Algebra II Lesson \#5 Unit 3 Class Worksheet \#5 For Worksheet \#5

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? \qquad

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? \qquad
$V=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? \qquad

$\mathbf{V}=\mathbf{L W H}$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? \qquad

$\mathbf{V}=\mathbf{L W H}$

$\mathrm{V}=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$

$\mathbf{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 ~ f t}$.)

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$

$V=(6 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 f t}$.)

$\mathrm{V}=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L} \mathbf{W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 f t}$.)
 V $=72$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(6 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 ~ f t}$.) $\mathrm{V}=\mathbf{7 2} \mathrm{cu}$. ft.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$
 $V=(6 \mathrm{ft}).(4 \mathrm{ft}).(3 \mathrm{ft}$.
 $\mathrm{V}=72 \mathrm{cu} . \mathrm{ft}$.
 Time $=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 ~ f t}$.) $\mathrm{V}=72 \mathrm{cu} . \mathrm{ft}$. Time $=72$ cu. ft.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$
 $V=(6 \mathrm{ft}).(4 \mathrm{ft}).(3 \mathrm{ft}$.
 $V=72 \mathrm{cu} . \mathrm{ft}$.
 Time $=72$ cu. ft. \div

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 ~ f t}$. $\mathrm{V}=72 \mathrm{cu} . \mathrm{ft}$. Time $=\mathbf{7 2}$ cu. ft. $\div \mathbf{4} \mathbf{c u}$. ft. per min.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L} \mathbf{W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 ~ f t}$.) $\mathrm{V}=72 \mathrm{cu} . \mathrm{ft}$. Time $=\mathbf{7 2} \mathbf{c u} . \mathrm{ft} . \div \mathbf{4} \mathbf{c u}$. ft. per min. Time $=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 ~ f t}$. $\mathrm{V}=72 \mathrm{cu} . \mathrm{ft}$. Time $=72$ cu. ft. $\div \mathbf{4} \mathbf{c u}$. ft. per min. Time $=18$ minutes

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 ~ f t}$. $\mathrm{V}=72 \mathrm{cu} . \mathrm{ft}$. Time $=72 \mathrm{cu} . \mathrm{ft} . \div \mathbf{4} \mathbf{c u}$. ft. per min. Time $=18$ minutes

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathrm{f}(\mathrm{t})$
0	
3	
6	
9	
12	
15	
18	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	
3	
6	
9	
12	
15	
18	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$

When $\mathbf{t}=0$, the tank is empty.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
$\Rightarrow 0$	
3	
6	
9	
12	
15	
18	

When $t=0$, the tank is empty. The water is 0 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\Rightarrow| \mathbf{t} | $\mathbf{f}(\mathbf{t})$ |
| :---: | :---: |
| $\mathbf{0}$ | 0 |

When $t=0$, the tank is empty. The water is 0 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
$\mathbf{0}$	0

When $t=0$, the tank is empty. The water is 0 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
$\mathbf{0}$	0

When $t=0$, the tank is empty. The water is 0 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
3	
6	
9	
12	
15	
$\Rightarrow 18$	

When $t=0$, the tank is empty. The water is 0 inches deep. When $\mathrm{t}=18$, the tank is full.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

18 minutes

2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
3	
6	
9	
12	
15	
$\Rightarrow 18$	

When $\mathrm{t}=0$, the tank is empty. The water is 0 inches deep. When $t=18$, the tank is full. The water is 36 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

18 minutes

2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	
6	
9	
12	
15	
$\Rightarrow 18$	36

When $\mathrm{t}=0$, the tank is empty. The water is 0 inches deep. When $t=18$, the tank is full. The water is 36 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	
6	
9	
12	
15	
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

18 minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	
6	
9	
12	
15	
18	36

The water depth increases 36 inches

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

18 minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
$\mathbf{0}$	0
3	
6	
9	
12	
15	
$\longrightarrow 18$	36

The water depth increases 36 inches in 18 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

18 minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

	$f(t)$
0	0
3	
6	
9	
12	
15	
$\longrightarrow 18$	36

The water depth increases 36 inches in 18 minutes.
 It increases at 2 inches per minute.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.
 It increases at $\mathbf{2}$ inches per minute.
 It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.

It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.
It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.
It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.

It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.

It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.

It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.

It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.

It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.
It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.
It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

The water depth increases 36 inches in 18 minutes.

It increases at $\mathbf{2}$ inches per minute.
It increases 6 inches every 3 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

18 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

18 minutes

3. Graph function \mathbf{f}.
4. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

个											
0											
\square											

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

18 minutes

3. Graph function \mathbf{f}.
4. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

18 minutes

3. Graph function \mathbf{f}.
4. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

4. Write an equation giving $f(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

4. Write an equation giving $f(t)$ in terms of t. $f(t)=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

4. Write an equation giving $f(t)$ in terms of t. $f(t)=2 t$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

4. Write an equation giving $f(t)$ in terms of t. $f(t)=2 t$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

5. What is the domain of function f ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

5. What is the domain of function f ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

5. What is the domain of function f ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

5. What is the domain of function f ?

10,

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

5. What is the domain of function f ? $[0,18$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

5. What is the domain of function f ? $[0,18]$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
[0, 18]

5. What is the domain of function f ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
[0, 18]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

6. What is the range of function f ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
$[0,18]$

6. What is the range of function f ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until
the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
[0, 18]
6. What is the range of function f ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
[0, 18]
6. What is the range of function f ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until
the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
[0, 18]
6. What is the range of function f ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until
the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
[0, 18]
6. What is the range of function f ?

