Algebra II

Lesson \#1 Unit 5

Class Worksheet \#1
For Worksheet \#1

Square Root and Cube Root

Square Root and Cube Root

Definitions and Notation

Square Root and Cube Root

Definitions and Notation
Square Root
Cube Root

Square Root and Cube Root

Definitions and Notation
Square Root

Cube Root

Square Root and Cube Root

Definitions and Notation

Square Root
Cube Root
The number k is a square root of \mathbf{N}

Square Root and Cube Root

Definitions and Notation

Square Root
Cube Root
The number k is a square root of N if and only if

Square Root and Cube Root

Definitions and Notation

Square Root
Cube Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
Cube Root
The number k is a square root of N if and only if $k^{2}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
Cube Root
The number k is a square root of N if and only if $k^{2}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
Cube Root
The number k is a square root of N if and only if $k^{2}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$.

Cube Root
The number k is a cube root of N

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $k^{2}=N$.

Cube Root
The number k is a cube root of N if and only if

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $k^{2}=N$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $k^{2}=N$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $k^{2}=N$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $k^{2}=N$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $k^{2}=N$. Using this definition,

Cube Root
The number k is a cube root of N if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 ,

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $k^{2}=N$. Using this definition, it is clear that the number 9 , for example,

Cube Root
The number k is a cube root of N if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3,

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $k^{3}=N$. Using this definition,

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$. Using this definition, it is clear that the number 8 ,

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathrm{k}^{3}=\mathrm{N}$. Using this definition, it is clear that the number 8 , for example,

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 ,

Cube Root
The number k is a cube root of N if and only if $\mathrm{k}^{3}=\mathrm{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 .

Cube Root
The number k is a cube root of N if and only if $\mathrm{k}^{3}=\mathrm{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal,

Cube Root
The number k is a cube root of N if and only if $\mathrm{k}^{3}=\mathrm{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative,

Cube Root
The number k is a cube root of N if and only if $\mathrm{k}^{3}=\mathrm{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{\mathrm{N}}=k$

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root.
$\sqrt{N}=k$ if and only if

Cube Root
The number k is a cube root of N if and only if $\mathrm{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=\mathbf{N}$

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root.
$\sqrt{N}=k$ if and only if $k^{2}=N$ and

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathrm{k}^{\mathbf{3}}=\mathrm{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is
because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.
The notation that is used for the cube root of \mathbf{N}

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.
The notation that is used for the cube root of N is $\sqrt[3]{\mathrm{N}}$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.
The notation that is used for the cube root of N is $\sqrt[3]{\mathrm{N}}$. This leads us to the definition of cube root.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.
The notation that is used for the cube root of N is $\sqrt[3]{\mathrm{N}}$. This leads us to the definition of cube root.

$$
\sqrt[3]{N}=k
$$

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.
The notation that is used for the cube root of N is $\sqrt[3]{\mathrm{N}}$. This leads us to the definition of cube root.
$\sqrt[3]{\mathrm{N}}=k$ if and only if

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.
The notation that is used for the cube root of N is $\sqrt[3]{\mathrm{N}}$. This leads us to the definition of cube root.
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.
The notation that is used for the cube root of N is $\sqrt[3]{\mathrm{N}}$. This leads us to the definition of cube root.
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
The number k is a square root of N if and only if $\mathbf{k}^{2}=\mathbf{N}$. Using this definition, it is clear that the number 9 , for example, has two square roots. They are 3 and -3 , since $3^{2}=9$ and $(-3)^{2}=9$.
If you used a calculator to find the square root of 9 , you would get 3 . That is because the calculator is programmed to give the principal, or the non-negative, square root of a number.
The notation that is used for the principal square root of N is \sqrt{N}. This leads us to the definition of principal square root. $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
The number k is a cube root of N if and only if $\mathbf{k}^{3}=\mathbf{N}$. Using this definition, it is clear that the number 8 , for example, has one cube root. The cube root of 8 is 2 , since $2^{3}=8$.
The notation that is used for the cube root of N is $\sqrt[3]{\mathrm{N}}$. This leads us to the definition of cube root.
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
 $\sqrt{N}=k$ if and only if $k^{\mathbf{2}}=\mathbf{N}$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

General Notation For Roots

Square Root and Cube Root

Definitions and Notation

$$
\begin{array}{cc}
\text { Square Root } & \text { Cube Root } \\
\sqrt{N}=k \text { if and only if } k^{2}=\mathbf{N} \text { and } k \geq 0 . & \sqrt[3]{N}=k \text { if and only if } k^{3}=N
\end{array}
$$

Square Root and Cube Root

Definitions and Notation

General Notation For Roots (Also Called Radicals)

Square Root and Cube Root

Definitions and Notation

$$
\begin{array}{cc}
\text { Square Root } & \text { Cube Root } \\
\sqrt{N}=k \text { if and only if } k^{2}=N \text { and } k \geq 0 . & \sqrt[3]{N}=k \text { if and only if } k^{3}=N .
\end{array}
$$

General Notation For Roots (Also Called Radicals)

The number here is called the index.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

General Notation For Roots (Also Called Radicals)

The number here is called the index.

The 'check mark' part of the symbol is called the radical sign.

Square Root and Cube Root

Definitions and Notation

$$
\begin{gathered}
\text { Square Root } \\
\sqrt{N}=k \text { if and only if } k^{2}=N \text { and } k \geq 0 .
\end{gathered}
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.

General Notation For Roots (Also Called Radicals)

The number here is called the index.
The horizontal bar is called the vinculum.

The 'check mark' part of the symbol is called the radical sign.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root

$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

General Notation For Roots (Also Called Radicals)

The number here is called the index.
The horizontal bar is called the vinculum.
N, which can be a number or an algebraic expression, is called the radicand.

The 'check mark' part of the symbol is called the radical sign.

