Algebra II Lesson #2 Unit 2 Notes #2 Class Worksheet #2

For Worksheets #2 & #4

- 1. The horizontal line through (-3, 4).
- 2. The vertical line through (-3, 4).

- 1. The horizontal line through (-3, 4).
- 2. The vertical line through (-3, 4).

- 1. The horizontal line through (-3, 4).
- 2. The vertical line through (-3, 4).

- 1. The horizontal line through (-3, 4). y = k
- 2. The vertical line through (-3, 4).

- 1. The horizontal line through (-3, 4). y = k
- 2. The vertical line through (-3, 4).

- 1. The horizontal line through (-3, 4). y = 4y = k
- 2. The vertical line through (-3, 4).

- 1. The horizontal line through (-3, 4). y = 4y = k
- 2. The vertical line through (-3, 4).

1. The horizontal line through (-3, 4). y = 4

 $\mathbf{y} = \mathbf{k}$

2. The vertical line through (-3, 4).

1. The horizontal line through (-3, 4). y = 4

$$\mathbf{y} = \mathbf{k}$$

2. The vertical line through (-3, 4).

1. The horizontal line through (-3, 4). y = 4

$$\mathbf{y} = \mathbf{k}$$

2. The vertical line through (-3, 4).

 $\mathbf{x} = \mathbf{k}$

1. The horizontal line through (-3, 4). y = 4

y = k
2. The vertical line through (-3, 4).
$$x = k$$

1. The horizontal line through
$$(-3, 4)$$
. $y = 4$

 $\mathbf{v} = \mathbf{k}$

2. The vertical line through (-3, 4).
$$x = -3$$

 $x = k$

- 1. The horizontal line through (-3, 4). y = 4y = k
- 2. The vertical line through (-3, 4). x = -3

 $\mathbf{x} = \mathbf{k}$

3. The line with slope 0 through (5, -4).

4. The line with "no slope" through (5, -4).

3. The line with slope 0 through (5, -4).

4. The line with "no slope" through (5, -4).

3. The line with slope 0 through (5, -4).

4. The line with "no slope" through (5, -4).

- 3. The line with slope 0 through (5, -4). horizontal line
- 4. The line with "no slope" through (5, -4).

- 3. The line with slope 0 through (5, -4). horizontal line $\rightarrow y = k$
- 4. The line with "no slope" through (5, -4).

- 3. The line with slope 0 through (5, -4). horizontal line $\rightarrow y = k$
- 4. The line with "no slope" through (5, -4).

- 3. The line with slope 0 through (5, -4). y = -4horizontal line $\rightarrow y = k$
- 4. The line with "no slope" through (5, -4).

- 3. The line with slope 0 through (5, -4). y = -4horizontal line $\rightarrow y = k$
- 4. The line with "no slope" through (5, -4).

- 3. The line with slope 0 through (5, -4). y = -4horizontal line $\rightarrow y = k$
- 4. The line with "no slope" through (5, -4).

- 3. The line with slope 0 through (5, -4). y = -4horizontal line $\rightarrow y = k$
- 4. The line with **"no slope"** through (5, -4).

- 3. The line with slope 0 through (5, -4). y = -4horizontal line $\rightarrow y = k$
- 4. The line with "no slope" through (5, -4). _ vertical line

- 3. The line with slope 0 through (5, -4). y = -4horizontal line $\rightarrow y = k$

3. The line with slope 0 through (5, -4). y = -4horizontal line $\rightarrow y = k$

4. The line with "no slope" through (5, -4). vertical line $\rightarrow x = k$

3. The line with slope 0 through (5, -4). y = -4horizontal line $\rightarrow y = k$

4. The line with "no slope" through (5, -4). x = 5vertical line $\rightarrow x = k$

- 3. The line with slope 0 through (5, -4). y = -4horizontal line $\rightarrow y = k$
- 4. The line with "no slope" through (5, -4). x = 5vertical line $\rightarrow x = k$

5. The line with slope -4 and y-intercept 5.

5. The line with slope -4 and y-intercept 5.

5. The line with slope -4 and y-intercept 5.

5. The line with slope -4 and y-intercept 5. oblique line

5. The line with slope -4 and y-intercept 5.
oblique line → y = mx + b

- 5. The line with slope -4 and y-intercept 5. oblique line $\rightarrow y = mx + b$ m = -4
- 6. The line with slope 3/4 through (0, -1).

