Algebra II Notes \#2 Unit 2 page 1

The Equation of a Line
In this part of the unit, a line will be described. Your job will be to write its equation. We will start with a review of the three types of lines and their most common equations.

Type 1: Horizontal Line Equation: $\mathbf{y}=\mathbf{k}$
Type 2: Vertical Line
Type 3: Oblique Line

Equation: $\mathbf{x}=\mathbf{k}$
Equation: $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ (slope-intercept equation)

When writing the equation of a line, first determine the type of line. Then find its equation. Horizontal and vertical lines should be fairly routine (especially once you have done a few practice problems). Oblique lines are the most challenging. Of course if both the slope and the y -intercept are known, then the slope-intercept equation can be written easily. In the event that the y-intercept is not given, however, there is another equation that proves to be very useful. It is called the point-slope equation. If you know a point on the line, represented by $\left(x_{1}, y_{1}\right)$, and the slope of the line, represented by m , then an equation of the line is $\mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)$. This equation is called the point-slope equation. The slope-intercept equation can easily be derived from this equation.

Consider the following examples.
Find the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. the line through $(3,-1)$ and $(-2,-1)$

Note that the two points have the same y-coordinates.
This tells us that the line is horizontal.

$$
y=-1
$$

2. the line through $(3,-1)$ and $(3,5)$

Note that the two points have the same x-coordinates.
This tells us that the line is vertical.

$$
\mathbf{x}=\mathbf{3}
$$

3. the line through $(-2,5)$ with slope 0

The fact that the slope is 0 tells us that the line is horizontal.
The line contains the point $(-2,5)$.

$$
y=5
$$

4. the line through $(-2,5)$ with ñno slopeò

The phrase ñno slopeò is commonly used to describe the slope of a vertical line. The slope of a vertical line is undefined.
The line contains the point $(-2,5)$.

$$
x=-2
$$

5. the line with slope 3 and y-intercept -1

This line is oblique. We are given that $\mathrm{m}=3$ and $\mathrm{b}=-1$.

$$
y=3 x-1
$$

Algebra II Notes \#2 Unit 2 page 2

Find the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. the line with slope -2 through the point $(0,5)$

This line is oblique. We are given that $\mathrm{m}=-2$.
Since the line contains the point $(0,5), b=5$.

$$
y=-2 x+5
$$

Note: The y -intercept, b , is the value of y when $\mathrm{x}=0$.
7. the line through $(0,1)$ and $(2,5)$

This line is oblique. We must find the slope first.

$$
\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{5-1}{2-0}=\frac{4}{2}=2
$$

Since the line contains the point $(0,1), \mathrm{b}=1$.

$$
y=2 x+1
$$

8. the line with slope 4 through the point $(3,1)$

The line is oblique. We are given that $\mathrm{m}=4$.
We are not given the y-intercept. We will use the point-slope equation. $\mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right)$
Since the line contains the point $(3,1), x_{1}=3$ and $y_{1}=1$.
The point-slope equation becomes $\quad \mathbf{y}-\mathbf{1}=\mathbf{4}(\mathbf{x}-\mathbf{3})$.
Solving for y , we get

$$
y-1=4 x-12
$$

$$
y=4 x-11
$$

$$
y=4 x-11
$$

9. the line through $(-2,3)$ and $(2,-5)$

This line is oblique. We must find the slope first.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-3}{2--2}=\frac{-8}{4}=-2
$$

We are not given the y -intercept. We will use the
point-slope equation. $\mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right)$
Since the line contains the point $(2,-5), x_{1}=2$ and $y_{1}=-5$.
The point-slope equation becomes $\quad \mathbf{y}-\mathbf{- 5}=\mathbf{- 2}(\mathbf{x}-\mathbf{2})$.
Solving for y , we get

$$
\begin{aligned}
y+5 & =-2 x+4 \\
y & =-2 x-1
\end{aligned}
$$

Note: The point $(-2,3)$ would have worked as well.