Square Root and Cube Root

Definitions and Notation

$$
\begin{gathered}
\text { Square Root } \\
\sqrt{N}=k \text { if and only if } k^{2}=N \text { and } k \geq 0 .
\end{gathered}
$$

Cube Root

$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

General Notation For Roots (Also Called Radicals)

The number here is called the index.
The horizontal bar is called the vinculum.
N, which can be a number or an algebraic expression, is called the radicand.

The 'check mark' part of the symbol is called the radical sign.

The number that is used for the index always agrees with the exponent in the definition.

Square Root and Cube Root

Definitions and Notation

> Square Root
> $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

General Notation For Roots (Also Called Radicals)

The number here is called the index.
The horizontal bar is called the vinculum.
N , which can be a number or an algebraic expression, is called the radicand.

The 'check mark' part of the symbol is called the radical sign.

The number that is used for the index always agrees with the exponent in the definition. If the index number is 'missing', it is understood to be a 2.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
 $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
 $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Consider the following.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\sqrt{9}=
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\sqrt{9}=3
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\sqrt{9}=3 \text {, since } 3^{2}=9
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=
\end{aligned}
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0
\end{aligned}
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 .
\end{aligned}
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=
\end{aligned}
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ?
\end{aligned}
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ?
\end{aligned}
$$

We need a number k

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ?
\end{aligned}
$$

We need a number k such that $k^{2}=-4$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ?
\end{aligned}
$$

We need a number k such that $k^{2}=-4$. Clearly, the number we seek does not exist in the real number system.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ?
\end{aligned}
$$

We need a number k such that $k^{2}=-4$. Clearly, the number we seek does not exist in the real number system. Numbers like $\sqrt{-4}$ do exist however.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ?
\end{aligned}
$$

We need a number k such that $k^{2}=-4$.
Clearly, the number we seek does not exist in the real number system. Numbers like $\sqrt{-4}$ do exist however. They are elements of another set of numbers called the imaginary numbers.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ?
\end{aligned}
$$

We need a number k such that $k^{2}=-4$.
Clearly, the number we seek does not exist in the real number system. Numbers like $\sqrt{-4}$ do exist however. They are elements of another set of numbers called the imaginary numbers. For now, we are only dealing with real numbers.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=N$.

Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ?
\end{aligned}
$$

We need a number k such that $k^{2}=-4$.
Clearly, the number we seek does not exist in the real number system.
Numbers like $\sqrt{-4}$ do exist however. They are elements of another set of numbers called the imaginary numbers. For now, we are only dealing with real numbers. Therefore, the radicand can not be negative.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ?
\end{aligned}
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5}=
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5}=? ? ? ?
\end{aligned}
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5}=? ? ? ?
\end{aligned}
$$

If the radicand is a 'perfect square',

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.
$\longrightarrow \sqrt{9}=3$, since $3^{2}=9$.
$\longrightarrow \sqrt{0}=0$, since $0^{2}=0$.
$\sqrt{-4}=? ? ? ?$
$\sqrt{5}=? ? ? ?$
If the radicand is a 'perfect square',

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.
$\longrightarrow \sqrt{9}=3$, since $3^{2}=9$.
$\longrightarrow \sqrt{0}=0$, since $0^{2}=0$.
$\sqrt{-4}=? ? ? ?$
$\sqrt{5}=? ? ?$
If the radicand is a 'perfect square', then the problem 'comes out even'.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.
$\longrightarrow \sqrt{9}=3$, since $3^{2}=9$.
$\longrightarrow \sqrt{0}=0$, since $0^{2}=0$.
$\sqrt{-4}=? ? ? ?$
$\sqrt{5}=? ? ? ?$
If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.)

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5}=? ? ? ?
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.)

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5}=? ? ? ?
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square,

Cube Root

$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
\sqrt{9} & =3, \text { since } 3^{2}=9 . \\
\sqrt{0} & =0, \text { since } 0^{2}=0 . \\
\sqrt{-4} & =? ? ? ? \\
\rightarrow \sqrt{5} & =? ? ? ?
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square,

Cube Root

$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $\mathbf{k}^{\mathbf{2}}=\mathbf{N}$ and $\mathbf{k} \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
\sqrt{9} & =3, \text { since } 3^{2}=9 . \\
\sqrt{0} & =0, \text { since } 0^{2}=0 . \\
\sqrt{-4} & =? ? ? ? \\
\rightarrow \sqrt{5} & =? ? ? ?
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
\sqrt{9} & =3, \text { since } 3^{2}=9 . \\
\sqrt{0} & =0, \text { since } 0^{2}=0 . \\
\sqrt{-4} & =? ? ? ? \\
\rightarrow \sqrt{5} & =? ? ? ?
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator

Cube Root

$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
\sqrt{9} & =3, \text { since } 3^{2}=9 . \\
\sqrt{0} & =0, \text { since } 0^{2}=0 . \\
\sqrt{-4} & =? ? ? ? \\
\rightarrow \sqrt{5} & \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator

Cube Root

$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
\sqrt{9} & =3, \text { since } 3^{2}=9 . \\
\sqrt{0} & =0, \text { since } 0^{2}=0 . \\
\sqrt{-4} & =? ? ? ? \\
\rightarrow \sqrt{5} & \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.

Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.
Consider the following.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\sqrt[3]{8}=
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\sqrt[3]{8}=2
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\sqrt[3]{8}=2, \text { since } 2^{3}=8
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 . \\
& \sqrt[3]{0}=
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $k^{\mathbf{2}}=\mathbf{N}$ and $k \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
& \sqrt[3]{10}=
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
& \sqrt[3]{10}=? ? ?
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $k^{\mathbf{2}}=\mathbf{N}$ and $k \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
& \sqrt[3]{10}=? ? ? \\
& \sqrt[3]{-10}=
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $k^{\mathbf{2}}=\mathbf{N}$ and $k \geq \mathbf{0}$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
& \sqrt[3]{10}=? ? ? \\
& \sqrt[3]{-10}=? ? ?
\end{aligned}
$$

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
& \sqrt[3]{10}=? ? ? \\
& \sqrt[3]{-10}=? ? ?
\end{aligned}
$$

If the radicand is a 'perfect cube',

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.
$\longrightarrow \sqrt[3]{8}=2$, since $2^{3}=8$.
$\longrightarrow \sqrt[3]{0}=0$, since $0^{3}=0$.
$\longrightarrow \sqrt[3]{-8}=-2$, since $(-2)^{3}=-8$

$$
\sqrt[3]{10}=? ? ?
$$

$$
\sqrt[3]{-10}=? ? ?
$$

If the radicand is a 'perfect cube',

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.
$\longrightarrow \sqrt[3]{8}=2$, since $2^{3}=8$.
$\longrightarrow \sqrt[3]{0}=0$, since $0^{3}=0$.
$\longrightarrow \sqrt[3]{-8}=-2$, since $(-2)^{3}=-8$

$$
\sqrt[3]{10}=? ? ?
$$

$$
\sqrt[3]{-10}=? ? ?
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.
$\longrightarrow \sqrt[3]{8}=2$, since $2^{3}=8$.
$\longrightarrow \sqrt[3]{0}=0$, since $0^{3}=0$.
$\rightarrow \sqrt[3]{-8}=-2$, since $(-2)^{3}=-8$

$$
\sqrt[3]{10}=? ? ?
$$

$$
\sqrt[3]{-10}=? ? ?
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.)

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
& \sqrt[3]{10}=? ? ? \\
& \sqrt[3]{-10}=? ? ?
\end{aligned}
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.)

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root

$$
\sqrt[3]{N}=k \text { if and only if } k^{3}=N
$$

Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
& \sqrt[3]{10}=? ? ? \\
& \sqrt[3]{-10}=? ? ?
\end{aligned}
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.) If the radicand is not a perfect cube,

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 . \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 . \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
\rightarrow & \sqrt[3]{10}=? ? ? \\
\rightarrow & \sqrt[3]{-10}=? ? ?
\end{aligned}
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.) If the radicand is not a perfect cube,

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 . \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 . \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
\rightarrow & \sqrt[3]{10}=? ? ? \\
\rightarrow & \sqrt[3]{-10}=? ? ?
\end{aligned}
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.) If the radicand is not a perfect cube, then the cube root represents an irrational number.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 . \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 . \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
\rightarrow & \sqrt[3]{10}=? ? ? \\
\rightarrow & \sqrt[3]{-10}=? ? ?
\end{aligned}
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.) If the radicand is not a perfect cube, then the cube root represents an irrational number. In this case, the cube root can either be approximated using a calculator,

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 . \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 . \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
\rightarrow & \sqrt[3]{10} \approx 2.154 \\
\rightarrow & \sqrt[3]{-10} \approx-2.154
\end{aligned}
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.) If the radicand is not a perfect cube, then the cube root represents an irrational number. In this case, the cube root can either be approximated using a calculator,

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 . \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 . \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
\rightarrow & \sqrt[3]{10} \approx 2.154 \\
\rightarrow & \sqrt[3]{-10} \approx-2.154
\end{aligned}
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.) If the radicand is not a perfect cube, then the cube root represents an irrational number. In this case, the cube root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
& \sqrt[3]{10} \approx 2.154 \\
& \sqrt[3]{-10} \approx-2.154
\end{aligned}
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.) If the radicand is not a perfect cube, then the cube root represents an irrational number. In this case, the cube root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.
Consider the following.

$$
\begin{aligned}
& \sqrt{9}=3, \text { since } 3^{2}=9 . \\
& \sqrt{0}=0, \text { since } 0^{2}=0 . \\
& \sqrt{-4}=? ? ? ? \\
& \sqrt{5} \approx 2.236
\end{aligned}
$$

If the radicand is a 'perfect square', then the problem 'comes out even'. (The square root represents a rational number.) If the radicand is positive and not a perfect square, then the square root represents an irrational number. In this case, the square root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.
Consider the following.

$$
\begin{aligned}
& \sqrt[3]{8}=2, \text { since } 2^{3}=8 \\
& \sqrt[3]{0}=0, \text { since } 0^{3}=0 . \\
& \sqrt[3]{-8}=-2, \text { since }(-2)^{3}=-8 \\
& \sqrt[3]{10} \approx 2.154 \\
& \sqrt[3]{-10} \approx-2.154
\end{aligned}
$$

If the radicand is a 'perfect cube', then the problem 'comes out even'. (The cube root represents a rational number.) If the radicand is not a perfect cube, then the cube root represents an irrational number. In this case, the cube root can either be approximated using a calculator, or the exact value can be written using standard radical form.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
 $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Square Root and Cube Root

Definitions and Notation

Square Root
 $\sqrt{N}=k$ if and only if $k^{\mathbf{2}}=\mathbf{N}$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary

Square Root and Cube Root

Definitions and Notation

Square Root
 $\sqrt{N}=k$ if and only if $k^{\mathbf{2}}=\mathbf{N}$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Summary
If the radicand is a perfect square,

Square Root and Cube Root

Definitions and Notation

Square Root
 $\sqrt{N}=k$ if and only if $k^{\mathbf{2}}=\mathbf{N}$ and $k \geq 0$.

Summary
If the radicand is a perfect square, then
you will be asked to give the exact value.
Summary
If the radicand is a perfect square, then
you will be asked to give the exact value.
Summary
If the radicand is a perfect square, then
you will be asked to give the exact value.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=N$.

Square Root and Cube Root

Definitions and Notation

Square Root
 $\sqrt{N}=k$ if and only if $k^{\mathbf{2}}=\mathbf{N}$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary
If the radicand is a perfect square, then
you will be asked to give the exact value.
If the radicand is negative,

Square Root and Cube Root

Definitions and Notation

$$
\begin{gathered}
\text { Square Root } \\
\sqrt{N}=k \text { if and only if } k^{2}=N \text { and } k \geq 0 .
\end{gathered}
$$

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary
If the radicand is a perfect square, then
you will be asked to give the exact value.
If the radicand is negative, then the square root represents an imaginary number.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=N$.

