Algebra II Lesson \#4 Unit 2

Class Worksheet \#4

For Worksheet \#5

Solving Systems of Two Linear Equations With Two Variables

Solving Systems of Two Linear Equations With Two Variables

The graph of every linear equation with two variables is a straight line.

Solving Systems of Two Linear Equations With Two Variables

The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables.

Solving Systems of Two Linear Equations With Two Variables

The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (\mathbf{x}, \mathbf{y}) which make both equations true.

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (x, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation.

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (x, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Solving Systems of Two Linear Equations With Two Variables

The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (\mathbf{x}, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 1 - Dependent System:

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (\mathbf{x}, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 1 - Dependent System: The two equations represent the same line.

Solving Systems of Two Linear Equations With Two Variables

> The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (x, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 1 - Dependent System: The two equations represent the same line. In this case, any ordered pair that is a solution of one of the equations is a solution of the system.

Solving Systems of Two Linear Equations With Two Variables

Abstract

The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (\mathbf{x}, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 1 - Dependent System: The two equations represent the same line. In this case, any ordered pair that is a solution of one of the equations is a solution of the system. This type of system has an infinite number of solutions.

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (x, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (x, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 2 - Inconsistent System:

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (x, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 2 - Inconsistent System: The two equations represent two parallel lines.

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (\mathbf{x}, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 2 - Inconsistent System: The two equations represent two parallel lines. This type of system has no solution since there are no ordered pairs that make both equations true.

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (x, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (x, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 3 - Independent System:

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (\mathbf{x}, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 3 - Independent System: The two equations represent two non-parallel lines.

Solving Systems of Two Linear Equations With Two Variables
The graph of every linear equation with two variables is a straight line. We are considering a 'system' of two linear equations with two variables. To solve the system means to find all ordered pairs (\mathbf{x}, y) which make both equations true. Graphically, a solution of the system is any point (ordered pair) in common to each equation. There are three possible cases.

Case 3 - Independent System: The two equations represent two non-parallel lines. This type of system has exactly one solution since two non-parallel lines in a plane intersect at exactly one point.

Solving Systems of Two Linear Equations With Two Variables

Solving Systems of Two Linear Equations With Two Variables

Class worksheet \#4 reviews 3 common methods used to solve independent systems.

Solving Systems of Two Linear Equations With Two Variables

Class worksheet \#4 reviews 3 common methods used to solve independent systems. They are (1) the graphing method,

Solving Systems of Two Linear Equations With Two Variables

Class worksheet \#4 reviews 3 common methods used to solve independent systems. They are (1) the graphing method, (2) the substitution method,

Solving Systems of Two Linear Equations With Two Variables
Class worksheet \#4 reviews 3 common methods used to solve independent systems. They are (1) the graphing method, (2) the substitution method, and (3) the multiplication-addition method (also known as the linear combination method).

Solving Systems of Two Linear Equations With Two Variables

Class worksheet \#4 reviews 3 common methods used to solve independent systems. They are (1) the graphing method, (2) the substitution method, and (3) the multiplication-addition method (also known as the linear combination method).

The Graphing Method:

Solving Systems of Two Linear Equations With Two Variables

Class worksheet \#4 reviews 3 common methods used to solve independent systems. They are (1) the graphing method, (2) the substitution method, and (3) the multiplication-addition method (also known as the linear combination method).

The Graphing Method: Simply graph both equations.

Solving Systems of Two Linear Equations With Two Variables

> Class worksheet \#4 reviews 3 common methods used to solve independent systems. They are (1) the graphing method, (2) the substitution method, and (3) the multiplication-addition method (also known as the linear combination method).

> The Graphing Method: Simply graph both equations. The solution of the system is the ordered pair corresponding to the point where the two lines intersect.

Solving Systems of Two Linear Equations With Two Variables

> Class worksheet \#4 reviews 3 common methods used to solve independent systems. They are (1) the graphing method, (2) the substitution method, and (3) the multiplication-addition method (also known as the linear combination method).

> The Graphing Method: Simply graph both equations. The solution of the system is the ordered pair corresponding to the point where the two lines intersect. Good luck.

Solving Systems of Two Linear Equations With Two Variables

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

1. $2 \mathrm{x}+3 \mathrm{y}=9$
$\mathbf{x}=$
$x-y=2$
$\mathbf{y}=$ \qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