$[0,36]$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until
the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

6. What is the range of function f ?

$[0,36]$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
[0, 18]
range
[0, 36]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$\mathbf{f}(\mathbf{t})$	$[0,18]$
0	0	
3	6	
6	12	[0, 36]
9	18	7. Evaluate f(4).
12	24	
15	30	
18	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	f(t)	$\text { [ก. } 181$
0	0	
3	6	range
6	12	[0, 36]
9	18	7. Evaluate f(4).
12	24	$\mathbf{f}(\mathbf{t})=2 \mathbf{t}$
15	30	
18	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18] range [0, 36]

7. Evaluate f(4).

$$
f(t)=2 t
$$

$$
f(4)=
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$	$[0,18]$
0	0	range
3	6	$[0,36]$
6	12	
9	18	7. Evaluate $f(4)$.
12	24	$f(t)=2 t$
15	30	$f(4)=2(4)$
18	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$	[0, 18]
0	0	
3	6	,
6	12	[0, 36]
9	18	$\begin{aligned} & \text { 7. Evaluate } f(4) \text {. } \\ & f(t)=2 t \end{aligned}$
12	24	
15	30	$\mathrm{f}(4)=2(4)$
18	36	
		$f(4)=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$	$[0,18]$
0	0	range
3	6	$[0,36]$
6	12	
9	18	7.Evaluate $f(4)$. 12 24
15	30	$f(t)=2 t$
18	36	$f(4)=2(4)$
		$f(4)=8$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$	$[0,18]$
0	0	range
3	6	$[0,36]$
6	12	
9	18	7.Evaluate $f(4)$. 12 15 15 18 $\mathbf{3 0}$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18]
 range
 [0, 36]

7. Evaluate f(4).

What does $f(4)$ represent in terms of the problem?

$$
f(4)=8
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18]
 range
 [0, 36]

7. Evaluate f(4).

What does $f(4)$ represent in terms of the problem?

$$
f(4)=8
$$

$f(4)$ represents

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18]
 range
 [0, 36]

7. Evaluate f(4).

What does $f(4)$ represent in terms of the problem?

$$
f(4)=8
$$

$f(4)$ represents the depth of the water

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18] range
 [0, 36]

7. Evaluate f(4).

What does $f(4)$ represent in terms of the problem?

$$
f(4)=8
$$

$f(4)$ represents the depth of the water after 4 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18] range
 [0, 36]

7. Evaluate f(4).

What does $f(4)$ represent in terms of the problem?

$$
f(4)=8
$$

$f(4)$ represents the depth of the water after 4 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18] range
 [0, 36]

7. Evaluate f(4).

What does $f(4)$ represent in terms of the problem?

$$
f(4)=8 \text { inches }
$$

$f(4)$ represents the depth of the water after 4 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
[0, 18]
range
[0, 36]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{1 8}$ minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$	$[0,18]$
0	0	range
3	6	$[0,36]$
6	12	
9	18	8. If $f(t)=30$, then find
12	24	the value of t.
15	30	
18	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18] range $[0,36]$

8. If $f(t)=30$, then find the value of t.
$f(t)=30$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18] range $[0,36]$

8. If $f(t)=30$, then find the value of t.
$\mathrm{f}(\mathrm{t})=\mathbf{3 0}$
$2 \mathrm{t}=\mathbf{3 0}$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18] range $[0,36]$

8. If $f(t)=30$, then find the value of t.

$$
\begin{aligned}
& \mathbf{f}(\mathbf{t})=\mathbf{3 0} \\
& \mathbf{2 t}=\mathbf{3 0}
\end{aligned} \Longleftrightarrow \mathbf{t}=
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$	$[0,18]$
0	0	range
3	6	$[0,36]$
6	12	
9	18	8. If $f(t)=30$, then find
12	24	the value of t.
15	30	
18	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
 [0, 18]
 range
 [0, 36]

8. If $f(t)=30$, then find the value of t.

$$
f(t)=30 \Longleftrightarrow t=15
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
$[0,18]$
range
$[0,36]$

8. If $f(t)=30$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
f(t)=30 \Longrightarrow t=15
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
$[0,18]$
range
$[0,36]$

8. If $f(t)=30$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
f(t)=30 \Longrightarrow t=15
$$

This represents

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
$[0,18]$
range
$[0,36]$

8. If $f(t)=30$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
f(t)=30 \Longrightarrow t=15
$$

This represents the time

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
$[0,18]$
range
$[0,36]$
8. If $f(t)=30$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
f(t)=30 \Longleftrightarrow t=15
$$