Summary
If the radicand is a perfect square, then
you will be asked to give the exact value.
If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary

If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square,

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Abstract

Summary If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{3}=\mathbf{N}$.

Summary
If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $k^{2}=\mathbf{N}$ and $k \geq 0$.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Summary
If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{\mathbf{N}}=k$ if and only if $k^{2}=\mathbf{N}$ and $k \geq 0$.

Summary

If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Summary

If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary
If the radicand is a perfect cube,

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Summary

If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary
If the radicand is a perfect cube, then you will be asked to give the exact value.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Summary

If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary
If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube,

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Summary

If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary
If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube, then you will be asked to write the cube root using standard radical form.

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{\mathbf{2}}=N$ and $k \geq 0$.

Summary

If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Summary
If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube, then you will be asked to write the cube root using standard radical form.

The cube root of a positive number is positive,

Square Root and Cube Root

Definitions and Notation

Square Root
$\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Summary

If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $\mathbf{k}^{\mathbf{3}}=\mathbf{N}$.

Summary
If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube, then you will be asked to write the cube root using standard radical form.

The cube root of a positive number is positive, and the cube root of a negative number is negative.

Square Root and Cube Root

Definitions and Notation

> Square Root
> $\sqrt{N}=k$ if and only if $k^{2}=N$ and $k \geq 0$.

Summary
If the radicand is a perfect square, then you will be asked to give the exact value.

If the radicand is negative, then the square root represents an imaginary number. You will be asked to express the square root as an imaginary number in 'simplest form'.

If the radicand is positive and not a perfect square, then you will be asked to write the square root using standard radical form.

Cube Root
$\sqrt[3]{N}=k$ if and only if $k^{3}=N$.

Summary
If the radicand is a perfect cube, then you will be asked to give the exact value.

If the radicand is not a perfect cube, then you will be asked to write the cube root using standard radical form.

The cube root of a positive number is positive, and the cube root of a negative number is negative.

Square Root and Cube Root

Square Root and Cube Root

Standard Radical Form

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root

Square Root and Cube Root
 Standard Radical Form

Square Root
Cube Root
We will consider problems in which the radicand is a whole number.

Square Root and Cube Root
 Standard Radical Form

Square Root
Cube Root
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square

Square Root and Cube Root

Standard Radical Form

Square Root
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1,

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does
not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'.

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

Square Root and Cube Root

Standard Radical Form

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.
$\sqrt{5}$

Square Root and Cube Root

Standard Radical Form

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{ll}
\sqrt{5} & \sqrt{6}
\end{array}
$$

Square Root and Cube Root

Standard Radical Form

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lll}
\sqrt{5} & \sqrt{6} & 3 \sqrt{10}
\end{array}
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt{5} \quad \sqrt{6} \quad 3 \sqrt{10} \quad 2 \sqrt{3}
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1, then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lllll}
\sqrt{5} & \sqrt{6} & 3 \sqrt{10} & 2 \sqrt{3} & \sqrt{15}
\end{array}
$$

Square Root and Cube Root

Standard Radical Form

> Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lllll}
\sqrt{5} & \sqrt{6} & 3 \sqrt{10} & 2 \sqrt{3} & \sqrt{15}
\end{array}
$$

In each case,

Square Root and Cube Root

Standard Radical Form

> Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lllll}
\sqrt{5} & \sqrt{6} & 3 \sqrt{10} & 2 \sqrt{3} & \sqrt{15}
\end{array}
$$

In each case, the radicand

Square Root and Cube Root

Standard Radical Form

> Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lllll}
\sqrt{5} & \sqrt{6} & 3 \sqrt{10} & 2 \sqrt{3} & \sqrt{15}
\end{array}
$$

In each case, the radicand

Square Root and Cube Root

Standard Radical Form

> Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lllll}
\sqrt{5} & \sqrt{6} & 3 \sqrt{10} & 2 \sqrt{3} & \sqrt{15}
\end{array}
$$

In each case, the radicand is a whole number

Square Root and Cube Root

Standard Radical Form

> Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lllll}
\sqrt{5} & \sqrt{6} & 3 \sqrt{10} & 2 \sqrt{3} & \sqrt{15}
\end{array}
$$

In each case, the radicand is a whole number that is not a perfect square

Square Root and Cube Root

Standard Radical Form

> Square Root

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lllll}
\sqrt{5} & \sqrt{6} & 3 \sqrt{10} & 2 \sqrt{3} & \sqrt{15}
\end{array}
$$

In each case, the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1.

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root

Square Root and Cube Root Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square

Square Root and Cube Root
 Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 ,

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'.

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots.

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.
$\sqrt{36}$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9}
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9} \stackrel{?}{=} \sqrt{4} \cdot \sqrt{9}
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\underset{6}{\sqrt{36}}=\sqrt{4 \cdot 9} \stackrel{?}{=} \sqrt{4} \cdot \sqrt{9}
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\underset{4}{\sqrt{36}}=\sqrt{4 \cdot 9} \stackrel{?}{=} \sqrt{4} \cdot \sqrt{9}
$$

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\underset{\uparrow}{\sqrt{36}}=\sqrt{4 \cdot 9} \stackrel{?}{=} \sqrt{4} \cdot \sqrt{9}
$$

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\underset{4}{\sqrt{36}}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

In general,

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

In general, if $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers,

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

In general, if $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}}$

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

In general, if $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}}=$

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

In general, if $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

In general, if $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b}$.

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root
If the radicand is not a perfect square and does have perfect square factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{36}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

In general, if $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers, then $\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}$.

Notice that this property is written so that it can be used to factor a square root expression.

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

Square Root and Cube Root
 Standard Radical Form

Square Root
Cube Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root
We will consider problems in which the radicand is a whole number.

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1,

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'.

