.

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15. $\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$ $=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$ $=\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}$ **Step 1: Express each square root in** standard radical form.

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

=

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$

 $= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$

$$=\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$

 $= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$

Step 1: Express each square root in standard radical form.

 $=\frac{\sqrt{5}}{5}+\frac{\sqrt{5}}{3}=$

=

Algebra II Class Worksheet #2 Unit 5

=

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}}$

$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}}$$
$$= \sqrt{\frac{5}{5}} + \sqrt{\frac{5}{9}} =$$

5

' 3

Step 1: Express each square root in standard radical form.

=

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}}$

$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}}$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

=

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}}$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

=

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}}$

$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} +$$

Step 1: Express each square root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

$$=\sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$

Step 1: Express each square root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$

 $= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$
 $= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$
 $=$

Step 1: Express each square root in standard radical form.

 $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16.
 $= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$
 $= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$
 $= \frac{-15}{15}$

Step 1: Express each square root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{\frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}}}{\frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15}} =$$

Step 1: Express each square root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

5.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} =$$
 16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{\frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}}}{\frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15}} =$$

1

$$=\frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

 $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
 16.

$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$

$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$

$$= \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

=

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15} \qquad 16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} = \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

=

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

16. $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

15.
$$\sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$

 $= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = = \frac{3\sqrt{\frac{3}{8}}}{= \sqrt[3]{\frac{3}{8}}}$
 $= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = = \frac{8\sqrt{5}}{15}$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \ \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15} \qquad 16. \ \sqrt[3]{\frac{3}{8}} + \\ = \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = \\ = \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = \\ = \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

 $\sqrt[3]{\frac{3}{8}}$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15} \qquad 16. \quad \sqrt[3]{\frac{3}{8}} = \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = = \sqrt[3]{\frac{3}{8}} + \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = \frac{8\sqrt{5}}{15} = \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

$$=\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}}$$

16. $\sqrt[3]{\frac{3}{8}}$ +

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}}$$

= $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} =$

33

3 1

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

= $\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} =$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$
$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$
$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} +$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} +$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$
$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$
$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

your answers in simplest form.
16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

 $= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$
=
Step 1: Express each cube root in

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15} \qquad 16. \quad \sqrt[3]{4}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = = \sqrt[3]{\frac{3}{8}}$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = = \frac{\sqrt[3]{3}}{2}$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

your answers in simplest form.
16.
$$\sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

 $= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{\frac{3}{3}}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$
 $= \frac{\sqrt[3]{\frac{3}{2}}}{2}$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \ \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15} \qquad 16. \ \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} = \\ = \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = \\ = \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} = \\ = \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = \\ = \frac{\sqrt[3]{\frac{3}{2}}}{2} + \\ = \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \ \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15} \qquad 16. \ \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} = \\ = \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = \\ = \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} = \\ = \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = \\ = \frac{\sqrt[3]{\frac{3}{2}}}{2} + \\ = \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \ \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15} \qquad 16. \ \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} = \\ = \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = \\ = \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} = \\ = \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = \\ = \frac{\sqrt[3]{\frac{3}{2}}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{\sqrt[3]{\frac{3}{2}}}{3} = \frac{\sqrt{5}}{3} = \frac{\sqrt{5}}{15} = \\ = \frac{\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \ \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15} \qquad 16. \ \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} = \\ = \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = \\ = \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} \\ = \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = \\ = \frac{\sqrt[3]{\frac{3}{2}} + \frac{\sqrt[3]{3}}{3}}{2} + \frac{\sqrt[3]{3}}{3} \\ = \frac{8\sqrt{5}}{15} \end{cases}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

=

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

$$= \frac{\sqrt[3]{3}}{\frac{3}{2}} + \frac{\sqrt[3]{3}}{3} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{3\sqrt[3]{3}}{6}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{3\sqrt[3]{3}}{6} +$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{8}} =$$

$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{3\sqrt[3]{3}}{6} +$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{3\sqrt[3]{3}}{6} + \frac{2\sqrt[3]{3}}{6}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{8}} =$$