1. $2 x+3 y=9$

$x-y=2$
$\mathrm{y}=$ \qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

1. $2 x+3 y=9$

$x-y=2$
$\mathrm{y}=$ \qquad
$2 x+3 y=9$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ll}
\text { 1. } 2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & \\
3 y= &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ll}
\text { 1. } 2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & \\
3 y=-2 x &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{aligned}
& \text { 1. } 2 x+3 y=9 \\
& \mathbf{x}= \\
& x-y=2 \\
& \mathrm{y}= \\
& 2 \mathrm{x}+3 \mathrm{y}=9 \\
& 3 y=-2 x+9
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ll}
\text { 1. } 2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & \\
3 y=-2 x+9 & \\
y=
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ll}
\text { 1. } 2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & \\
3 y=-2 x+9 & \\
y=-\frac{2}{3} x &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ll}
\text { 1. } 2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & \\
3 y=-2 x+9 & \\
y=-\frac{2}{3} x+3 &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ll}
\text { 1. } 2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & \\
3 y=-2 x+9 & \\
y=-\frac{2}{3} x+3 &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ll}
\begin{array}{c}
\text { 1. } 2 x+3 y=9 \\
x-y=2
\end{array} & x= \\
2 x+3 y=9 & \\
3 y=-2 x+9 & \\
y=-\frac{2}{3} x+3 & \\
& \\
& \\
\hline
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{aligned}
& \text { 1. } 2 x+3 y=9 \\
& x-y=2 \\
& \mathbf{y}=
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{aligned}
& \text { 1. } 2 x+3 y=9 \quad x= \\
& x-y=2 \\
& \mathbf{y}= \\
& 2 x+3 y=9 \\
& \mathbf{x}-\mathrm{y}=\mathbf{2} \\
& 3 y=-2 x+9 \quad-y= \\
& y=-\frac{2}{3} x+3
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{aligned}
& \text { 1. } 2 x+3 y=9 \\
& \mathbf{x}= \\
& \mathbf{x}-\mathbf{y}=\mathbf{2} \\
& \mathrm{y}= \\
& 2 x+3 y=9 \\
& \mathbf{x}-\mathrm{y}=2 \\
& 3 y=-2 x+9 \quad-y=-x \\
& y=-\frac{2}{3} x+3
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{aligned}
& \text { 1. } 2 x+3 y=9 \quad x= \\
& x-y=2 \\
& \mathbf{y}=
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{aligned}
& \text { 1. } 2 x+3 y=9 \quad x= \\
& x-y=2 \\
& \mathrm{y}= \\
& 2 x+3 y=9 \\
& x-y=2 \\
& 3 y=-2 x+9 \quad-y=-x+2 \\
& y=-\frac{2}{3} x+3 \\
& \mathbf{y}=
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{aligned}
& \text { 1. } 2 x+3 y=9 \quad x= \\
& x-y=2 \\
& \mathbf{y}= \\
& 2 x+3 y=9 \\
& x-y=2 \\
& 3 y=-2 x+9 \quad-y=-x+2 \\
& y=-\frac{2}{3} x+3 \\
& \mathbf{y}=\mathbf{x}
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{aligned}
& \text { 1. } 2 x+3 y=9 \quad x= \\
& x-y=2 \\
& \mathbf{y}= \\
& 2 \mathrm{x}+3 \mathrm{y}=9 \\
& \mathbf{x}-\mathrm{y}=\mathbf{2} \\
& 3 y=-2 x+9 \quad-y=-x+2 \\
& y=-\frac{2}{3} x+3 \\
& y=x-2
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{cc}
\text { 1. } \begin{array}{cc}
2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & x-y=2 \\
3 y=-2 x+9 & -y=-x+2 \\
y=-\frac{2}{3} x+3 & y=x-2
\end{array},
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ll}
\text { 1. } \left.\begin{array}{cc}
2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & x-y=2 \\
3 y=-2 x+9 & -y=-x+2 \\
y=-\frac{2}{3} x+3 & y=x-2
\end{array}\right)
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ll}
\text { 1. } \left.\begin{array}{cc}
2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & x-y=2 \\
3 y=-2 x+9 & -y=-x+2 \\
y=-\frac{2}{3} x+3 & y=x-2
\end{array}\right)
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{cc}
\text { 1. } 2 x+3 y=9 & x= \\
x-y=2 & y= \\
2 x+3 y=9 & x-y=2 \\
3 y=-2 x+9 & -y=-x+2 \\
y=-\frac{2}{3} x+3 & y=x-2
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

$$
\begin{array}{ccc}
\text { 1. } 2 x+3 y=9 & x=3 \\
x-y=2 & y=\underline{1} & \\
2 x+3 y=9 & x-y=2 & \\
3 y=-2 x+9 & -y=-x+2 \\
y=-\frac{2}{3} x+3 & y=x-2
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.

1. $2 x+3 y=9$

$$
\mathbf{x}=\underline{3}
$$

$$
\mathbf{x}-\mathbf{y}=\mathbf{2}
$$

$$
y=1
$$

$$
\begin{array}{cc}
2 x+3 y=9 & x-y=2 \\
3 y=-2 x+9 & -y=-x+2 \\
y=-\frac{2}{3} x+3 & y=x-2
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{ll}
x-2 y=-8 & x= \\
x+y=-2 & y=
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{cl}
x-2 y=-8 & x= \\
x+y=-2 & y=
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{cl}
x-2 y=-8 & x= \\
x+y=-2 & y=
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{cl}
x-2 y=-8 & x= \\
x+y=-2 & y=
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{cl}
x-2 y=-8 & x= \\
x+y=-2 & y=
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{cl}
x-2 y=-8 & x= \\
x+y=-2 & y=
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{cl}
x-2 y=-8 & x= \\
x+y=-2 & y=
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
x-2 y=-8
$$

$$
-2 y=-x-8
$$

$$
y=\frac{1}{2} x
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
x-2 y=-8
$$

$$
-2 y=-x-8
$$

$$
y=\frac{1}{2} x+4
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{cl}
x-2 y=-8 & x= \\
x+y=-2 & y=
\end{array}
$$

$$
x-2 y=-8
$$

$$
-2 y=-x-8
$$

$$
y=\frac{1}{2} x+4
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
x-2 y=-8
$$

$$
-2 y=-x-8
$$

$$
y=\frac{1}{2} x+4
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
x-2 y=-8
$$

$$
x+y=-2
$$

$-2 y=-x-8$

$$
y=\frac{1}{2} x+4
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{ll}
x-2 y=-8 & x+y=-2 \\
-2 y=-x-8 & y= \\
y=\frac{1}{2} x+4 &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{ll}
x-2 y=-8 & x+y=-2 \\
-2 y=-x-8 & y=-x \\
y=\frac{1}{2} x+4 &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
x-2 y=-8
$$

$$
x+y=-2
$$

$-2 y=-x-8$
$y=-x-2$
$y=\frac{1}{2} x+4$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{ll}
x-2 y=-8 & x+y=-2 \\
-2 y=-x-8 & y=-x-2 \\
y=\frac{1}{2} x+4 &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{ll}
x-2 y=-8 & x+y=-2 \\
-2 y=-x-8 & y=-x-2 \\
y=\frac{1}{2} x+4 &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{ll}
x-2 y=-8 & x+y=-2 \\
-2 y=-x-8 & y=-x-2 \\
y=\frac{1}{2} x+4 &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
x-2 y=-8
$$

$$
x+y=-2
$$

$-2 y=-x-8$
$y=-x-2$
$y=\frac{1}{2} x+4$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{cl}
x-2 y=-8 & x=-4 \\
x+y=-2 & y=2
\end{array}
$$

$$
\begin{array}{ll}
x-2 y=-8 & x+y=-2 \\
-2 y=-x-8 & y=-x-2 \\
y=\frac{1}{2} x+4 &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the graphing method.
2.