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.
$\sqrt[3]{5}$

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6}
$$

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6} \quad 3 \sqrt[3]{10}
$$

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6} \quad 3 \sqrt[3]{10} \quad 2 \sqrt[3]{3}
$$

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6} \quad 3 \sqrt[3]{10} \quad 2 \sqrt[3]{3} \quad \sqrt[3]{15}
$$

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6} \quad 3 \sqrt[3]{10} \quad 2 \sqrt[3]{3} \quad \sqrt[3]{15}
$$

In each case,

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6} \quad 3 \sqrt[3]{10} \quad 2 \sqrt[3]{3} \quad \sqrt[3]{15}
$$

In each case, the radicand

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6} \quad 3 \sqrt[3]{10} \quad 2 \sqrt[3]{3} \quad \sqrt[3]{15}
$$

In each case, the radicand

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6} \quad 3 \sqrt[3]{10} \quad 2 \sqrt[3]{3} \quad \sqrt[3]{15}
$$

In each case, the radicand is a whole number

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6} \quad 3 \sqrt[3]{10} \quad 2 \sqrt[3]{3} \quad \sqrt[3]{15}
$$

In each case, the radicand is a whole number that is not a perfect cube

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b} .
$$

Cube Root

We will consider problems in which the radicand is a whole number. If the radicand is not a perfect cube and does not have any perfect cube factors greater than 1 , then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt[3]{5} \quad \sqrt[3]{6} \quad 3 \sqrt[3]{10} \quad 2 \sqrt[3]{3} \quad \sqrt[3]{15}
$$

In each case, the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1.

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

If the radicand is not a perfect cube

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1,

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1, then the expression is not in 'standard radical form'.

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root
If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers,

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then $\sqrt[3]{a \cdot b}$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then $\sqrt[3]{a \cdot b}=$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then $\sqrt[3]{a \cdot b}=\sqrt[3]{a}$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then $\sqrt[3]{a \cdot b}=\sqrt[3]{a}$.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form

Square Root
Cube Root
If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Square Root and Cube Root

Standard Radical Form

Square Root

Cube Root
If the radicand is not a perfect cube and does have perfect cube factor(s) greater than 1 , then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of cube roots.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b} .
$$

Notice that this property is written so that it can be used to factor a cube root expression.

Square Root and Cube Root

Standard Radical Form

Square Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

Cube Root

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Square Root and Cube Root

Standard Radical Form
Square Root
Cube Root

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then $\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}$.

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=$ \qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=$ \qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=$ \qquad
25 is a perfect square.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=$ \qquad
25 is a perfect square.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=5^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=5^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=5^{2}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=5^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=5^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad
27 is a perfect cube.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=5^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=$ \qquad
27 is a perfect cube.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=5^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=3$ 27 is a perfect cube.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=5^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=3$

27 is a perfect cube.

$$
27=3^{3}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=5^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=3$

27 is a perfect cube.

$$
27=3^{3}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

1. $\sqrt{25}=5$

25 is a perfect square.

$$
25=\mathbf{5}^{2}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
2. $\sqrt[3]{27}=3$

27 is a perfect cube.

$$
27=3^{3}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=$ \qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=$ \qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=$ \qquad
144 is a perfect square.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=$ \qquad
144 is a perfect square.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=12$

144 is a perfect square.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=12$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 3. } \sqrt{144}=12
$$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 3. } \sqrt{144}=12
$$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=12$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=12$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad
-125 is a perfect cube.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=12$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=$ \qquad
-125 is a perfect cube.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=12$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=\underline{-5}$
-125 is a perfect cube.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=12$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=-5$
-125 is a perfect cube.

$$
-125=(-5)^{3}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=12$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{b}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=-5$
-125 is a perfect cube.

$$
-125=(-5)^{3}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
3. $\sqrt{144}=12$

144 is a perfect square.

$$
144=12^{2}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
4. $\sqrt[3]{-125}=-5$
-125 is a perfect cube.

$$
-125=(-5)^{3}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{50}=$ \qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=
$$

\qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{50}=$

50 is not a perfect square.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{50}=$

50 is not a perfect square.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{50}=$ \qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=
$$

\qquad

Notice that the radicand has at least one perfect square factor greater than 1.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{50}=$

Notice that the radicand has at least one perfect square factor greater than 1.

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{50}=$ \qquad

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{50}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
5. $\sqrt{50}=$ \qquad
$\sqrt{25}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{50}= \\
& \sqrt{25} \cdot \sqrt{2}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{50}= \\
& \sqrt{25} \cdot \sqrt{2}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{50}= \\
& \sqrt{25} \cdot \sqrt{2}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=
$$

\qquad

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{50}=5 \sqrt{2} \\
& \sqrt{25} \cdot \sqrt{2}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad
24 is not a perfect cube.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad
24 is not a perfect cube.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

Notice that the radicand has at least one perfect cube factor greater than 1.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$
\qquad

Notice that the radicand has at least one perfect cube factor greater than 1.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad
$\sqrt[3]{8}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then $\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$
$\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$
$\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$
$\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=$ \qquad
$\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=2$
$\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
6. $\sqrt[3]{24}=\underline{2 \sqrt[3]{3}}$
$\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{24}=2 \sqrt[3]{3} \\
& \sqrt[3]{8} \cdot \sqrt[3]{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 5. } \sqrt{50}=5 \sqrt{2}
$$

$$
\sqrt{25} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 6. } \sqrt[3]{24}=2 \sqrt[3]{3} \\
& \sqrt[3]{8} \cdot \sqrt[3]{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{12}=
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{12}=
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
7. $\sqrt{12}=$

12 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
7. $\sqrt{12}=$

12 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{12}=
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{12}=
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
7. $\sqrt{12}=$ \qquad
$\sqrt{4}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}= \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}= \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}= \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
7. $\sqrt{12}=$ \qquad

$$
\sqrt{4} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 7. } \sqrt{12}=2 \sqrt{3}
$$

$$
\sqrt{4} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$
-54 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$
-54 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
8. $\sqrt[3]{-54}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{-54}= \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{-54}= \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{-54}= \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \begin{array}{l}
\sqrt[3]{-54}= \\
\sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{array},=
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{-54}=-3 \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=\underline{2 \sqrt{3}} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 8. } \sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \underset{\sqrt[3]{-27} \cdot \sqrt[3]{2}}{ }
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=\underline{2 \sqrt{3}} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{-54}=-3 \sqrt[3]{2} \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=\underline{2 \sqrt{3}} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 8. } \sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 8. } \sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \underset{\sqrt[3]{-27} \cdot \sqrt[3]{2}}{ }
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
$\sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}}$
$\sqrt[3]{-27} \cdot \sqrt[3]{2}$

What if we factored out $\sqrt[3]{27}$?