$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{3\sqrt[3]{3}}{6} + \frac{2\sqrt[3]{3}}{6} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{3\sqrt[3]{3}}{6} + \frac{2\sqrt[3]{3}}{6} =$$

$$=$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{\frac{3\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{2\sqrt[3]{3}}{\sqrt[3]{27}} =}{6} =$$

$$= \frac{-\frac{3\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3}}{6} = \frac{-\frac{3\sqrt[3]{3}}{6} + \frac{2\sqrt[3]{3}}{6} =}{6} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

$$= \frac{\sqrt[3]{3}}{\frac{3}{2}} + \frac{\sqrt[3]{3}}{3} = \frac{\sqrt[3]{3}}{\frac{3\sqrt[3]{3}}{6}} + \frac{2\sqrt[3]{3}}{6} =$$

= 6

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} =$$

$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$

$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{\sqrt[3]{3}}{6} + \frac{2\sqrt[3]{3}}{6} =$$

$$= \frac{5\sqrt[3]{3}}{6}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \quad \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15}$$
$$= \sqrt{\frac{5}{25}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} =$$
$$= \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} =$$
$$= \frac{8\sqrt{5}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$16. \quad \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} = \frac{5\sqrt[3]{3}}{6}$$
$$= \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} =$$
$$= \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{3\sqrt[3]{3}}{6} + \frac{2\sqrt[3]{3}}{6} =$$
$$= \frac{5\sqrt[3]{3}}{6}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$15. \ \sqrt{\frac{1}{5}} + \sqrt{\frac{5}{9}} = \frac{8\sqrt{5}}{15} \qquad 16. \ \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{1}{9}} = \frac{5\sqrt[3]{3}}{6} = \sqrt{\frac{5}{5}} + \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{25}} + \frac{\sqrt{5}}{\sqrt{9}} = = \sqrt[3]{\frac{3}{8}} + \sqrt[3]{\frac{3}{27}} = \frac{\sqrt[3]{3}}{\sqrt[3]{8}} + \frac{\sqrt[3]{3}}{\sqrt[3]{27}} = = \sqrt[3]{\frac{3}{8}} + \frac{\sqrt{5}}{\sqrt[3]{27}} = \frac{\sqrt{5}}{\sqrt[3]{8}} + \frac{\sqrt{5}}{\sqrt[3]{27}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{5} + \frac{\sqrt{5}}{3} = \frac{3\sqrt{5}}{15} + \frac{5\sqrt{5}}{15} = = \frac{\sqrt[3]{3}}{2} + \frac{\sqrt[3]{3}}{3} = \frac{3\sqrt[3]{3}}{6} + \frac{2\sqrt[3]{3}}{6} = \frac{8\sqrt{5}}{15} = \frac{8\sqrt{5}}{15} = \frac{8\sqrt{5}}{15} = \frac{5\sqrt[3]{3}}{6} = \frac{5\sqrt[3]{3}}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$
 18. $\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

=

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

 $=\sqrt{\frac{14}{16}}$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

 $=\sqrt{\frac{14}{16}}$ -

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

 $=\sqrt{\frac{14}{16}}$ -

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

18. $\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

 $=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

 $=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

 $= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}}$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

 $=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

 $=\sqrt{\frac{14}{16}}-\sqrt{\frac{14}{49}}=\frac{\sqrt{14}}{\sqrt{16}}-$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$
 18. $\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$

$$=\sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$
 18. $\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$

$$=\sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

 $= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17. $\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$	18. $\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$
$=\sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$	
$=\frac{\sqrt{14}}{4}$	
Step 1: Express each square root in	Step 1: Express each cub
standard radical form. Step 2: Use a common denominator	standard radical form. Step 2: Use a common de

and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17. $\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$	
$=\sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$	
$=\frac{\sqrt{14}}{4}$ -	

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17. $\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$
$=\sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$
$=\frac{\sqrt{14}}{4}$ -
Step 1: Express each square root in

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17. $\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$
$=\sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$
$=\frac{\sqrt{14}}{4}-\frac{\sqrt{14}}{7}$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7}$$

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} =$$

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} =$$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} -$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} -$$

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = 18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} = \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \sqrt{\frac{14}{49}} = \sqrt{\frac{14}{49}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} = \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} = 100$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$

=

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$

$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$

$$= \frac{-28}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$
 18. $\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{\frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28}}{\frac{28}{28} - \frac{4\sqrt{14}}{28}} =$$

$$=$$
 -28

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} =$$
 18. $\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$

$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{\frac{\sqrt{14}}{7\sqrt{14}}}{\frac{7\sqrt{14}}{28}} - \frac{4\sqrt{14}}{28} =$$

$$=\frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

 $-\sqrt[3]{\frac{3}{25}} =$

 $3\frac{5}{9}$

18.