$$
\begin{array}{rl}
x-2 y=-8 & x=-4 \\
x+y=-2 & y=2
\end{array}
$$

$$
x-2 y=-8
$$

$$
x+y=-2
$$

$-2 y=-x-8$
$y=-x-2$

$$
y=\frac{1}{2} x+4
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 3. } \begin{array}{cc}
2 x+3 y=1 & x= \\
y=3 x-7 & y=
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.
3. $2 x+3 y=1$
$\mathbf{x}=$ \qquad
$y=3 x-7$
$\mathrm{y}=$ \qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.
3. $2 x+3 y=1$
$\mathbf{x}=$ \qquad
$y=3 x-7$
$\mathrm{y}=$ \qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.
3. $2 x+3 y=1$
$\mathbf{x}=$ \qquad

$$
y=3 x-7
$$

$$
\mathbf{y}=
$$

\qquad

Notice that the second equation gives y in terms of x.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

Notice that the second equation gives y in terms of x.
Substitute this expression in for y in the first equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.
3. $2 x+3 y=1 \quad x=$ \qquad

$$
y=3 x-7 \quad y=
$$

\qquad

Notice that the second equation gives y in terms of x. Substitute this expression in for y in the first equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\begin{array}{ll}
2 x+3 y=1 & x= \\
y=3 x-7 & y=
\end{array}
$$

Notice that the second equation gives y in terms of x. Substitute this expression in for y in the first equation.

2x

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3($

Notice that the second equation gives y in terms of x. Substitute this expression in for y in the first equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.
3. $\begin{array}{cc}2 x+3 y=1 & x= \\ y=3 x-7 & y=\end{array}$
$2 x+3(3 x-7)$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$

Notice that the second equation gives y in terms of x.
Substitute this expression in for y in the first equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\begin{array}{lll}
\text { 3. } & 2 x+3 y=1 & x= \\
y=3 x-7 & y=
\end{array}
$$

$$
2 x+3(3 x-7)=1
$$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$ 2x

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$ $\mathbf{2 x}+9 \mathrm{x}$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$
$2 x+9 x-21$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$ $2 \mathrm{x}+9 \mathrm{x}-21=1$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$ $2 x+9 x-21=1$

11x

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$ $2 x+9 x-21=1$

11x-21

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
11 x-21=1
$$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$ $2 \mathrm{x}+9 \mathrm{x}-21=1$
$11 x-21=1$
$11 x=$

Notice that the second equation gives y in terms of x. Substitute this expression in for y in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$ $2 x+9 x-21=1$
$11 x-21=1$
$11 x=22$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$ $2 x+9 x-21=1$
$11 x-21=1$
$11 x=22$
$\mathbf{x}=$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2 x+3(3 x-7)=1$ $2 x+9 x-21=1$
$11 x-21=1$
$11 x=22$
$\mathrm{x}=2$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\begin{array}{rl}
3 . & 2 x+3 y=1 \\
y=3 x-7 & y= \\
\hline
\end{array}
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
11 x-21=1
$$

$$
11 x=22
$$

$$
x=2
$$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 3. } \begin{array}{rl}
2 x+3 y=1 & x=2 \\
y=3 x-7 & y= \\
\hline
\end{array}
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
11 x-21=1
$$

$$
11 x=22
$$

$$
x=2
$$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation.
Now solve for x.
Now, substitute again to find y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\begin{array}{cc}
\text { 3. } 2 x+3 y=1 & x=\underline{2} \\
y=3 x-7 & y=
\end{array}
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
11 x-21=1 \quad y=3 x-7
$$

$$
11 x=22
$$

$$
x=2
$$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for x.
Now, substitute again to find y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\begin{array}{ll}
\text { 3. } & 2 x+3 y=1 \\
& x=3 x-7
\end{array} \quad y=\underline{2}
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
\begin{array}{l|l}
11 x-21=1 & y=3 x-7
\end{array}
$$

$$
11 x=22
$$

$$
x=2
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 3. } \begin{array}{ll}
2 x+3 y=1 & x=\underline{2} \\
& y=3 x-7
\end{array} \quad y=
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
\begin{array}{l|l}
11 x-21=1 & y=3 x-7
\end{array}
$$

$$
11 x=22
$$

$$
\mathbf{y}=
$$

$$
x=2
$$

Notice that the second equation gives y in terms of x.
Substitute this expression in for \mathbf{y} in the first equation.
Now solve for x.
Now, substitute again to find y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\begin{array}{lll}
\text { 3. } & 2 x+3 y=1 & x=\underline{2} \\
& y=3 x-7 & y= \\
\hline
\end{array}
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
11 x-21=1 \quad y=3 x-7
$$

$$
\begin{array}{l|l}
11 x=22 & y=6
\end{array}
$$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation.
Now solve for x.
Now, substitute again to find y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\begin{array}{lll}
\text { 3. } & 2 x+3 y=1 & x=\underline{2} \\
& y=3 x-7 & y= \\
\hline
\end{array}
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
11 x-21=1
$$

$$
\begin{array}{l|l}
11 x=22 & y=6-7
\end{array}
$$

Notice that the second equation gives y in terms of x. Substitute this expression in for \mathbf{y} in the first equation. Now solve for x.
Now, substitute again to find y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 3. } \begin{array}{cl}
2 x+3 y=1 & x=2 \\
y=3 x-7 & y=
\end{array}
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
\begin{array}{l|l}
11 x-21=1 & y=3 x-7
\end{array}
$$