- 5. The line with slope -4 and y-intercept 5. oblique line $\rightarrow y = mx + b$ m = -4
- 6. The line with slope 3/4 through (0, -1).
- 5. The line with slope -4 and y-intercept 5. oblique line $\rightarrow y = mx + b$ m = -4 b = 5
- 6. The line with slope 3/4 through (0, -1).

- 5. The line with slope -4 and y-intercept 5. y =oblique line $\rightarrow y = mx + b$ m = -4 b = 5
- 6. The line with slope 3/4 through (0, -1).

- 5. The line with slope -4 and y-intercept 5. y = -4xoblique line $\rightarrow y = mx + b$ m = -4 b = 5
- 6. The line with slope 3/4 through (0, -1).

- 5. The line with slope -4 and y-intercept 5. y = -4x + 5oblique line $\rightarrow y = mx + b$ m = -4 b = 5
- 6. The line with slope 3/4 through (0, -1).

- 5. The line with slope -4 and y-intercept 5. y = -4x + 5oblique line $\rightarrow y = mx + b$ m = -4 b = 5
- 6. The line with slope 3/4 through (0, -1).

- 5. The line with slope -4 and y-intercept 5. y = -4x + 5oblique line $\rightarrow y = mx + b$ m = -4 b = 5
- 6. The line with slope 3/4 through (0, -1).

5. The line with slope -4 and y-intercept 5. y = -4x + 5oblique line $\rightarrow y = mx + b$ m = -4 b = 5

6. The line with slope 3/4 through (0, -1).

- 5. The line with slope -4 and y-intercept 5. y = -4x + 5oblique line $\rightarrow y = mx + b$ m = -4 b = 5
- 6. The line with slope 3/4 through (0, -1). oblique line

5. The line with slope -4 and y-intercept 5. y = -4x + 5oblique line $\rightarrow y = mx + b$ m = -4 b = 5

6. The line with slope 3/4 through (0, -1). oblique line \rightarrow y = mx + b

5. The line with slope -4 and y-intercept 5. y = -4x + 5oblique line $\rightarrow y = mx + b$ m = -4 b = 5

6. The line with slope 3/4 through (0, -1). $y = \frac{3}{4}x - 1$ oblique line $\rightarrow y = mx + b$ m = 3/4 b = -1

7. The line through (-5, 4) and (0, 2).

The line is not vertical.

7. The line through (-5, 4) and (0, 2).

The line is not horizontal.

7. The line through (-5, 4) and (0, 2).

oblique line

7. The line through (-5, 4) and (0, 2).

oblique line \rightarrow y = mx + b

oblique line
$$\rightarrow$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$$

7. The line through (-5, 4) and (0, 2). x_1 y_1 x_2 y_2 y_2 oblique line $\rightarrow y = mx + b$ y = w

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$$

7. The line through (-5, 4) and (0, 2). x_1 y_1 x_2 y_2 y_2 oblique line $\rightarrow y = mx + b$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} =$$

7. The line through (-5, 4) and (0, 2). x_1 y_1 x_2 y_2 y_2 oblique line $\rightarrow y = mx + b$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2}{2}$$

7. The line through (-5, 4) and (0, 2). x_1 y_1 y_2 y_2 y

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{2}$$

7. The line through (-5, 4) and (0, 2). x_1 y_1 y_2 y_2 y

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{0 - 1}$$

7. The line through (-5, 4) and (0, 2). x_1 y_1 y_2 y_2 y

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{0 - -5}$$

oblique line
$$\rightarrow$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{0 - 5}$$
$$\mathbf{m} = -\frac{2}{5}$$

7. The line through (-5, 4) and (0, 2).

oblique line
$$\rightarrow$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{0 - 5}$$
$$\mathbf{m} = -2/5$$

The y-intercept is the value of y when x = 0.
7. The line through (-5, 4) and (0, 2).

oblique line
$$\rightarrow$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{0 - 5}$$
$$\mathbf{m} = -\frac{2}{5}$$

7. The line through (-5, 4) and (0, 2).

oblique line
$$\rightarrow$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{0 - 5}$$
$$\mathbf{m} = -\frac{2}{5} \qquad \mathbf{h} = 2$$