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
\sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{gathered}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
\sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{gathered}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
\sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{gathered}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27} \cdot \sqrt[3]{-2}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27} \cdot \sqrt[3]{-2}=3
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27} \cdot \sqrt[3]{-2}=3 \sqrt[3]{-2}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27} \cdot \sqrt[3]{-2}=3 \sqrt[3]{-2}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=\underline{2 \sqrt{3}} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\sqrt[3]{-54}=\frac{-3 \sqrt[3]{2}}{\sqrt[3]{-27} \cdot \sqrt[3]{2}}
\end{gathered}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27} \cdot \sqrt[3]{-2}=3 \sqrt[3]{-2}
$$

Although this answer is equivalent to the correct answer,

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
\sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{gathered}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27} \cdot \sqrt[3]{-2}=3 \sqrt[3]{-2}
$$

Although this answer is equivalent to the correct answer, it is not in standard radical form.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27} \cdot \sqrt[3]{-2}=3 \sqrt[3]{-2}
$$

Although this answer is equivalent to the correct answer, it is not in standard radical form. The radicand,

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
\sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{gathered}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27} \cdot \sqrt[3]{-2}=3 \sqrt[3]{-2}
$$

Although this answer is equivalent to the correct answer, it is not in standard radical form. The radicand, -2 ,

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
\sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{gathered}
$$

What if we factored out $\sqrt[3]{27}$?

$$
\sqrt[3]{-54}=\sqrt[3]{27} \cdot \sqrt[3]{-2}=3 \sqrt[3]{-2}
$$

Although this answer is equivalent to the correct answer, it is not in standard radical form. The radicand, -2 , is not a whole number.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=\underline{2 \sqrt{3}} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{-54}=-3 \sqrt[3]{2} \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 7. } \sqrt{12}=2 \sqrt{3} \\
& \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 8. } \sqrt[3]{-54}=\underline{-3 \sqrt[3]{2}} \\
& \sqrt[3]{-27} \cdot \sqrt[3]{2}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$

48 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$

48 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$ \qquad $\sqrt{16}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$ \qquad

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$ \qquad

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$ \qquad

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=$ \qquad

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$
$\sqrt{16} \cdot \sqrt{3}$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=2
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=2 \sqrt{12}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=\underline{2 \sqrt{12}}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=2 \sqrt{12}
$$

Although this is equivalent to the correct answer,

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=2 \sqrt{12}
$$

Although this is equivalent to the correct answer, it is not in standard radical form.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=2 \sqrt{12}
$$

Although this is equivalent to the correct answer, it is not in standard radical form. The radicand,

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=2 \sqrt{12}
$$

Although this is equivalent to the correct answer, it is not in standard radical form. The radicand, 12,
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=2 \sqrt{12}
$$

Although this is equivalent to the correct answer, it is not in standard radical form. The radicand, 12, has a perfect square factor greater than 1.
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 10. } \sqrt[3]{32}=
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4}
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& =
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& =2
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& =2 \cdot 2
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& =2 \cdot 2 \cdot \sqrt{3}
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& =2 \cdot 2 \cdot \sqrt{3}=
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& =2 \cdot 2 \cdot \sqrt{3}=4
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& =2 \cdot 2 \cdot \sqrt{3}=4 \sqrt{3}
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& =2 \cdot 2 \cdot \sqrt{3}=4 \sqrt{3}
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
\sqrt{48}=\sqrt{4} \cdot \sqrt{12} & =2 \sqrt{12}= \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& =2 \cdot 2 \cdot \sqrt{3}=4 \sqrt{3}
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

48 has two perfect square factors greater than 1. They are 4 and 16. It is important to factor out the largest perfect square factor. Let's see why.

$$
\begin{aligned}
& \sqrt{\sqrt{48}=\sqrt{4} \cdot \sqrt{12}}=2 \sqrt{12}= \\
& \text { It saves time }!! \\
& =2 \cdot \sqrt{4} \cdot \sqrt{3}= \\
& \\
& =2 \cdot 2 \cdot \sqrt{3}=4 \sqrt{3}
\end{aligned}
$$

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If $\underline{\mathbf{a}}$ and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$
$\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad
32 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$
$\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad
32 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
10. $\sqrt[3]{32}=$ \qquad
$\sqrt[3]{8}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 10. } \sqrt[3]{32}= \\
& \sqrt[3]{8} \cdot \sqrt[3]{4}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 10. } \sqrt[3]{32}= \\
\sqrt[3]{8} \cdot \sqrt[3]{4}
\end{gathered}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& 10 . \sqrt[3]{32}= \\
& \sqrt[3]{8} \cdot \sqrt[3]{4}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 10. } \sqrt[3]{32}=
$$

\qquad
$\sqrt[3]{8} \cdot \sqrt[3]{4}$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\text { 10. } \sqrt[3]{32}=2
$$

$$
\sqrt[3]{8} \cdot \sqrt[3]{4}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
10 . \sqrt[3]{32}=2 \sqrt[3]{4} \\
\sqrt[3]{8} \cdot \sqrt[3]{4}
\end{gathered}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
9. $\sqrt{48}=4 \sqrt{3}$

$$
\sqrt{16} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 10. } \sqrt[3]{32}=2 \sqrt[3]{4} \\
\sqrt[3]{8} \cdot \sqrt[3]{4}
\end{gathered}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 9. } \sqrt{48}=4 \sqrt{3}
$$

$\sqrt{16} \cdot \sqrt{3}$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 10. } \sqrt[3]{32}=2 \sqrt[3]{4} \\
\sqrt[3]{8} \cdot \sqrt[3]{4}
\end{gathered}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{108}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{108}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{108}=$

108 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{108}=$

108 is not a perfect square.