$$
\begin{array}{l|l}
11 x=22 & y=6-7
\end{array}
$$

$$
x=2
$$

$$
\mathbf{y}=
$$

Notice that the second equation gives y in terms of x.
Substitute this expression in for \mathbf{y} in the first equation.
Now solve for x.
Now, substitute again to find y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 3. } \begin{array}{cc}
2 x+3 y=1 & x=2 \\
y=3 x-7 & y=
\end{array}
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
11 x-21=1
$$

$$
11 x=22
$$

$$
x=2 \longleftrightarrow y=-1
$$

Notice that the second equation gives y in terms of x.
Substitute this expression in for \mathbf{y} in the first equation.
Now solve for x.
Now, substitute again to find y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 3. } \begin{array}{rl}
2 x+3 y=1 & x=-2 \\
y=3 x-7 & y=-1
\end{array}
$$

$$
2 x+3(3 x-7)=1
$$

$$
2 x+9 x-21=1
$$

$$
11 x-21=1
$$

$$
11 x=22
$$

$$
x=2 \longleftrightarrow y=-1
$$

Notice that the second equation gives y in terms of x.
Substitute this expression in for y in the first equation.
Now solve for x.
Now, substitute again to find y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

3. | $2 x+3 y=1$ | $x=-2$ |
| :---: | :---: |
| $y=3 x-7$ | $y=-1$ |

$$
\begin{aligned}
& 2 x+3(3 x-7)=1 \\
& 2 x+9 x-21=1 \\
& \cline { 2 - 3 } 11 x-21=1 \\
& 11 x=22
\end{aligned} \begin{aligned}
& y=3 x-7 \\
& x=2
\end{aligned} \begin{aligned}
& y=6-7 \\
& y=-1
\end{aligned}
$$

Notice that the second equation gives y in terms of x.
Substitute this expression in for y in the first equation.
Now solve for x.
Now, substitute again to find y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.
4. $x=4 y+3$

$$
2 x-7 y=4 \quad y=
$$

\qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.
4. $x=4 y+3$
$\mathbf{x}=$ \qquad

$$
2 x-7 y=4
$$

$$
\mathbf{y}=
$$

\qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.
4. $x=4 y+3$

$$
\mathbf{x}=
$$

\qquad

$$
2 x-7 y=4
$$

$$
\mathbf{y}=
$$

\qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 4. } \begin{array}{cc}
x=4 y+3 & x= \\
2 x-7 y=4 & y= \\
\hline
\end{array}
$$

Notice that the first equation gives x in terms of y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

Notice that the first equation gives x in terms of y. Substitute this expression in for x in the second equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

Notice that the first equation gives x in terms of y. Substitute this expression in for x in the second equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation.

$$
2(4 y+3)-7 y=4
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2(4 y+3)-7 y=4$
8y

Notice that the first equation gives x in terms of y. Substitute this expression in for x in the second equation. Now solve for \mathbf{y}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for \mathbf{y}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6-7 y
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for \mathbf{y}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6-7 y=4
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for \mathbf{y}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6-7 y=4
$$

$$
\mathbf{y}
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6-7 y=4
$$

$$
y+6
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for \mathbf{y}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

$$
\mathbf{y}=
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

$$
y=-2
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$2(4 y+3)-7 y=4$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

$$
y=-2
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
\begin{gathered}
8 y+6-7 y=4 \\
y+6=4 \\
y=-2
\end{gathered}
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.
Now, substitute again to find \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.
4. $\begin{array}{rl}x=4 y+3 & x= \\ 2 x-7 y=4 & y=-2\end{array}$

$$
2(4 y+3)-7 y=4
$$

$$
\begin{gathered}
8 y+6-7 y=4 \\
y+6=4 \\
y=-2
\end{gathered}
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.
Now, substitute again to find \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 4. } x=4 y+3 \quad x=
$$

$$
\begin{gathered}
2 x-7 y=4 \\
2(4 y+3)-7 y=4
\end{gathered}
$$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

$$
y=-2
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y. Now, substitute again to find \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 4. } \begin{array}{cc}
x=4 y+3 & x= \\
2 x-7 y=4 & y=-2
\end{array}
$$

$$
\begin{gathered}
2 x-7 y=4 \\
2(4 y+3)-7 y=4
\end{gathered}
$$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

$$
y=-2
$$

$$
\begin{aligned}
& x=4 y+3 \\
& x=
\end{aligned}
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.
Now, substitute again to find \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 4. } \begin{array}{rl}
x=4 y+3 & x= \\
2 x-7 y=4 & y=-2
\end{array}
$$

$$
\begin{gathered}
2 x-7 y=4 \\
2(4 y+3)-7 y=4
\end{gathered}
$$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

$$
y=-2
$$

$$
\begin{aligned}
& x=4 y+3 \\
& x=-8
\end{aligned}
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.
Now, substitute again to find \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 4. } \begin{array}{rl}
x=4 y+3 & x= \\
2 x-7 y=4 & y=-2
\end{array}
$$

$$
\begin{gathered}
2 x-7 y=4 \\
2(4 y+3)-7 y=4
\end{gathered}
$$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

$$
y=-2
$$

$$
\begin{aligned}
& x=4 y+3 \\
& x=-8+3
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 4. } \begin{array}{rl}
x=4 y+3 & x= \\
2 x-7 y=4 & y=-2
\end{array}
$$

$$
\begin{gathered}
2 x-7 y=4 \\
2(4 y+3)-7 y=4
\end{gathered}
$$

$$
\begin{gathered}
8 y+6-7 y=4 \\
y+6=4 \\
y=-2
\end{gathered}
$$

$$
\begin{aligned}
& x=4 y+3 \\
& x=-8+3 \\
& x=
\end{aligned}
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for \mathbf{y}.
Now, substitute again to find \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
2(4 y+3)-7 y=4
$$

$$
\begin{array}{c|l}
8 y+6-7 y=4 \\
y+6=4 & x=4 y+3 \\
y=-2 & x=-8+3 \\
x=-5
\end{array}
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.
Now, substitute again to find \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 4. } \begin{array}{rl}
x=4 y+3 & x=-5 \\
2 x-7 y=4 & y=-2
\end{array}
$$