7. The line through (-5, 4) and (0, 2). y =

oblique line
$$\rightarrow$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{0 - 5}$$
$$\mathbf{m} = -\frac{2}{5}$$
$$\mathbf{h} = 2$$

7. The line through (-5, 4) and (0, 2). $y = \frac{-2}{5}x$

oblique line
$$\rightarrow$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{0 - 5}$$
$$\mathbf{m} = -\frac{2}{5}$$
$$\mathbf{h} = 2$$

7. The line through (-5, 4) and (0, 2). $y = \frac{-2}{5}x + 2$

oblique line \rightarrow y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 - 4}{0 - 5}$$
$$\mathbf{m} = -\frac{2}{5}$$
$$\mathbf{h} = 2$$

7. The line through (-5, 4) and (0, 2). $y = \frac{-2}{5}x + 2$

oblique line
$$\rightarrow$$
 y = mx + b

m =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 4}{0 - 5}$$

m = $-\frac{2}{5}$ b = 2

8. The line with slope -3/4 through (-8, 1).

8. The line with slope -3/4 through (-8, 1).

8. The line with slope -3/4 through (-8, 1).

8. The line with slope -3/4 through (-8, 1). oblique line

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b **m = -3/4 b = ?**

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b **m = -3/4 b = ?**

We are not given the y-intercept.

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

8. The line with slope -3/4 through (-8, 1).
oblique line → y = mx + b m = -3/4 b = ?
We are not given the y-intercept.
We will use the point-slope equation.

$$\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$$

8. The line with slope -3/4 through (-8, 1).
oblique line → y = mx + b m = -3/4 b = ?
We are not given the y-intercept.
We will use the point-slope equation.

$$\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b **m = -3/4 b = ?**

$$\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b **m = -3/4 b = ?**

$$y - y_1 = m(x - x_1)$$
$$y - 1$$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b **m = -3/4 b = ?**

$$y - y_1 = m(x - x_1)$$

 $y - 1 =$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-3}{4}($

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-3}{4}(x - x_1)$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-3}{4}(x - -8)$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b **m = -3/4 b = ?**

$$y - y_1 = m(x - x_1)$$

$$y - 1 = \frac{-3}{4}(x - -8)$$

$$y - 1 = \frac{-3}{4}(x + 8)$$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-3}{4}(x - -8)$
 $y - 1 = \frac{-3}{4}(x + 8)$
 $y - 1 = -3$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

$$y - y_1 = m(x - x_1)$$

$$y - 1 = \frac{-3}{4}(x - -8)$$

$$y - 1 = \frac{-3}{4}(x + 8)$$

$$y - 1 = \frac{-3}{4}x$$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

$$y - y_1 = m(x - x_1)$$

$$y - 1 = \frac{-3}{4}(x - -8)$$

$$y - 1 = \frac{-3}{4}(x + 8)$$

$$y - 1 = \frac{-3}{4}x - 6$$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

$$y - y_{1} = m(x - x_{1})$$

$$y - 1 = \frac{-3}{4}(x - -8)$$

$$y - 1 = \frac{-3}{4}(x + 8)$$

$$y - 1 = \frac{-3}{4}x - 6$$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

$$y - y_{1} = m(x - x_{1})$$

$$y - 1 = \frac{-3}{4}(x - -8)$$

$$y - 1 = \frac{-3}{4}(x + 8)$$

$$y - 1 = \frac{-3}{4}x - 6$$

$$y = \frac{-3}{4}x$$

8. The line with slope -3/4 through (-8, 1).

oblique line \rightarrow y = mx + b m = -3/4 b = ?