This represents the time it took for the water

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
$[0,18]$
range
$[0,36]$
8. If $f(t)=30$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
f(t)=30 \Longleftrightarrow t=15
$$

This represents the time it took for the water to be 30 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
$[0,18]$
range
$[0,36]$

8. If $f(t)=30$, then find the value of t. What does this value of t represent in terms of the problem?

$$
f(t)=30 \Longleftrightarrow t=15
$$

This represents the time it took for the water to be 30 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
$[0,18]$
range
$[0,36]$

8. If $f(t)=30$, then find the value of t. What does this value of t represent in terms of the problem?

$$
f(t)=30 \Longrightarrow t=15 \text { minutes }
$$

t (minutes)
This represents the time it took for the water to be 30 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 6 feet long, 4 feet wide, and 3 feet deep. The tank is empty initially and water is pumped into the tank at 4 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 18 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 3 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
3	6
6	12
9	18
12	24
15	30
18	36

domain
$[0,18]$
range
$[0,36]$

8. If $f(t)=30$, then find the value of t. What does this value of t represent in terms of the problem?

$$
f(t)=30 \Longrightarrow t=15 \text { minutes }
$$

t (minutes)
This represents the time it took for the water to be 30 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$

$\mathrm{V}=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(10 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 f t})$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(10 \mathrm{ft}).(4 \mathrm{ft}).(3 \mathrm{ft}$.
 $\mathrm{V}=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$
 $V=(10 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 f t})$
 $\mathrm{V}=\mathbf{1 2 0}$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$
 $V=(10 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 f t})$
 V = $\mathbf{1 2 0} \mathbf{c u}$. ft.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$
 $V=(10 \mathrm{ft}).(4 \mathrm{ft}).(3 \mathrm{ft}$.
 $\mathrm{V}=120 \mathrm{cu} . \mathrm{ft}$.
 Time $=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? \qquad

$\mathbf{V}=\mathbf{L W H}$ $V=(10 \mathrm{ft}).(4 \mathrm{ft}).(3 \mathrm{ft}$. $\mathrm{V}=120 \mathrm{cu}$. ft. Time $=120 \mathrm{cu} . \mathrm{ft}$.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? \qquad

$\mathbf{V}=\mathbf{L W H}$ $V=(10 \mathrm{ft}).(4 \mathrm{ft}).(\mathbf{3 f t})$ $\mathrm{V}=120 \mathrm{cu}$. ft. Time $=120$ cu. ft. \div

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? \qquad

$\mathbf{V}=\mathbf{L W H}$
 $$
V=(10 \mathrm{ft} .)(4 \mathrm{ft} .)(3 \mathrm{ft} .)
$$
 $$
\mathrm{V}=120 \mathrm{cu} . \mathrm{ft} .
$$
 $$
\text { Time }=120 \text { cu. ft. } \div 6 \text { cu. ft. per min. }
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? \qquad

$\mathbf{V}=\mathbf{L W H}$ $V=(10 \mathrm{ft}).(4 \mathrm{ft}).(3 \mathrm{ft}$. $\mathrm{V}=120 \mathrm{cu}$. ft. Time $=\mathbf{1 2 0}$ cu. ft. $\div \mathbf{6} \mathbf{c u}$. ft. per min. Time $=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? \qquad

$\mathbf{V}=\mathbf{L W H}$
 $$
V=(10 \mathrm{ft} .)(4 \mathrm{ft} .)(3 \mathrm{ft} .)
$$
 $$
\mathrm{V}=120 \mathrm{cu} . \mathrm{ft} .
$$
 $$
\text { Time }=120 \text { cu. ft. } \div 6 \text { cu. ft. per min. }
$$
 $$
\text { Time }=\mathbf{2 0} \text { minutes }
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes

$\mathbf{V}=\mathbf{L W H}$
 $$
V=(10 \mathrm{ft} .)(4 \mathrm{ft} .)(3 \mathrm{ft} .)
$$
 $$
\mathrm{V}=120 \mathrm{cu} . \mathrm{ft} .
$$
 $$
\text { Time }=120 \text { cu. ft. } \div 6 \text { cu. ft. per min. }
$$
 $$
\text { Time }=\mathbf{2 0} \text { minutes }
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	
5	
10	
15	
20	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	
5	
10	
15	
20	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

0
5
10
15
20

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	
5	
10	
15	
20	

When $\mathrm{t}=0$, the tank is full. The water is 36 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	36
5	
10	
15	
20	

When $\mathrm{t}=0$, the tank is full. The water is 36 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	36
5	
10	
15	
20	

When $\mathrm{t}=0$, the tank is full. The water is 36 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$\mathrm{~F}(\mathrm{t})$
$\mathbf{0}$	36
5	
10	
15	
20	

When $\mathrm{t}=0$, the tank is full. The water is 36 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	36
5	
10	
15	
20	