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

$$
y=-2
$$

$$
\begin{aligned}
& x=4 y+3 \\
& x=-8+3 \\
& x=-5
\end{aligned}
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.
Now, substitute again to find \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the substitution method.

$$
\text { 4. } \begin{array}{rl}
x=4 y+3 & x=-5 \\
2 x-7 y=4 & y=-2
\end{array}
$$

$$
2(4 y+3)-7 y=4
$$

$$
8 y+6-7 y=4
$$

$$
y+6=4
$$

$$
y=-2
$$

$$
4
$$

$$
\begin{aligned}
& x=4 y+3 \\
& x=-8+3 \\
& x=-5
\end{aligned}
$$

Notice that the first equation gives x in terms of y.
Substitute this expression in for x in the second equation. Now solve for y.
Now, substitute again to find \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
5. $4 x-3 y=26 \quad x=$ \qquad

$$
2 x+y=8 \quad y=
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
5. $4 x-3 y=26$
$\mathbf{x}=$ \qquad
$2 x+y=8 \quad y=$ \qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
5. $4 x-3 y=26 \quad x=$ \qquad

$$
2 x+y=8 \quad y=
$$

Notice that both equations are in 'standard form' $(\mathbf{A x}+\mathbf{B y}=\mathbf{C})$.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
5. $4 x-3 y=26$
$\mathbf{x}=$ \qquad
$2 x+y=8 \quad y=$ \qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{lll}
\text { 5. } & 4 x-3 y=26 & x= \\
2 x+y=8 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{lll}
\text { 5. } & 4 x-3 y=26 & x= \\
2 x+y=8 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{cc}
5 . & 4 x-3 y=26 \\
2 x+y=8 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{cc}
5 . & 4 x-3 y=26 \\
2 x+y=8 & y= \\
\hline
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.

$$
4 x-3 y=26
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{cc}
\text { 5. } \rightarrow 4 x-3 y=26 & x= \\
2 x+y=8 & y=
\end{array}
$$

$$
4 x-3 y=26
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation. Multiply both sides of the second equation by 3 .

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{ll}
\text { 5. } \rightarrow 4 x-3 y=26 & x= \\
\quad 32 x+y=8 & y= \\
4 x-3 y=26 & \\
6 x &
\end{array}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{cl}
\text { 5. } \rightarrow 4 x-3 y=26 & x= \\
\xrightarrow{3} 2 x+y=8 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation. Multiply both sides of the second equation by 3 .

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{cl}
\text { 5. } \rightarrow 4 x-3 y=26 & x= \\
\xrightarrow[3]{3} 2 x+y=8 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation. Multiply both sides of the second equation by 3 .

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{ll}
\text { 5. } \rightarrow 4 x-3 y=26 & x= \\
\xrightarrow[3]{3} 2 x+y=8 & y= \\
4 x-3 y=26 & \\
6 x+3 y=24 & \\
\hline
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation. Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& \text { 10x } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& 10 x=50 \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& 10 x=50 \\
& \mathbf{x}=
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x= \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=5 \quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& 10 x=50 \\
& x=5
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=5 \quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& 10 x=50 \\
& x=5 \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=5 \quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& 10 x=50 \\
& x=5 \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the x-terms. } \\
& \text { Bring down the first equation. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=5 \quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& 10 x=50 \\
& x=5 \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the x-terms. } \\
& \text { Bring down the first equation. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \longmapsto x=\underline{5} \\
& \xrightarrow{3} 2 x+y=8 \quad y= \\
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& 10 x=50 \\
& x=5
\end{aligned}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{cc}
\text { 5. } \rightarrow 4 x-3 y=26 & x=\begin{array}{l}
4 \\
3 \\
3 x+y=8
\end{array} \\
& y= \\
4 x-3 y=26 & 4 x-3 y=26 \\
\frac{6 x+3 y=24}{10 x=50} & \\
x=5 &
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\underline{5} \\
& \stackrel{3}{3} 2 x+y=8 \stackrel{-2}{2} \quad y= \\
& \text { - } \\
& 4 x-3 y=26 \quad 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& 10 x=50 \\
& x=5
\end{aligned}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\underline{5} \\
& \xrightarrow{3} 2 x+y=8 \xrightarrow{-2} \quad y= \\
& \text { - } \\
& 4 x-3 y=26 \quad 4 x-3 y=26 \\
& 6 x+3 y=24 \quad-4 x \\
& 10 x=50 \\
& x=5
\end{aligned}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\underline{5} \\
& \stackrel{3}{3} 2 x+y=8 \stackrel{-2}{2} \quad y= \\
& \text { - } \\
& 4 x-3 y=26 \quad 4 x-3 y=26 \\
& 6 x+3 y=24 \quad-4 x-2 y \\
& 10 x=50 \\
& x=5
\end{aligned}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\underline{5} \\
& \stackrel{3}{3} 2 x+y=8 \stackrel{-2}{2} \quad y= \\
& \text { - } \\
& \begin{aligned}
& 4 x-3 y=26 \\
& 6 x+3 y=24 \\
& \hline
\end{aligned} \quad \begin{aligned}
4 x-3 y & =26 \\
-4 x-2 y & =-16
\end{aligned} \\
& 10 x=50 \\
& x=5
\end{aligned}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{cr}
\text { 5. } \quad 4 x-3 y=26 & x=5 \\
32 x+y=8 & y= \\
3 & -2 \\
4 x-3 y=26 & 4 x-3 y=26 \\
6 x+3 y=24 & -4 x-2 y=-16 \\
\frac{10 x=50}{} & \\
x=5 &
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.
Now add the equations and solve for y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=5 \quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8^{-2} \quad y= \\
& 4 x-3 y=26 \quad 4 x-3 y=26 \\
& 6 x+3 y=24 \quad-4 x-2 y=-16 \\
& 10 x=50 \\
& x=5 \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the x-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 2} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } y \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=5 \quad \text { To solve for } x \text {, you must } \\
& \xrightarrow{3} 2 x+y=8^{-2} \quad y= \\
& 4 x-3 y=26 \quad 4 x-3 y=26 \\
& \underline{6 x+3 y=24 \quad-4 x-2 y=-16} \\
& 10 x=50 \\
& -5 y \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the x-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 2} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } y \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{cc}
\text { 5. } \rightarrow 4 x-3 y=26 & x=\underline{5} \\
\stackrel{3}{\rightarrow} 2 x+y=8 & y= \\
4 x-3 y=26 & 4 x-3 y=26 \\
6 x+3 y=24 & \\
\begin{array}{cc}
-4 x-2 y=-16 \\
\hline 10 x=50 &
\end{array} & \begin{array}{l}
-5 y=10 \\
x=5
\end{array}
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.
Now add the equations and solve for y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\underline{5} \\
& \stackrel{3}{3} 2 x+y=8 \stackrel{-2}{2} \quad y= \\
& \text { - } \\
& \begin{array}{cc}
4 x-3 y=26 \\
6 x+3 y=24
\end{array} \quad \begin{array}{c}
4 x-3 y=26 \\
\cline { 1 - 3 }+4 x-2 y=-16 \\
\cline { 3 - 4 }=5
\end{array} \quad \begin{array}{c}
-5 y=10 \\
y
\end{array}
\end{aligned}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.
Now add the equations and solve for y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{cc}
\text { 5. } 4 x-3 y=26 & x=5 \\
3 \\
3 x+y=8 & y= \\
4 x-3 y=26 & 4 x-3 y=26 \\
6 x+3 y=24 & \frac{-4 x-2 y=-16}{-5 y=10} \\
\hline 10 x=50 & \\
x=5 & y=-2
\end{array}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.
Now add the equations and solve for y.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \quad x=\underline{5} \\
& \xrightarrow{3} 2 x+y=8 \xrightarrow{-2} \quad y=-2 \\
& 4 x-3 y=26 \quad 4 x-3 y=26 \\
& 6 x+3 y=24 \quad-4 x-2 y=-16 \\
& 10 x=50 \\
& -5 y=10 \\
& x=5 \\
& y=-2
\end{aligned}
$$