$$y - y_{1} = m(x - x_{1})$$

$$y - 1 = \frac{-3}{4}(x - -8)$$

$$y - 1 = \frac{-3}{4}(x + 8)$$

$$y - 1 = \frac{-3}{4}x - 6$$

$$y = \frac{-3}{4}x - 5$$

Algebra II Class Worksheet #2 Unit 2 Write the equation of each line described. If the line is oblique, use slope-intercept form. 8. The line with slope -3/4 through $\begin{pmatrix} x_1 & y_1 \\ -8, 1 \end{pmatrix}$. $y = \frac{-3}{4}x - 5$ oblique line $\rightarrow y = mx + b$ m = -3/4 b = ?We are not given the y-intercept. We will use the point-slope equation. $y = y_1 = m(x - x_1)$

$$y - y_1 - m(x - x_1)$$

$$y - 1 = \frac{-3}{4}(x - -8)$$

$$y - 1 = \frac{-3}{4}(x + 8)$$

$$y - 1 = \frac{-3}{4}x - 6$$

$$y = \frac{-3}{4}x - 5$$

8. The line with slope -3/4 through (-8, 1). $y = \frac{-3}{4}x - 5$ oblique line $\rightarrow y = mx + b$ m = -3/4 b = ? We are not given the y-intercept. We will use the point-slope equation.

$$y - y_{1} = m(x - x_{1})$$

$$y - 1 = \frac{-3}{4}(x - -8)$$

$$y - 1 = \frac{-3}{4}(x + 8)$$

$$y - 1 = \frac{-3}{4}x - 6$$

$$y = \frac{-3}{4}x - 5$$

9. The line with slope 2/3 through (4, -3).

9. The line with slope 2/3 through (4, -3).

9. The line with slope 2/3 through (4, -3).

9. The line with slope 2/3 through (4, -3). oblique line
9. The line with slope 2/3 through (4, -3).

oblique line \rightarrow y = mx + b

9. The line with slope 2/3 through (4, -3).

oblique line \rightarrow y = mx + b m = 2/3

9. The line with slope 2/3 through (4, -3).

oblique line \rightarrow y = mx + b m = 2/3 b = ?

9. The line with slope 2/3 through (4, -3).

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

9. The line with slope 2/3 through (4, -3).

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

9. The line with slope $\frac{y_1}{4, -3}$.

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

9. The line with slope $\frac{y_1}{4, -3}$.

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

y – **-3** =

9. The line with slope $\frac{y_1}{4, -3}$.

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

$$\mathbf{y} - \mathbf{-3} = \frac{2}{3}$$

9. The line with slope $\frac{y_1}{4, -3}$.

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

$$y - -3 = \frac{2}{3}(x - 4)$$

9. The line with slope $\frac{y_1}{4, -3}$.

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - -3 = \frac{2}{3}(x - 4)$ y + 3 =

9. The line with slope $\frac{y_1}{4, -3}$.

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - -3 = \frac{2}{3}(x - 4)$ $y + 3 = \frac{2}{3}x$

9. The line with slope $\frac{y_1}{4, -3}$.

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - 3 = \frac{2}{3}(x - 4)$ $y + 3 = \frac{2}{3}x - \frac{8}{3}$

9. The line with slope $\frac{y_1}{4, -3}$.

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - -3 = \frac{2}{3}(x - 4)$ $y + 3 = \frac{2}{3}x - \frac{8}{3}$ $y = x = x + \frac{2}{3}x - \frac{8}{3}$

9. The line with slope $\frac{2}{3}$ through (4, -3).

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - -3 = \frac{2}{3}(x - 4)$ $y + 3 = \frac{2}{3}x - \frac{8}{3}$ $y = \frac{2}{3}x$

9. The line with slope $\frac{2}{3}$ through (4, -3).

oblique line \rightarrow y = mx + b m = 2/3 b = ?

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - -3 = \frac{2}{3}(x - 4)$ $y + 3 = \frac{2}{3}x - \frac{8}{3}$ $y = \frac{2}{3}x - \frac{17}{3}$

9. The line with slope 2/3 through (4, -3). y = y = 0oblique line $\rightarrow y = mx + b$ m = 2/3 b = ?

$$\mathbf{y} = \frac{2}{3}\mathbf{x} - \frac{17}{3}$$

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - -3 = \frac{2}{3}(x - 4)$ $y + 3 = \frac{2}{3}x - \frac{8}{3}$ $y = \frac{2}{3}x - \frac{17}{3}$

9. The line with slope 2/3 through (4, -3). $y = \frac{2}{3}x - \frac{17}{3}$ oblique line $\rightarrow y = mx + b$ m = 2/3 b = ?