When $\mathrm{t}=0$, the tank is full. The water is 36 inches deep. When $\mathbf{t}=20$, the tank is empty.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$\mathrm{~F}(\mathrm{t})$
0	36
5	
10	
15	
20	

When $\mathrm{t}=0$, the tank is full. The water is 36 inches deep. When $t=20$, the tank is empty. The water is 0 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	36
5	
10	
15	
$\Rightarrow 20$	0

When $\mathrm{t}=0$, the tank is full. The water is 36 inches deep. When $t=20$, the tank is empty. The water is 0 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
0	36
5	
10	
15	
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.
$\left.\begin{array}{r|c}t & F(t) \\ \hline 0 & 36 \\ 5 & \\ 10 & \\ 15 & \\ 20 & 0\end{array}\right]$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.
$\left.\begin{array}{r|c}t & F(t) \\ \hline 0 & 36 \\ 5 & \\ 10 & \\ 15 & \\ 20 & 0\end{array}\right]$

The water depth decreases 36 inches.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

The water depth decreases 36 inches.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

The water depth decreases 36 inches in 20 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	36
5	
10	
15	
20	0

The water depth decreases 36 inches in 20 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathbf{t})$
$\mathbf{0}$	36
5	
10	
15	
20	0

The water depth decreases 36 inches in 20 minutes.
 It decreases at 1.8 inches per minute.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	
10	
15	
20	0

The water depth decreases 36 inches in 20 minutes.
 It decreases at 1.8 inches per minute.

It decreases 9 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	36
5	
10	
15	
20	0

The water depth decreases 36 inches in 20 minutes.

It decreases at 1.8 inches per minute.

It decreases 9 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	36
5	27
10	
15	
20	0

The water depth decreases 36 inches in 20 minutes.

It decreases at 1.8 inches per minute.

It decreases 9 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	36
5	27
10	
15	
20	0

The water depth decreases 36 inches in $\mathbf{2 0}$ minutes.

It decreases at 1.8 inches per minute.

It decreases 9 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
$\Rightarrow 10$	18
15	
20	0

The water depth decreases 36 inches in 20 minutes.

It decreases at 1.8 inches per minute.

It decreases 9 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	
20	0

The water depth decreases 36 inches in $\mathbf{2 0}$ minutes.

It decreases at 1.8 inches per minute.

It decreases 9 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
$\Rightarrow 15$	9
20	0

The water depth decreases 36 inches in $\mathbf{2 0}$ minutes.

It decreases at 1.8 inches per minute.

It decreases 9 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

20 minutes
 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	36
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	36
$\Rightarrow 5$	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
$\Rightarrow 10$	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
$\Rightarrow 10$	18
15	9
20	0

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
10	18
$\Rightarrow 15$	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
10	18
$\Rightarrow 15$	9
20	0

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
10	18
15	9
$\Rightarrow 20$	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
10	18
15	9
$\Rightarrow 20$	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes
11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes
 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes
 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes
 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes
 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t.

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of $t . \quad F(t)=$

20 minutes
 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t. $\quad F(t)=\mathbf{- 1 . 8 t}$

20 minutes
 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of t. $F(t)=\mathbf{- 1 . 8 t}+36$

20 minutes
 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

12. Write an equation giving $F(t)$ in terms of $t \quad F(t)=-1.8 t+36$

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

20 minutes

11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

20 minutes
11. Graph function F.

13. What is the domain of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
$\mathbf{1 0}$	$\mathbf{1 8}$
15	9
20	$\mathbf{0}$

20 minutes

11. Graph function F.

12. What is the domain of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
10	$\mathbf{1 8}$
15	9
20	0

20 minutes

11. Graph function F.

12. What is the domain of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
$\mathbf{1 0}$	$\mathbf{1 8}$
15	9
20	$\mathbf{0}$

20 minutes
11. Graph function F.

13. What is the domain of function F ?
[0,

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
$\mathbf{1 0}$	$\mathbf{1 8}$
15	9
20	$\mathbf{0}$

13. What is the domain of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
$\mathbf{1 0}$	$\mathbf{1 8}$
15	9
20	$\mathbf{0}$

13. What is the domain of function F ?
[0, 20]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
10	$\mathbf{1 8}$
15	9
20	0

domain
$[0,20]$

13. What is the domain of function F ?
[0, 20]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
10	18
15	9
20	0

domain
[0, 20]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

domain
$[0,20]$
20 minutes
11. Graph function F.

14. What is the range of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
$\mathbf{1 0}$	18
15	9
20	0

domain
[0, 20]
11. Graph function F.

14. What is the range of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
10	18
15	9
20	0

domain
[0, 20]
11. Graph function F.

14. What is the range of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathbf{t})$
0	36
5	27
10	18
15	9
20	0

domain
[0, 20]
14. What is the range of function F ?
11. Graph function F.

[0,

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
10	18
15	9
20	0

domain
[0, 20]
14. What is the range of function F ?