To solve for x, you must eliminate the y-terms. Bring down the first equation.
Multiply both sides of the second equation by 3 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms. Bring down the first equation. Multiply both sides of the second equation by $\mathbf{- 2}$.
Now add the equations and solve for \mathbf{y}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 5. } \rightarrow 4 x-3 y=26 \longmapsto x=\underline{5} \\
& \xrightarrow{3} 2 x+y=8^{-2} \quad y=\underline{-2} \\
& 4 x-3 y=26 \quad 4 x-3 y=26 \\
& \underline{6 x+3 y=24 \quad-4 x-2 y=-16} \\
& 10 x=50 \\
& -5 y=10 \\
& \mathrm{x}=5 \\
& y=-2 \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } 3 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the x-terms. } \\
& \text { Bring down the first equation. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 2} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } y \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
6. $3 x+7 y=-2$

$$
\mathbf{x}=
$$

$5 x+4 y=-11$

$$
\mathbf{y}=
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
6. $3 x+7 y=-2$

$$
\mathbf{x}=
$$

$5 x+4 y=-11$
$y=$ \qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
6. $\quad 3 x+7 y=-2$

$$
5 x+4 y=-11
$$

$$
\begin{aligned}
& \mathbf{x}= \\
& \mathbf{y}=
\end{aligned}
$$

Notice that both equations are in 'standard form' $(\mathbf{A x}+\mathbf{B y}=\mathbf{C})$.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
6. $3 x+7 y=-2$

$$
\mathbf{x}=
$$

$5 x+4 y=-11$
$y=$ \qquad

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
6. $\quad 3 x+7 y=-2$

$$
\mathbf{x}=
$$

To solve for \mathbf{x}, you must eliminate the \mathbf{y}-terms.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
6. $3 x+7 y=-2$

$$
\mathbf{x}=
$$

To solve for \mathbf{x}, you must eliminate the \mathbf{y}-terms.

$$
5 x+4 y=-11
$$ Multiply both sides of the first equation by 4 .

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{aligned}
\stackrel{4}{4} 3 x+7 y & =-2 & & x= \\
5 x+4 y & =-11 & & y=
\end{aligned}
$$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
6. ${ }^{4} 3 x+7 y=-2$
$5 x+4 y=-11$
$y=$ \qquad

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.

12x

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{aligned}
\stackrel{4}{4} 3 x+7 y & =-2 & & x= \\
5 x+4 y & =-11 & & y=
\end{aligned}
$$

To solve for \mathbf{x}, you must eliminate the \mathbf{y}-terms. Multiply both sides of the first equation by 4 .
$12 x+28 y$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{aligned}
\stackrel{4}{3} 3 x+7 y & =-2 & & x= \\
5 x+4 y & =-11 & & y=
\end{aligned}
$$

To solve for \mathbf{x}, you must eliminate the \mathbf{y}-terms. Multiply both sides of the first equation by 4 .

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{aligned}
\stackrel{4}{4} 3 x+7 y & =-2 & & x= \\
5 x+4 y & =-11 & & y=
\end{aligned}
$$

To solve for \mathbf{x}, you must eliminate the \mathbf{y}-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by - $\mathbf{- 7}$.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{array}{rlr}
\stackrel{4}{4} 3 x+7 y=-2 & x= \\
\xrightarrow{-7} 5 x+4 y=-11 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7 .

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.
6. $\stackrel{4}{3} \mathbf{3 x}+7 \mathrm{y}=-2$
$\xrightarrow{-7} 5 x+4 y=-11$

$\mathbf{y}=$ \qquad
$12 x+28 y=-8$
$-35 x$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7 .