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - -3 = \frac{2}{3}(x - 4)$ $y + 3 = \frac{2}{3}x - \frac{8}{3}$ $y = \frac{2}{3}x - \frac{17}{3}$

10. The line through (2, -3) and (2, 0).

10. The line through (2, -3) and (2, 0).

10. The line through (2, -3) and (2, 0).

10. The line through (2, -3) and (2, 0).
t
t
t
vertical line

10. The line through
$$(2, -3)$$
 and $(2, 0)$. $x = 2$
vertical line $\rightarrow x = k$

10. The line through
$$(2, -3)$$
 and $(2, 0)$. $x = 2$
vertical line $\rightarrow x = k$

11. The line through (2, 0) and (-4, -3).

The line is not vertical.

11. The line through (2, 0) and (-4, -3).

The line is not horizontal.

11. The line through (2, 0) and (-4, -3).

oblique line

11. The line through (2, 0) and (-4, -3).

oblique line \rightarrow y = mx + b

11. The line through (2, 0) and (-4, -3).

oblique line \rightarrow y = mx + b

 $\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$

11. The line through (2, 0) and (-4, -3). x_1 y_1 y_2 y_2 y_2 y_2 y_2 y_1 y_2 y_2 y_2 y_2 y_2 y_1 y_2 y_2

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} =$$
$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-3}{-3}$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-3 - 0}{-3 - 0}$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-3 - 0}{-4}$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-3 - 0}{-4 - 2}$$

11. The line through (2, 0) and (-4, -3).

oblique line \rightarrow y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-3 - 0}{-4 - 2} \qquad \mathbf{m} = 1/2$$

11. The line through (2, 0) and (-4, -3).

oblique line \rightarrow y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-3 - 0}{-4 - 2}$$
 $\mathbf{m} = 1/2$ $\mathbf{b} = ?$

11. The line through (2, 0) and (-4, -3).

oblique line \rightarrow y = mx + b $\mathbf{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2} \qquad \mathbf{m} = 1/2 \qquad \mathbf{b} = ?$

11. The line through (2, 0) and (-4, -3).

oblique line \rightarrow y = mx + b $\mathbf{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2} \qquad \mathbf{m} = 1/2 \qquad \mathbf{b} = ?$

Use the point-slope equation.

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

11. The line through (2, 0) and (-4, -3). $x_1 \qquad y_1$ oblique line $\rightarrow y = mx + b$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2}$ m = 1/2 b = ?

Use the point-slope equation.

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

11. The line through (2, 0) and (-4, -3). $x_1 \qquad y_1$ oblique line $\rightarrow y = mx + b$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2}$ m = 1/2 b = ?

$$y - y_1 = m(x - x_1)$$
$$y - 0 =$$

11. The line through (2, 0) and (-4, -3). $x_1 \qquad y_1$ oblique line $\rightarrow y = mx + b$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2}$ m = 1/2 b = ?

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - 0 = \frac{1}{2}($

11. The line through (2, 0) and (-4, -3). $x_1 \qquad y_1$ oblique line $\rightarrow y = mx + b$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2}$ m = 1/2 b = ?

$$y - y_1 = m(x - x_1)$$

 $y - 0 = \frac{1}{2}(x - 2)$

11. The line through (2, 0) and (-4, -3). $x_1 \qquad y_1$ oblique line $\rightarrow y = mx + b$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2}$ m = 1/2 b = ?

$$y - y_1 = m(x - x_1)$$

 $y - 0 = \frac{1}{2}(x - 2)$
 $y =$

11. The line through (2, 0) and (-4, -3). $x_1 \qquad y_1$ oblique line $\rightarrow y = mx + b$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2}$ m = 1/2 b = ?

$$y - y_1 = m(x - x_1)$$
$$y - 0 = \frac{1}{2}(x - 2)$$
$$y = \frac{1}{2}x$$

11. The line through (2, 0) and (-4, -3). $x_1 \qquad y_1$ oblique line $\rightarrow y = mx + b$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2}$ m = 1/2 b = ?