20 minutes
11. Graph function F.

[0, 36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	36
5	27
10	18
15	9
20	0

domain
[0, 20]
14. What is the range of function F ?

20 minutes
11. Graph function F.

[0, 36]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathbf{t})$
0	36
5	27
10	18
15	9
20	0

domain
[0, 20]
range
[0, 36]
14. What is the range of function F ?

20 minutes

[0, 36]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$	$[0,20]$
0	36	range
5	27	$[0,36]$
10	18	15. Evaluate $F(15)$.
15	9	
20	0	

20 minutes 11. Graph function F.
(inches)

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

20 minutes
11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$	$[0,20]$
0	36	range
5	27	$[0,36]$
10	18	15. Evaluate $F(15)$.
15	9	
20	0	
		$F(15)=$

20 minutes 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$F(t)$	$[0,20]$
0	36	range
5	27	$[0,36]$
10	18	15. Evaluate $F(15)$.
15	9	
20	0	
		$F(15)=9$

20 minutes 11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$\mathrm{F}(\mathrm{t})$	$[0,20]$
0	36	range
5	27	$[0,36]$
10	18	15.
15	9	Evaluate $F(15)$.
20	0	

$$
F(15)=9
$$

20 minutes
11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$

15. Evaluate F(15).

What does $F(15)$ represent in terms of the problem?

$$
F(15)=9
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$	$[0,20]$
0	36	range
5	27	$[0,36]$
10	18	
15	9	15. Evaluate $\mathrm{F}(15)$.
20	0	What does $F(15)$ represent in
		terms of the problem?

$$
F(15)=9
$$

$F(15)$ represents

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
10	18
15	9
20	$\mathbf{0}$

domain
$[0,20]$
range
$[0,36]$

15. Evaluate $\mathrm{F}(15)$.

What does $F(15)$ represent in terms of the problem?

$$
F(15)=9
$$

$F(15)$ represents the depth of the water

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

t	$\mathrm{F}(\mathrm{t})$	$[0,20]$
0	36	range
5	27	$[0,36]$
10	18	15. Evaluate $\mathrm{F}(15)$.
15	9	What does $F(15)$ represent in
20	0	terms of the problem?

$$
F(15)=9
$$

F(15) represents the depth of the water after 15 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	$\mathbf{9}$
20	0

domain
$[0,20]$
range
$[0,36]$

15. Evaluate F(15).

What does $\mathrm{F}(15)$ represent in terms of the problem?

F(15) represents the depth of the water after 15 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$

16. If $F(t)=27$, then find the value of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$

16. If $F(t)=27$, then find the value of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
10	18
15	9
20	0

domain
[0, 20]
range
[0, 36]
16. If $F(t)=27$, then find the value of t.

$$
F(t)=27
$$

20 minutes
11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

domain [0, 20] range [0, 36]
16. If $F(t)=27$, then find the value of t.

$$
F(t)=27 \Longrightarrow t=
$$

20 minutes
11. Graph function F.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
10	18
15	9
20	0

domain [0, 20] range [0, 36]
16. If $F(t)=27$, then find the value of t.

$$
F(t)=27 \Longleftrightarrow t=5
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
5	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$
$=27$, then find

16. If $F(t)=27$, then find the value of t.

$$
\mathbf{F}(\mathbf{t})=\mathbf{2 7} \Longrightarrow t=\mathbf{5}
$$

20 minutes
11. Graph function F.

t (minutes)

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{3 6}$
$\mathbf{5}$	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$

16. If $F(t)=27$, then find

15
20 0 the value of t. What does this value of t represent in terms of the problem?

20 minutes
11. Graph function F.

$$
F(t)=27 \Longleftrightarrow t=5
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$

16. If $F(t)=27$, then find

20 the value of t. What does this value of t represent in terms of the problem?

$$
\mathbf{F}(\mathbf{t})=\mathbf{2 7} \Longrightarrow t=\mathbf{5}
$$

This represents the time

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$

16. If $F(t)=27$, then find

20 0 the value of t. What does this value of t represent in terms of the problem?

$$
F(t)=27 \Longleftrightarrow t=5
$$

This represents the time it took for the water to be 27 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 10 feet long, 4 feet wide, and 3 feet deep. The tank is full initially and water is drained out of the tank at 6 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 20 minutes
11. Graph function F.
10. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathbf{t})$
$\mathbf{0}$	36
5	27
10	18
15	9
20	0

domain
$[0,20]$
range
$[0,36]$

$20 \quad 0 \quad$ What does this value of t represent in terms of the problem?

$$
\mathbf{F}(\mathbf{t})=27 \Longleftrightarrow \mathbf{t}=5 \text { minutes }
$$

t (minutes)
This represents the time it took for the water to be 27 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? \qquad

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? \qquad

$\mathbf{V}=\mathbf{L W H}$

$\mathrm{V}=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathbf{V}=(\mathbf{8 f t}).(5 \mathrm{ft}).(\mathbf{3} \mathrm{ft}$.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$
 $V=(8 \mathrm{ft}).(5 \mathrm{ft}).(3 \mathrm{ft}$.