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{ll}
\text { 6. } \xrightarrow{4} 3 x+7 y=-2 & x= \\
\stackrel{-7}{\Rightarrow} 5 x+4 y=-11 & y= \\
12 x+28 y=-8 & \\
-35 x-28 y &
\end{array}
$$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{array}{rl}
\stackrel{4}{4} 3 x+7 y=-2 & x= \\
\xrightarrow{-7} 5 x+4 y=-11 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by $\mathbf{- 7}$.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \stackrel{4}{-} 3 x+7 y=-2 \quad x=
$$

To solve for \mathbf{x}, you must eliminate the \mathbf{y}-terms. Multiply both sides of the first equation by 4 .
Multiply both sides of the second equation by $\mathbf{- 7}$.
Now add the equations and solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{array}{rlrl}
\stackrel{4}{\rightarrow} 3 x+7 y & =-2 & & x= \\
\xrightarrow{-7} 5 x+4 y=-11 & & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7 .
Now add the equations and solve for x.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{array}{rl}
\stackrel{4}{\rightarrow} 3 x+7 y=-2 & \\
\stackrel{-7}{\Rightarrow} 5 x+4 y=-11 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7 .
Now add the equations and solve for x.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{array}{rlr}
\stackrel{4}{4} 3 x+7 y & =-2 & x= \\
\stackrel{-7}{\Rightarrow} 5 x+4 y=-11 & y=
\end{array}
$$

To solve for \mathbf{x}, you must eliminate the y-terms. Multiply both sides of the first equation by 4 .
Multiply both sides of the second equation by $\mathbf{- 7}$.
Now add the equations and solve for \mathbf{x}.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{array}{rl}
\stackrel{4}{\rightarrow} 3 x+7 y=-2 & x= \\
\stackrel{-7}{\Rightarrow} 5 x+4 y=-11 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7 .
Now add the equations and solve for x.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{array}{rlr}
\text { 6. } \xrightarrow{4} 3 x+7 y=-2 & x= \\
\stackrel{-7}{\Rightarrow} 5 x+4 y=-11 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7 .
Now add the equations and solve for x.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{array}{rl}
\stackrel{4}{\rightarrow} 3 x+7 y=-2 & x=-3 \\
\stackrel{-7}{\Rightarrow} 5 x+4 y=-11 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms. Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7 .
Now add the equations and solve for x.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{array}{rl}
\stackrel{4}{\rightarrow} 3 x+7 y=-2 & x=-3 \\
\stackrel{-7}{\rightarrow} 5 x+4 y=-11 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms.
Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms.

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\text { 6. } \begin{array}{rl}
\stackrel{4}{4} 3 x+7 y=-2 & x=-3 \\
\xrightarrow[-7]{\rightarrow} 5 x+4 y=-11 & y=
\end{array}
$$

To solve for x, you must eliminate the y-terms.
Multiply both sides of the first equation by 4.
Multiply both sides of the second equation by -7 .
Now add the equations and solve for x.
To solve for y, you must eliminate the x-terms.
Multiply both sides of the first equation by 5 .