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - 0 = \frac{1}{2}(x - 2)$ $y = \frac{1}{2}x - 1$

11. The line through (2, 0) and (-4, -3). $y = \frac{1}{2}x - 1$

oblique line y = mx + b $\mathbf{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2}$ $\mathbf{m} = 1/2$ $\mathbf{b} = ?$

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - 0 = \frac{1}{2}(x - 2)$ $y = \frac{1}{2}x - 1$

11. The line through (2, 0) and (-4, -3). $y = \frac{1}{2}x - 1$

oblique line
$$\longrightarrow y = mx + b$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{-4 - 2} \qquad m = 1/2 \qquad b = ?$$

$$y - y_1 = m(x - x_1)$$

 $y - 0 = \frac{1}{2}(x - 2)$
 $y = \frac{1}{2}x - 1$

12. The line through (-2, 1) and (3, -1).

The line is not vertical.

12. The line through (-2, 1) and (3, -1).

The line is not horizontal.

12. The line through (-2, 1) and (3, -1).

oblique line

12. The line through (-2, 1) and (3, -1).

oblique line \rightarrow y = mx + b

12. The line through (-2, 1) and (3, -1).

oblique line \rightarrow y = mx + b

 $\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} =$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1}{-1}$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{-1}$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3}$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$

12. The line through (-2, 1) and (3, -1).

oblique line \rightarrow y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2} \qquad \mathbf{m} = -2/5$$

12. The line through (-2, 1) and (3, -1).

oblique line \rightarrow y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} = ?$

12. The line through (-2, 1) and (3, -1).

oblique line \rightarrow y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} = ?$
12. The line through (-2, 1) and (3, -1).

oblique line \rightarrow y = mx + b $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 1}{3 - 2}$ m = -2/5 b = ?

Use the point-slope equation. $y - y_1 = m(x - x_1)$

12. The line through (-2, 1) and (3, -1). oblique line \rightarrow y = mx + b $\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$ $\mathbf{m} = -2/5$ $\mathbf{b} = ?$

Use the point-slope equation. $y - y_1 = m(x - x_1)$

12. The line through (-2, 1) and (3, -1). oblique line \rightarrow y = mx + b $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 1}{3 - 2}$ m = -2/5 b = ?

Use the point-slope equation. $y - y_1 = m(x - x_1)$

12. The line through (-2, 1) and (3, -1). $x_1 \qquad y_1$ oblique line $\rightarrow y = mx + b$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 1}{3 - -2}$ m = -2/5 b = ?

$$y - y_1 = m(x - x_1)$$

12. The line through (-2, 1) and (3, -1). x_1 y_1 y_1 y_1 y_1 $y_2 - y_1$ $y_2 - y_1$ $y_1 - 1 - 1$ $y_2 - 2/5$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} =$

Use the point-slope equation.

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-2}{2}(x - 2)$

5

12. The line through (-2, 1) and (3, -1). $x_1 \qquad y_1$ oblique line $\rightarrow y = mx + b$ $m = \frac{y_2 - y_1}{y_1 - \frac{-1 - 1}{y_2}}$ $m = -\frac{2}{5}$ b

$$\mathbf{n} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} =$

Use the point-slope equation.

 $y - y_1 = m(x - x_1)$ $y - 1 = \frac{-2}{5}(x + 2)$

12. The line through (-2, 1) and (3, -1). x_1 y_1 oblique line $\rightarrow y = mx + b$ $y_2 - y_1$ $y_1 = 1$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} =$

Use the point-slope equation.

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-2}{5}(x + 2)$
 $y - 1 = -2$

J

12. The line through (-2, 1) and (3, -1). x_1 y_1 oblique line $\rightarrow y = mx + b$ $y_2 - y_1$ $y_1 = 1$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} =$

Use the point-slope equation.

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-2}{5}(x + 2)$
 $y - 1 = \frac{-2}{5}x$

12. The line through (-2, 1) and (3, -1). x_1 y_1 y_1 y_1 y_1 y_1 $y_2 - y_1$ $y_1 - 1 - 1$ $y_2 - y_1$ $y_1 - y_1$ $y_2 - y_1$ $y_2 - y_1$ $y_1 - y_1$ $y_2 - y_1$ $y_2 - y_1$ $y_1 - y_1$ $y_2 - y_1$ $y_2 - y_1$ $y_1 - y_1$ $y_2 - y_1$ $y_2 - y_1$ $y_1 - y_1$ $y_1 - y_1$ $y_1 - y_1$ $y_2 - y_1$ $y_1 - y_1$ y_1 $y_1 - y_1$ y_1 y_1

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} =$

Use the point-slope equation.