=

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}}$$

$$=\sqrt[3]{\frac{15}{27}}$$

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$

 $= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} = = \sqrt[3]{\frac{15}{27}} - \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} = \frac{3\sqrt{14}}{28}$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Step 2: Use a common denominator and combine like terms.

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}}$$

 $\overline{}$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

18. $\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$

 $=\sqrt[3]{\frac{15}{27}}$ -

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

$$18. \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}}$$
$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}}$$

=

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

$$18. \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}}$$
$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}}$$

=

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$
$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} =$$

3 5

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$
$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} =$$

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$
$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}}$$

∛27

N 27

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$
$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} -$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$
$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} -$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$
$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

= $\sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 2: Use a common denominator and combine like terms.

your answers in simplest form.
18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

 $= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$
=

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

your answers in simplest form.
18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

 $= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$
 $= \frac{\sqrt[3]{15}}{3}$

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

your answers in simplest form.
18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

 $= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$
 $= \frac{\sqrt[3]{15}}{3} -$

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

your answers in simplest form.
18.
$$\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

 $= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$
 $= \frac{\sqrt[3]{15}}{3} -$

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5}$$

Step 1: Express each cube root in standard radical form.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{5\sqrt[3]{15}}{15}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{5\sqrt[3]{15}}{15} -$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{5\sqrt[3]{15}}{15} -$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{5\sqrt[3]{15}}{15} - \frac{3\sqrt[3]{15}}{15}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{5\sqrt[3]{15}}{15} - \frac{3\sqrt[3]{15}}{15} =$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{\frac{5\sqrt[3]{15}}{15} - \frac{3\sqrt[3]{15}}{15}}{15} =$$

$$=$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{\frac{5\sqrt[3]{15}}{15} - \frac{3\sqrt[3]{15}}{15}}{15} =$$

$$= \frac{-15}{15}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{\frac{5\sqrt[3]{15}}{15} - \frac{3\sqrt[3]{15}}{15}}{15} =$$

= 15

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} =$$

$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$

$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{\frac{5\sqrt[3]{15}}{15} - \frac{3\sqrt[3]{15}}{15}}{15} =$$

$$= \frac{2\sqrt[3]{15}}{15}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$17. \quad \sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$
$$= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \frac{\sqrt{14}}{\sqrt{16}} - \frac{\sqrt{14}}{\sqrt{49}} =$$
$$= \frac{\sqrt{14}}{4} - \frac{\sqrt{14}}{7} = \frac{7\sqrt{14}}{28} - \frac{4\sqrt{14}}{28} =$$
$$= \frac{3\sqrt{14}}{28}$$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.

$$18. \quad \sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} = \frac{2\sqrt[3]{15}}{15}$$
$$= \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$$
$$= \frac{\sqrt[3]{15}}{3} - \frac{\sqrt[3]{15}}{5} = \frac{5\sqrt[3]{15}}{15} - \frac{3\sqrt[3]{15}}{15} =$$
$$= \frac{2\sqrt[3]{15}}{15}$$

Algebra II Class Worksheet #2 Unit 5

Perform the indicated operations. Express your answers in simplest form.

17.
$$\sqrt{\frac{7}{8}} - \sqrt{\frac{2}{7}} = \frac{3\sqrt{14}}{28}$$

18. $\sqrt[3]{\frac{5}{9}} - \sqrt[3]{\frac{3}{25}} = \frac{2\sqrt[3]{15}}{15}$
 $= \sqrt{\frac{14}{16}} - \sqrt{\frac{14}{49}} = \sqrt{\frac{14}{\sqrt{16}}} - \frac{\sqrt{14}}{\sqrt{49}} = = \sqrt[3]{\frac{15}{27}} - \sqrt[3]{\frac{15}{125}} = \frac{\sqrt[3]{15}}{\sqrt[3]{27}} - \frac{\sqrt[3]{15}}{\sqrt[3]{125}} =$
Good luck on your homework !!
 $4 - 7 - 28 - 28 - 3 - 5 - 15 - 15$
 $= \frac{3\sqrt{14}}{28} = \frac{2\sqrt[3]{15}}{15}$

Step 1: Express each square root in standard radical form.

Step 2: Use a common denominator and combine like terms.