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{108}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{108}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{108}=$ \qquad
$\sqrt{36}$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=
$$

\qquad

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=
$$

\qquad

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=
$$

\qquad

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=
$$

\qquad

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=6
$$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.
11. $\sqrt{108}=6 \sqrt{3}$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 11. } \sqrt{108}=6 \sqrt{3} \\
& \sqrt{36} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=6 \sqrt{3}
$$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=6 \sqrt{3}
$$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=6 \sqrt{3}
$$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad
-80 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=6 \sqrt{3}
$$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad
-80 is not a perfect cube.

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=6 \sqrt{3}
$$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=6 \sqrt{3}
$$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.
12. $\sqrt[3]{-80}=$ \qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 11. } \sqrt{108}=6 \sqrt{3} \\
& \sqrt{36} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 12. } \sqrt[3]{-80}= \\
& \sqrt[3]{-8}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 11. } \sqrt{108}=6 \sqrt{3} \\
& \sqrt{36} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{array}{r}
\text { 12. } \sqrt[3]{-80}= \\
\sqrt[3]{-8} \cdot \sqrt[3]{10}
\end{array}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 11. } \sqrt{108}=6 \sqrt{3} \\
& \sqrt{36} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 12. } \sqrt[3]{-80}= \\
\sqrt[3]{-8} \cdot \sqrt[3]{10}
\end{gathered}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 11. } \sqrt{108}=6 \sqrt{3} \\
& \sqrt{36} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{array}{r}
\text { 12. } \sqrt[3]{-80}= \\
\sqrt[3]{-8} \cdot \sqrt[3]{10}
\end{array}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 11. } \sqrt{108}=6 \sqrt{3} \\
& \sqrt{36} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 12. } \sqrt[3]{-80}= \\
& \sqrt[3]{-8} \cdot \sqrt[3]{10}
\end{aligned}
$$

\qquad

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=6 \sqrt{3}
$$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 12. } \sqrt[3]{-80}=-2 \\
\sqrt[3]{-8} \cdot \sqrt[3]{10}
\end{gathered}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\text { 11. } \sqrt{108}=6 \sqrt{3}
$$

$$
\sqrt{36} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 12. } \sqrt[3]{-80}=\underline{-2 \sqrt[3]{10}} \\
& \sqrt[3]{-8} \cdot \sqrt[3]{10}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{\mathbf{a} \cdot \mathbf{b}}=\sqrt[3]{\mathbf{a}} \cdot \sqrt[3]{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 11. } \sqrt{108}=6 \sqrt{3} \\
& \sqrt{36} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{gathered}
\text { 12. } \sqrt[3]{-80}=-2 \sqrt[3]{10} \\
\sqrt[3]{-8} \cdot \sqrt[3]{10}
\end{gathered}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form. If \underline{a} and \underline{b} represent integers, then $\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}$

Algebra II Class Worksheet \#1 Unit 5

Express each of the following radicals in simplest form.

If the radicand is a perfect square, give the exact value. If not, express the square root using standard radical form.

$$
\begin{aligned}
& \text { 11. } \sqrt{108}=6 \sqrt{3} \\
& \sqrt{36} \cdot \sqrt{3}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form. If \underline{a} and \underline{b} represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}} .
$$

If the radicand is a perfect cube, give the exact value. If not, express the cube root using standard radical form.

$$
\begin{aligned}
& \text { 12. } \sqrt[3]{-80}=-2 \sqrt[3]{10} \\
& \sqrt[3]{-8} \cdot \sqrt[3]{10}
\end{aligned}
$$

Step 1: Use the multiplication property to factor the expression. Factor out the perfect cube factor.
Step 2: Evaluate the cube root of the perfect cube factor.

If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

If \underline{a} and \underline{b} represent integers, then

$$
\sqrt[3]{a \cdot b}=\sqrt[3]{a} \cdot \sqrt[3]{b}
$$

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.
13. $\sqrt{12}+\sqrt{27}=$ \qquad 14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.
13. $\sqrt{12}+\sqrt{27}=$ \qquad 14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.
13. $\sqrt{12}+\sqrt{27}=$ \qquad 14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=\square \quad \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}=
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=\quad \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}=
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=\quad \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}=
$$

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+
\end{aligned}
$$ 14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3
\end{aligned}
$$ 14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}
\end{aligned}
$$ 14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =\frac{2 \sqrt{3}}{}+3 \sqrt{3}= \\
& 2 x
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}= \\
& 2 x+
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}= \\
& 2 x+
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}= \\
& 2 x+3 x
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}= \\
& 2 x+3 x=
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}= \\
& 2 x+3 x=5 x
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}= \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3} \\
& 2 x+3 x=5 x
\end{aligned}
$$