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \stackrel{4}{4} 3 x+7 y=-2 \stackrel{5}{-3} \\
& \xrightarrow{-7} 5 x+4 y=-11 \\
& \mathbf{y}= \\
& 12 x+28 y=-8 \\
& -35 x-28 y=77 \\
& -23 x=69 \\
& x=-3 \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \text { Multiply both sides of the second } \\
& \text { equation by }-7 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the x-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \stackrel{4}{4} 3 x+7 y=-2 \stackrel{5}{-3} \\
& \xrightarrow{-7} 5 x+4 y=-11 \quad y= \\
& 12 x+28 y=-8 \quad 15 x \\
& -35 x-28 y=77 \\
& -23 x=69 \\
& x=-3 \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \text { Multiply both sides of the second } \\
& \text { equation by }-7 . \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \stackrel{4}{4} 3 x+7 y=-2 \stackrel{5}{-3} \\
& \xrightarrow{-7} 5 x+4 y=-11 \quad y= \\
& \text { - } \\
& \text { To solve for } x \text {, you must } \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& 12 x+28 y=-8 \quad 15 x+35 y \\
& -35 x-28 y=77 \\
& -23 x=69 \\
& x=-3 \\
& \text { equation by }-7 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \xrightarrow{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\longrightarrow} 5 x+4 y=-11 \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \begin{array}{rll}
12 x+28 y & =-8 & 15 x+35 y=-10
\end{array} \quad \begin{array}{l}
\text { Multiply both sides of the second } \\
-35 x-28 y=77
\end{array} \quad \begin{array}{ll}
\text { equation by }-7 .
\end{array} \\
& -35 x-28 y=77 \\
& -23 x=69 \\
& x=-3 \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 .
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \xrightarrow{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\longrightarrow} 5 x+4 y=-11 \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \begin{array}{lll}
12 x+28 y=-8 & 15 x+35 y=-10 & \begin{array}{l}
\text { Multiply both sides of the second } \\
\text { equation by }-7 .
\end{array}
\end{array} \\
& -35 x-28 y=77 \\
& -23 x=69 \\
& x=-3 \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 . \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \xrightarrow{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\square} 5 x+4 y=-11^{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& 12 x+28 y=-8 \quad 15 x+35 y=-10 \quad \text { Multiply both sides of the second } \\
& -35 x-28 y=77 \\
& -23 x=69 \\
& x=-3 \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 . \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \xrightarrow{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\longrightarrow} 5 x+4 y=-11^{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \begin{array}{cc}
12 x+28 y=-8 & 15 x+35 y=-10 \\
\frac{-35 x-28 y=77}{-23 x=69} & -15 x \\
x=-3 &
\end{array} \\
& \text { Multiply both sides of the second } \\
& \text { equation by }-7 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \xrightarrow{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\rightarrow} 5 x+4 y=-11 \stackrel{-3}{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \begin{array}{cc}
12 x+28 y=-8 & 15 x+35 y=-10 \\
\frac{-35 x-28 y=77}{-23 x=69} & -15 x-12 y \\
x=-3 &
\end{array} \\
& \text { Multiply both sides of the second } \\
& \text { equation by }-7 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \xrightarrow{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\square} 5 x+4 y=-11^{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \begin{array}{rl}
12 x+28 y=-8 & 15 x+35 y=-10 \\
-35 x-28 y=77 & -15 x-12 y=33
\end{array} \\
& -23 x=69 \\
& x=-3 \\
& \text { Multiply both sides of the second } \\
& \text { equation by }-7 . \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 . \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \xrightarrow{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\square} 5 x+4 y=-11^{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \begin{array}{cc}
12 x+28 y=-8 & 15 x+35 y=-10 \\
-35 x-28 y=77 & -15 x-12 y=33 \\
\hline-23 x=69 & \\
x=-3 &
\end{array} \\
& \text { Multiply both sides of the second } \\
& \text { equation by }-7 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } y \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \stackrel{4}{4} 3 x+7 y=-2 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\longrightarrow} 5 x+4 y=-11^{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& 12 x+28 y=-8 \quad 15 x+35 y=-10 \quad \text { Multiply both sides of the second } \\
& \underline{-35 x-28 y=77} \quad \underline{-15 x-12 y}=33 \\
& -23 x=69 \\
& x=-3 \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 . \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } y \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \stackrel{4}{4} 3 x+7 y=-2 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\square} 5 x+4 y=-11^{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& 12 x+28 y=-8 \quad 15 x+35 y=-10 \quad \text { Multiply both sides of the second } \\
& \underline{-35 x-28 y=77} \quad \underline{-15 x-12 y=33} \\
& -23 x=69 \\
& x=-3 \\
& \text { equation by }-7 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } y \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \stackrel{4}{4} 3 x+7 y=-2 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\square} 5 x+4 y=-11^{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& 12 x+28 y=-8 \quad 15 x+35 y=-10 \quad \text { Multiply both sides of the second } \\
& \frac{-35 x-28 y=77}{-23 x=69} \quad \frac{-15 x-12 y=33}{23 y=23} \\
& \text { equation by } \mathbf{- 7} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } \mathbf{x} \text {. } \\
& \text { To solve for y, you must } \\
& \text { eliminate the } \mathbf{x} \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } \mathbf{y} \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \stackrel{4}{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\square} 5 x+4 y=-11^{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \begin{array}{cc}
12 x+28 y=-8 & 15 x+35 y=-10 \\
\frac{-35 x-28 y=77}{-23 x=69} & \\
\cline { 1 - 3 }=-3 & \\
\hline \mathbf{- 1 5 x}-12 y=33 \\
\hline
\end{array} \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 7} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } \mathbf{y} \text {, you must } \\
& \text { eliminate the } \mathbf{x} \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } \mathbf{y} \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \stackrel{4}{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\square} 5 x+4 y=-11^{-3} \quad y= \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \begin{array}{cc}
12 x+28 y=-8 & 15 x+35 y=-10 \\
\frac{-35 x-28 y=77}{-23 x=69} & \frac{-15 x-12 y=33}{23 y=23} \\
x=-3 & y=1
\end{array} \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 7} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } \mathbf{y} \text {, you must } \\
& \text { eliminate the } \mathrm{x} \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } \mathbf{y} \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \xrightarrow{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& \stackrel{-7}{\square} 5 x+4 y=-11{ }^{-3} \quad y=\underline{1} \\
& \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& \begin{array}{cc}
12 x+28 y=-8 & 15 x+35 y=-10 \\
\frac{-35 x-28 y=77}{-23 x=69} & \\
\cline { 1 - 3 }=-3 & \\
\hline \mathbf{- 1 5 x}-12 y=33 \\
\hline y=1
\end{array} \\
& \text { Multiply both sides of the second } \\
& \text { equation by }-7 \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the } x \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 \text {. } \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } y \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. }{ }^{4} 3 \mathrm{x}+7 \mathrm{y}=-2 \underset{\sim}{5} \quad \mathrm{x}=-3 \quad \text { To solve for } \mathrm{x} \text {, you must } \\
& \stackrel{-7}{\longrightarrow} 5 x+4 y=-11 \stackrel{-3}{-3} \quad y= \\
& \text { eliminate the } \mathbf{y} \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 4 . \\
& 12 x+28 y=-8 \quad 15 x+35 y=-10 \quad \text { Multiply both sides of the second } \\
& \begin{array}{cc}
\frac{-35 x-28 y=77}{-23 x=69} & \\
\cline { 2 - 2 }=-3 & \\
\hline \mathbf{- 1 5 x}-12 y=33 \\
\hline y=1
\end{array} \\
& \text { equation by }-7 . \\
& \text { Now add the equations and } \\
& \text { solve for } x \text {. } \\
& \text { To solve for } y \text {, you must } \\
& \text { eliminate the x-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 . \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } y \text {. }
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 2

Solve the following systems of equations using the multiplication-addition method.

$$
\begin{aligned}
& \text { 6. } \xrightarrow{4} 3 x+7 y=-2 \quad 5 \quad x=-3 \quad \text { To solve for } x \text {, you must } \\
& -7 \quad-3 x \quad-11^{-3} \quad \text { eliminate the } y \text {-terms. } \\
& \text { Multiply both sides of the first } \\
& { }^{1} \text { Good luck on your homework !! d } \\
& \frac{-35 x-20 y-1 /}{-23 x=69} \quad \frac{-15 x-12 y-55}{23 y=23} \quad \begin{array}{l}
\text { Now add the equations and } \\
\text { solve for } x .
\end{array} \\
& x=-3 \quad y=1 \quad \text { To solve for } y, \text { you must } \\
& \text { eliminate the x-terms. } \\
& \text { Multiply both sides of the first } \\
& \text { equation by } 5 . \\
& \text { Multiply both sides of the second } \\
& \text { equation by } \mathbf{- 3} \text {. } \\
& \text { Now add the equations and } \\
& \text { solve for } y \text {. }
\end{aligned}
$$