$\mathrm{V}=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank?

$$
\begin{aligned}
& V=L W H \\
& V=(8 \mathrm{ft} .)(5 \mathrm{ft} .)(3 \mathrm{ft} .) \\
& \mathrm{V}=\mathbf{1 2 0} \mathrm{cu} . \mathrm{ft} .
\end{aligned}
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$
 $V=(8 \mathrm{ft}).(5 \mathrm{ft}).(\mathbf{3 ~ f t}$.) $\mathrm{V}=120 \mathrm{cu}$. ft.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? \qquad

$$
\begin{aligned}
& V=L W H \\
& V=(8 \mathrm{ft} .)(5 \mathrm{ft} .)(3 \mathrm{ft} .) \\
& \mathrm{V}=120 \mathrm{cu} . \mathrm{ft} .
\end{aligned}
$$

60 cubic feet must be added to fill the tank.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? \qquad

$$
\begin{aligned}
& V=L W H \\
& V=(8 \mathrm{ft} .)(5 \mathrm{ft} .)(\mathbf{3 ~ f t} .) \\
& \mathrm{V}=\mathbf{1 2 0} \mathrm{cu} . \mathrm{ft} .
\end{aligned}
$$

60 cubic feet must be added to fill the tank.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? \qquad

$$
\begin{aligned}
& V=L W H \\
& V=(8 \mathrm{ft} .)(5 \mathrm{ft} .)(\mathbf{3} \mathrm{ft} .) \\
& \mathrm{V}=\mathbf{1 2 0} \mathbf{~ c u . ~} \mathrm{ft} .
\end{aligned}
$$

60 cubic feet must be added to fill the tank. Time $=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? \qquad

$$
\begin{aligned}
& V=L W H \\
& V=(8 \mathrm{ft} .)(5 \mathrm{ft} .)(\mathbf{3} \mathrm{ft} .) \\
& \mathrm{V}=\mathbf{1 2 0} \mathbf{~ c u} . \mathrm{ft} .
\end{aligned}
$$

60 cubic feet must be added to fill the tank. Time $=60$ cu. ft.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? \qquad

$$
\begin{aligned}
& V=L W H \\
& V=(8 \mathrm{ft} .)(5 \mathrm{ft} .)(\mathbf{3} \mathrm{ft} .) \\
& \mathrm{V}=\mathbf{1 2 0} \mathbf{~ c u} . \mathrm{ft} .
\end{aligned}
$$

60 cubic feet must be added to fill the tank. Time $=\mathbf{6 0}$ cu. ft. $\div \mathbf{2} \mathbf{~ c u}$. ft. per min.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? \qquad

$$
\begin{aligned}
& V=L W H \\
& V=(\mathbf{8 f t})(5 \mathrm{ft} .)(\mathbf{3} \mathrm{ft} .) \\
& V=\mathbf{1 2 0} \mathbf{~ c u . ~ f t . ~}
\end{aligned}
$$

60 cubic feet must be added to fill the tank. Time $=\mathbf{6 0}$ cu. ft. $\div \mathbf{2} \mathbf{c u}$. ft. per min. Time $=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? \qquad

$$
\begin{aligned}
& V=L W H \\
& V=(\mathbf{8 f t})(5 \mathrm{ft} .)(\mathbf{3} \mathrm{ft} .) \\
& V=\mathbf{1 2 0} \mathbf{~ c u . ~ f t . ~}
\end{aligned}
$$

60 cubic feet must be added to fill the tank. Time $=\mathbf{6 0} \mathbf{c u}$. ft. $\div \mathbf{2} \mathbf{c u}$. ft. per min. Time $=30$ minutes

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes

$$
\begin{aligned}
& V=L W H \\
& V=(8 \mathrm{ft} .)(5 \mathrm{ft} .)(\mathbf{3} \mathrm{ft} .) \\
& \mathrm{V}=\mathbf{1 2 0} \mathbf{~ c u} . \mathrm{ft} .
\end{aligned}
$$

60 cubic feet must be added to fill the tank. Time $=\mathbf{6 0}$ cu. ft. $\div \mathbf{2}$ cu. ft. per min. Time $=\mathbf{3 0}$ minutes

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	
5	
10	
15	
20	
25	
30	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$
0	
5	
10	
15	
20	
25	
30	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\section*{| \mathbf{t} | $\mathbf{F}(\mathrm{t})$ |
| :--- | :--- |
| $\mathbf{0}$ | |
 0
 When $\mathrm{t}=0$, the tank is half full.}

5
10
15
20
25

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$	
	When $t=0$, the tank is half full.	
5		The water is 18 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\section*{| \mathbf{t} | $\mathrm{F}(\mathrm{t})$ |
| :--- | :--- |\quad When $\mathrm{t}=\mathbf{0}$, the tank is half full. 5 The water is 18 inches deep.}