14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3} \\
& 2 x+3 x=5 x
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3}
$$

$$
\text { 14. } \sqrt[3]{375}+\sqrt[3]{24}=
$$

\qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad
$=$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad
$=$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

$$
=\sqrt[3]{125}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

$$
=\sqrt[3]{125} \cdot \sqrt[3]{3}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

$$
=\sqrt[3]{125} \cdot \sqrt[3]{3}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

$$
=\sqrt[3]{125} \cdot \sqrt[3]{3}+
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

$$
=\sqrt[3]{125} \cdot \sqrt[3]{3}+
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad
$=\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8}$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad

$$
=\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad
$=\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad
$=\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}=$
$=$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad
$=\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}=$
$=$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad
$=\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}=$
$=5$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad
$=\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}=$
$=5 \sqrt[3]{3}$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}=
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}=
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}=
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}=
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
14. $\sqrt[3]{375}+\sqrt[3]{24}=$ \qquad
$=\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}=$
$=5 \sqrt[3]{3}+2 \sqrt[3]{3}=$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}= \\
& 5 x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}= \\
& 5 x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}= \\
& 5 x+2 x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}= \\
& 5 x+2 x=7 x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}= \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}=7 \sqrt[3]{3} \\
& 5 x+2 x=7 x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}=7 \sqrt[3]{3} \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}=7 \sqrt[3]{3} \\
& 5 x+2 x=7 x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}=7 \sqrt[3]{3} \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}=7 \sqrt[3]{3}
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 13. } \sqrt{12}+\sqrt{27}=5 \sqrt{3} \\
& =\sqrt{4} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}= \\
& =2 \sqrt{3}+3 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 14. } \sqrt[3]{375}+\sqrt[3]{24}=7 \sqrt[3]{3} \\
& =\sqrt[3]{125} \cdot \sqrt[3]{3}+\sqrt[3]{8} \cdot \sqrt[3]{3}= \\
& =5 \sqrt[3]{3}+2 \sqrt[3]{3}=7 \sqrt[3]{3}
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 15. } \sqrt{200}-\sqrt{32}=
$$

16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 15. } \sqrt{200}-\sqrt{32}=
$$

16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 15. } \sqrt{200}-\sqrt{32}=
$$

16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{200}-\sqrt{32}=$ \qquad
$=$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 15. } \sqrt{200}-\sqrt{32}=
$$

16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{200}-\sqrt{32}=$ \qquad 16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.
15. $\sqrt{200}-\sqrt{32}=$ \qquad 16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 15. } \sqrt{200}-\sqrt{32}=
$$

\qquad 16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 15. } \sqrt{200}-\sqrt{32}=
$$

16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}
\end{aligned}
$$

16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}
\end{aligned}
$$

16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}
\end{aligned}
$$

16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}= \\
& 10 x
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}= \\
& 10 x
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}= \\
& 10 x-4 x
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}= \\
& 10 x-4 x=6 x
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}= \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2} \\
& 10 x-4 x=6 x
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2} \\
& 10 x-4 x=6 x
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
=

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27}$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad

$$
=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 16. } \sqrt[3]{54}-\sqrt[3]{16}= \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3 \sqrt[3]{2}$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3 \sqrt[3]{2}-$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3 \sqrt[3]{2}-$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3 \sqrt[3]{2}-2$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3 \sqrt[3]{2}-2 \sqrt[3]{2}$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3 \sqrt[3]{2}-2 \sqrt[3]{2}=$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 16. } \sqrt[3]{54}-\sqrt[3]{16}= \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}= \\
& =3 \sqrt[3]{2}-2 \sqrt[3]{2}=
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3 \sqrt[3]{2}-2 \sqrt[3]{2}=$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3 \sqrt[3]{2}-2 \sqrt[3]{2}=$
3x
Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.
16. $\sqrt[3]{54}-\sqrt[3]{16}=$ \qquad
$=\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}=$
$=3 \sqrt[3]{2}-2 \sqrt[3]{2}=$
3x
Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 16. } \sqrt[3]{54}-\sqrt[3]{16}= \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}= \\
& =3 \sqrt[3]{2}-2 \sqrt[3]{2}= \\
& 3 x-2 x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& 16 \sqrt[3]{54}-\sqrt[3]{16}= \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}= \\
& =3 \sqrt[3]{2}-2 \sqrt[3]{2}= \\
& 3 x-2 x=1 x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 16. } \sqrt[3]{54}-\sqrt[3]{16}= \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}= \\
& =3 \sqrt[3]{2}-2 \sqrt[3]{2}= \\
& 3 x-2 x=x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 16. } \sqrt[3]{54}-\sqrt[3]{16}= \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}= \\
& =3 \sqrt[3]{2}-2 \sqrt[3]{2}=\sqrt[3]{2} \\
& 3 x-2 x=x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 16. } \sqrt[3]{54}-\sqrt[3]{16}=\sqrt[3]{2} \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}= \\
& =3 \sqrt[3]{2}-2 \sqrt[3]{2}=\sqrt[3]{2} \\
& 3 x-2 x=x
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 16. } \sqrt[3]{54}-\sqrt[3]{16}=\sqrt[3]{2} \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}= \\
& =3 \sqrt[3]{2}-2 \sqrt[3]{2}=\sqrt[3]{2}
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Algebra II Class Worksheet \#1 Unit 5

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=\underline{6 \sqrt{2}} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 16. } \sqrt[3]{54}-\sqrt[3]{16}=\sqrt[3]{2} \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}= \\
& =3 \sqrt[3]{2}-2 \sqrt[3]{2}=\sqrt[3]{2}
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

Square Root and Cube Root

Standard Radical Form

Square Root
If the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1 , then the square root is in standard radical form.

Cube Root
If the radicand is a whole number that is not a perfect cube and does not have any perfect cube factors greater than 1 , then the cube root is in standard radical form.

Peı
 Good luck on your homework !!

$$
\begin{aligned}
& \text { 15. } \sqrt{200}-\sqrt{32}=6 \sqrt{2} \\
& =\sqrt{100} \cdot \sqrt{2}-\sqrt{16} \cdot \sqrt{2}= \\
& =10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}
\end{aligned}
$$

Step 1: Express each square root in standard radical form.
Step 2: Combine like terms.

$$
\begin{aligned}
& \text { 16. } \sqrt[3]{54}-\sqrt[3]{16}=\sqrt[3]{2} \\
& =\sqrt[3]{27} \cdot \sqrt[3]{2}-\sqrt[3]{8} \cdot \sqrt[3]{2}= \\
& =3 \sqrt[3]{2}-2 \sqrt[3]{2}=\sqrt[3]{2}
\end{aligned}
$$

Step 1: Express each cube root in standard radical form.
Step 2: Combine like terms.