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-2}{5}(x + 2)$
 $y - 1 = \frac{-2}{5}x - \frac{4}{5}$

12. The line through (-2, 1) and (3, -1). x_1 y_1 oblique line $\rightarrow y = mx + b$ $y_2 - y_1$ -1 - 1

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} =$

Use the point-slope equation.

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-2}{5}(x + 2)$
 $y - 1 = \frac{-2}{5}x - \frac{4}{5}$

 $\mathbf{v} =$

9

12. The line through (-2, 1) and (3, -1). x_1 y_1 oblique line $\rightarrow y = mx + b$ $y_2 - y_1$ -1 - 1

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} =$

Use the point-slope equation.

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{-2}{5}(x + 2)$
 $y - 1 = \frac{-2}{5}x - \frac{4}{5}$
 $y = \frac{-2}{5}x$

5

J

?

12. The line through (-2, 1) and (3, -1). x_1 y_1 y_1 y_1 y_1 y_1 y_1 $y_2 - y_1$ $y_1 - 1 - 1$ $y_2 - y_1$ $y_1 - 1 - 1$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 1}{3 - 2}$$
 $m = -2/5$ $b =$

Use the point-slope equation.

$$y - y_1 = m(x - x_1)$$

$$y - 1 = \frac{-2}{5}(x + 2)$$

$$y - 1 = \frac{-2}{5}x - \frac{4}{5}$$

$$y = \frac{-2}{5}x + \frac{1}{5}$$

9

12. The line through (-2, 1) and (3, -1). <u>Y</u>

$$\mathbf{y} = \frac{-2}{5}\mathbf{x} + \frac{1}{5}$$

oblique line \rightarrow y = mx + b

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-1 - 1}{3 - 2}$$
 $\mathbf{m} = -2/5$ $\mathbf{b} =$

Use the point-slope equation.

$$y - y_{1} = m(x - x_{1})$$
$$y - 1 = \frac{-2}{5}(x + 2)$$
$$y - 1 = \frac{-2}{5}x - \frac{4}{5}$$
$$y - \frac{-2}{5}x + \frac{1}{5}$$

 $y = 5^{-1} \cdot 5$

12. The line through (-2, 1) and (3, -1). $y = \frac{-2}{5}x + \frac{1}{5}$

oblique line
$$\longrightarrow y = mx + b$$

 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 1}{3 - 2} \quad m = -2/5 \quad b = ?$

Use the point-slope equation.

$$y - y_1 = m(x - x_1)$$

$$y - 1 = \frac{-2}{5}(x + 2)$$

$$y - 1 = \frac{-2}{5}x - \frac{4}{5}$$

$$y = \frac{-2}{5}x + \frac{1}{5}$$

13. Line a:

13. Line a:

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$$

13. Line a:

13. Line a:

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{-6 - 2}{-2}$$

13. Line a:

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{6 - 2}{4}$$

13. Line a:

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{6 - 2}{4 - 4}$$

13. Line a:

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{6 - 2}{4 - 4}$$
 $\mathbf{m} = 1/2$

13. Line a:

oblique line \rightarrow y = mx + b through (-4, 2) and (4, 6)

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{6 - 2}{4 - 4}$$
 $\mathbf{m} = 1/2$

 $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

13. Line a: ______ oblique line $\rightarrow y = mx + b$

through (-4, 2) and (4, 6)

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{6 - 2}{4 - 4} \qquad \mathbf{m} = 1/2$$

$$\mathbf{y} - \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$$

$$y - 2 =$$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{6-2}{4-4}$$
 $\mathbf{m} = 1/2$

$$y - y_1 = m(x - x_1)$$

 $y - 2 = \frac{1}{2}($

13. Line a: oblique line $\rightarrow y = mx + b$ through (-4, 2) and (4, 6) $\mathbf{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - .4}$ $\mathbf{m} = 1/2$ $y - y_1 = \mathbf{m}(x - x_1)$ $y - 2 = \frac{1}{2}(x - .4)$

13. Line a: oblique line $\rightarrow y = mx + b$ through (-4, 2) and (4, 6) $\mathbf{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6-2}{4--4} \quad \mathbf{m} = 1/2$ $y - y_1 = \mathbf{m}(x - x_1)$ $y - 2 = \frac{1}{2}(x + 4)$

