Algebra II Worksheet \#4 Unit 2 selected solutions page 1

For each of the following linear equations in two variables: (a) find the x and y intercepts, (b) write the equation in slope-intercept form, and (c) graph the equation.

1. $2 \mathrm{x}+3 \mathrm{y}=12$
(a) x intercept: $\underline{6} \mathrm{y}$ intercept: $\underline{4}$.

The x -intercept is the value of x when $\mathrm{y}=0$. Just let $\mathrm{y}=0$, and solve for x .

$$
\begin{gathered}
2 x+3(0)=12 \\
2 x=12 \\
x=6
\end{gathered}
$$

The y -incercept is the value of y when $\mathrm{x}=0$. Just let $\mathrm{x}=0$, and solve for y .

$$
\begin{gathered}
2(0)+3 y=12 \\
3 y=12 \\
y=4
\end{gathered}
$$

(b) slope intercept equation:_y $\quad \mathbf{y}=\frac{-\mathbf{2}}{\mathbf{3}} \mathbf{x + 4}$

To find the slope-intercept equation, just solve for y .

$$
\begin{gather*}
2 x+3 y=12 \tag{c}\\
3 y=-2 x+12 \\
y=-\frac{2}{3} x+4
\end{gather*}
$$

Graph each of the following equations in the Cartesian coordinate plane.
8. $x-4 y=8$

$$
-4 y=-x+8
$$

$y=\frac{1}{4} x-2$

Algebra II Worksheet \#4 Unit 2 selected solutions page 2

Write the equation of each line described. If the line is oblique, use slope-intercept form.
14. The vertical line through (-4, -3). \qquad $x=-4$
17. The line with slope $3 / 4$ and y-intercept -3 . $\quad y=\frac{3}{4} x-3$
19. The line through $(0,-3)$ and $(2,4)$.

$$
y=\frac{7}{2} x-3
$$

$m=\frac{4+3}{2-0}=\frac{7}{2}$
$b=-3$
20. The line with slope $-1 / 4$ through $(-4,-3)$.

$$
y=\frac{-1}{4} x-4
$$

$$
\begin{aligned}
& y+3=\frac{-1}{4}(x+4) \\
& y+3=\frac{-1}{4} x-1
\end{aligned}
$$

24. The line through $(-4,5)$ and $(2,-3)$.

$$
y=\frac{-4}{3} x-\frac{1}{3}
$$

$$
\begin{aligned}
m=\frac{-3-5}{2+4}=\frac{-4}{3} \quad y+3 & =\frac{-4}{3}(x-2) \\
y+3 & =\frac{-4}{3} x+\frac{8}{3}
\end{aligned}
$$

Algebra II Worksheet \#4 Unit 2 selected solutions page 3

Find the equation of each line described below. If the line is oblique, write the slope-intercept equation. Graph both equations (the given equation as well as your solution).
34. Through $(-6,0)$ parallel to $3 x-2 y=10$

$$
\left.\begin{array}{c}
m_{2}=\frac{3}{2} \\
y-0=\frac{3}{2}(x+6) \\
y=\frac{3}{2} x+9
\end{array} \sum_{\text {first }}^{-2 y=-3 x+10} \begin{array}{l}
y=\frac{3}{2} x-5 \\
m_{1}=\frac{3}{2}
\end{array}\right\}
$$

40. Through $(-6,0)$ perpendicular to $3 x-2 y=10$

$$
\left.\begin{array}{l|}
m_{2}=\frac{-2}{3} \\
y-0=-\frac{2}{3}(x+6)
\end{array} \quad \begin{array}{l}
-2 y=-3 x+10 \\
y=\frac{3}{2} x-5 \\
m_{1}=\frac{3}{2}
\end{array}\right\rangle \text { first }
$$

$$
y=-\frac{2}{3} x-4
$$