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\section*{| t | $\mathrm{F}(\mathrm{t})$ |
| :--- | :--- |
| 0 | 18 |
 When $\mathrm{t}=0$, the tank is half full. The water is 18 inches deep.}

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\section*{| \mathbf{t} | $\mathrm{F}(\mathrm{t})$ |
| :--- | :--- |
| 0 | 18 |
 When $\mathrm{t}=0$, the tank is half full. The water is 18 inches deep. When $t=30$, the tank is full.}

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

> When $t=0$, the tank is half full. The water is 18 inches deep. When $t=30$, the tank is full. The water is 36 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$
0	18
5	
10	
15	
20	
25	
$\Rightarrow 30$	36

When $\mathrm{t}=0$, the tank is half full. The water is 18 inches deep. When $t=30$, the tank is full. The water is 36 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$
0	18
5	
10	
15	
20	
25	
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$
0	18
5	
10	
15	
20	
25	
30	36

The water depth increases 18 inches.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	
10	
15	
20	
25	
$\rightarrow 30$	36

The water depth increases 18 inches in 30 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$
0	18
5	
10	
15	
20	
25	
$\rightarrow 30$	36

The water depth increases 18 inches in 30 minutes.
 It increases at 0.6 inches per minute.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

The water depth increases 18 inches in 30 minutes.
It increases at 0.6 inches per minute.
It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$\mathrm{F}(\mathrm{t})$
0	18

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches per minute.
36

It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$
0	18
$\Rightarrow 5$	
10	
15	
20	
25	
30	36

The water depth increases 18 inches in 30 minutes.

It increases at $\mathbf{0 . 6}$ inches per minute.
It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$
0	18
$\Rightarrow 5$	21
10	
15	
20	
25	
30	36

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches per minute.
It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$
0	18
5	21
$\Rightarrow 10$	
15	
20	
25	
30	36

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches

 per minute.It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$\mathrm{F}(\mathrm{t})$
0	18
5	21
$\Rightarrow 10$	24
15	
20	
25	
30	36

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches

 per minute.It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
0	18
5	21
10	24
15	
20	
25	
30	36

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches per minute.
It increases $\mathbf{3}$ inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
$\Rightarrow 15$	27
20	
25	
30	36

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches

 per minute.It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	
25	
30	36

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches per minute.
It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	
30	36

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches per minute.
It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	
30	36

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches per minute.
It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
$\mathbf{5}$	21
10	24
15	27
20	30
25	33
$\mathbf{3 0}$	36

The water depth increases 18 inches in 30 minutes.

It increases at 0.6 inches per minute.
It increases 3 inches every 5 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? $\mathbf{3 0}$ minutes
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathrm{F}(\mathbf{t})$
$\mathbf{0}$	18
$\mathbf{5}$	21
$\mathbf{1 0}$	24
15	27
20	30
25	33
$\mathbf{3 0}$	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of $t . \quad F(t)=$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of t. $\mathbf{F}(\mathbf{t})=\mathbf{0 . 6 t}$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of $t . \quad F(t)=0.6 t+18$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

20. Write an equation giving $F(t)$ in terms of $t . \quad F(t)=0.6 t+18$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

21. What is the domain of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

21. What is the domain of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	F(t)
0	18
5	21
10	24
15	27
20	30
25	33
30	36

21. What is the domain of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

21. What is the domain of function F ?
[0,

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

21. What is the domain of function F ?
[0, 30

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

21. What is the domain of function F ?
[0, 30]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	$\mathbf{1 8}$
$\mathbf{5}$	21
$\mathbf{1 0}$	24
15	27
20	30
25	33
$\mathbf{3 0}$	36

domain
[0, 30]

21. What is the domain of function F ?
[0, 30]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
[0, 30]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

22. What is the range of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
$\mathbf{5}$	21
$\mathbf{1 0}$	24
15	27
20	30
25	33
$\mathbf{3 0}$	36

22. What is the range of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
$\mathbf{5}$	21
$\mathbf{1 0}$	24
15	27
20	30
25	33
30	36

domain
[0, 30]

22. What is the range of function F ?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
[0, 30]

22. What is the range of function F ?
[18,

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
$\mathbf{5}$	21
$\mathbf{1 0}$	24
15	27
20	30
25	33
$\mathbf{3 0}$	36

domain
$[0,30]$

22. What is the range of function F ?
[18, 36

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
$\mathbf{5}$	21
$\mathbf{1 0}$	24
15	27
20	30
25	33
30	36

domain
[0, 30]

22. What is the range of function F ?

$[18,36]$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
$\mathbf{5}$	21
$\mathbf{1 0}$	24
15	27
20	30
25	33
$\mathbf{3 0}$	36

domain
$[0,30]$
range
$[18,36]$

22. What is the range of function F ?

$[18,36]$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
 [0,30]
 range
 [18, 36]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$	domain
0	18	$[0,30]$
5	21	range
10	24	$[18,36]$
15	27	23.
20	Evaluate $\mathbf{F}(10)$.	
25	33	
30	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$	domain
0	18	$[0,30]$
5	21	range
10	24	$[18,36]$
15	27	23.
20	Evaluate $\mathbf{F}(10)$.	
25	33	
30	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$	domain
0	18	$[0,30]$
5	21	range
10	24	$[18,36]$
15	27	23.
20	Evaluate $\mathbf{F}(10)$.	
25	33	
30	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$	domain
$\mathbf{0}$	18	$[0,30]$
5	21	range
10	24	$[18,36]$
15	27	23.
20	Evaluate $F(10)$.	
25	33	
30	36	

$$
F(10)=24
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$	domain
0	18	$[0,30]$
5	21	range
10	24	$[18,36]$
15	27	23.
20	Evaluate $F(10)$.	
25	33	
30	36	

$$
F(10)=24
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

23. Evaluate $\mathbf{F}(10)$.

What does $F(10)$ represent in terms of the problem?

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
$[0,30]$
range
$[18,36]$

23. Evaluate F(10).

What does $F(10)$ represent in terms of the problem?

$$
F(10)=24
$$

t (minutes)
$F(10)$ represents

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
$[0,30]$
range
$[18,36]$

23. Evaluate $\mathbf{F}(10)$.

What does $\mathbf{F}(10)$ represent in terms of the problem?

F(10) represents the depth of the water

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	$\mathbf{3 3}$
$\mathbf{3 0}$	$\mathbf{3 6}$

domain
$[0,30]$
range
$[18,36]$

23. Evaluate $\mathbf{F}(10)$.

What does $\mathbf{F}(10)$ represent in terms of the problem?

F(10) represents the depth of the water after 10 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
$\mathbf{5}$	21
10	24
15	27
20	30
25	33
$\mathbf{3 0}$	36

domain
$[0,30]$
range
$[18,36]$

23. Evaluate $\mathbf{F}(10)$.

What does $\mathrm{F}(10)$ represent in terms of the problem?

$$
F(10)=24 \text { inches }
$$

F(10) represents the depth of the water after 10 minutes.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function F.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
 [0,30]
 range
 [18, 36]

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$	domain
0	18	$[0,30]$
5	21	range
10	24	$[18,36]$
15	27	24. If $F(t)=30$, then find
20	30	the value of t.
25	33	
30	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

t	$F(t)$	domain
0	18	$[0,30]$
5	21	range
10	24	$[18,36]$
15	27	24. If $F(t)=30$, then find
20	30	the value of t.
25	33	
30	36	

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
 [0, 30]
 range
 [18, 36]

24. If $F(t)=30$, then find the value of t.

$$
\mathbf{F}(\mathbf{t})=\mathbf{3 0}
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
 [0, 30]
 range
 [18, 36]

24. If $F(t)=30$, then find the value of t.

$$
F(t)=30 \Longleftrightarrow t=
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
 [0, 30]
 range
 [18, 36]

24. If $F(t)=30$, then find the value of t.

$$
F(t)=30 \Longleftrightarrow t=20
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
$\mathbf{3 0}$	36

$$
F(t)=30 \Longleftrightarrow t=20
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
$\mathbf{3 0}$	36

domain
$[0,30]$
range
$[18,36]$

24. If $F(t)=30$, then find the value of t. What does this value of t represent in terms of the problem?

$$
F(t)=30 \Longleftrightarrow t=20
$$

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
$[0,30]$
range
$[18,36]$

24. If $F(t)=30$, then find the value of t. What does this value of t represent in terms of the problem?

$$
F(t)=30 \Longrightarrow t=20
$$

This represents

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
$[0,30]$
range
$[18,36]$

24. If $F(t)=30$, then find the value of t. What does this value of t represent in terms of the problem?

$$
F(t)=\mathbf{3 0} \Longrightarrow t=20
$$

This represents the time

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	33
30	36

domain
$[0,30]$
range
$[18,36]$

24. If $F(t)=30$, then find the value of t. What does this value of t represent in terms of the problem?

$$
F(t)=\mathbf{3 0} \Longrightarrow t=20
$$

This represents the time it took for the water to be 30 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	18
5	21
10	24
15	27
20	30
25	$\mathbf{3 3}$
$\mathbf{3 0}$	$\mathbf{3 6}$

domain
$[0,30]$
range
$[18,36]$

24. If $F(t)=30$, then find the value of t. What does this value of t represent in terms of the problem?

$$
F(t)=30 \Longleftrightarrow t=20 \text { minutes }
$$

This represents the time it took for the water to be 30 inches deep.

Algebra II Class Worksheet \#5 Unit 3

A rectangular water tank is 8 feet long, 5 feet wide, and 3 feet deep. The tank is half full initially and water is pumped into the tank at 2 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
17. How long will it take to fill the tank? 30 minutes 19. Graph function \mathbf{F}.
18. Make a table giving t and $F(t)$ every 5 minutes from $t=0$ until the tank is full.

This represents the time it took for the water to be 30 inches deep.