X

a **13.** Line a: oblique line \rightarrow y = mx + b through (-4, 2) and (4, 6) m = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - 4}$ m = 1/2 X 0 5 -5 $y - y_1 = m(x - x_1)$ -5 $y-2=\frac{1}{2}(x+4)$ y - 2 =

a **13.** Line a: oblique line \rightarrow y = mx + b through (-4, 2) and (4, 6) m = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - 4}$ m = 1/2 X 0 5 -5 $y - y_1 = m(x - x_1)$ -5 $y-2=\frac{1}{2}(x+4)$ $y - 2 = \frac{1}{2}x$

a **13.** Line a: oblique line \rightarrow y = mx + b through (-4, 2) and (4, 6) m = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - 4}$ m = 1/2 X 0 5 -5 $y - y_1 = m(x - x_1)$ -5 $y-2=\frac{1}{2}(x+4)$ $y-2 = \frac{1}{2}x + 2$

a **13.** Line a: oblique line \rightarrow y = mx + b through (-4, 2) and (4, 6) m = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - 4}$ m = 1/2 X 0 5 -5 $y - y_1 = m(x - x_1)$ -5 $y-2=\frac{1}{2}(x+4)$ $y-2 = \frac{1}{2}x + 2$ $\mathbf{v} =$

a **13.** Line a: oblique line \rightarrow y = mx + b through (-4, 2) and (4, 6) $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - 4}$ m = 1/2X 0 5 -5 $y - y_1 = m(x - x_1)$ -5 $y-2=\frac{1}{2}(x+4)$ $y-2 = \frac{1}{2}x + 2$ $y = \frac{1}{2}x$

a **13.** Line a: oblique line \rightarrow y = mx + b 5 through (-4, 2) and (4, 6) m = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - 4}$ m = 1/2 X 0 5 -5 $y - y_1 = m(x - x_1)$ -5 $y-2=\frac{1}{2}(x+4)$ $y-2 = \frac{1}{2}x + 2$ $y = \frac{1}{2}x + 4$
13. Line a:
$$y = \frac{1}{2}x + 4$$

oblique line $\rightarrow y = mx + b$
through (-4, 2) and (4, 6)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6-2}{4-4} \quad m = 1/2$$

$$y - y_1 = m(x - x_1)$$

$$y - 2 = \frac{1}{2}(x + 4)$$

$$y - 2 = \frac{1}{2}x + 2$$

$$y = \frac{1}{2}x + 4$$

13. Line a:
$$y = \frac{1}{2}x + 4$$

oblique line $\rightarrow y = mx + b$
through (-4, 2) and (4, 6)
 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - -4}$ $m = 1/2$
 $y - y_1 = m(x - x_1)$
 $y - 2 = \frac{1}{2}(x + 4)$
 $y - 2 = \frac{1}{2}x + 2$
 $y = \frac{1}{2}x + 4$

14. Line b: _____

14. Line b: y = 6horizontal line through (-7, 6) and (4, 6) \uparrow \uparrow \uparrow $y = k \rightarrow y = 6$

15. Line c: _____

15. Line c: _____

15. Line c: _____

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{6}{2}$$

15. Line c: _____

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{\mathbf{6} - \mathbf{0}}{\mathbf{0}}$$

15. Line c: _____

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{6 - 0}{-7}$$

15. Line c: _____

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{6 - 0}{-7 - 2}$$

15. Line c:
$$y = \frac{-2}{3}x + \frac{4}{3}$$

oblique line $\rightarrow y = mx + b$
through (2, 0) and (-7, 6)
 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 0}{-7 - 2}$ $m = -2/3$
 $y - y_1 = m(x - x_1)$
 $y - 0 = \frac{-2}{3}(x - 2)$
 $y = \frac{-2}{3}x + \frac{4}{3}$

15. Line c:
$$y = \frac{-2}{3}x + \frac{4}{3}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 0}{-7 - 2} \quad m = -2/3$$
$$y - y_1 = m(x - x_1)$$
$$y - 0 = \frac{-2}{3}(x - 2)$$
$$y = \frac{-2}{3}x + \frac{4}{3}$$

15. Line c:
$$y = \frac{-2}{3}x + \frac{4}{3}$$

oblique line $\rightarrow y = mx + b$
through (2, 0) and (7, 6)
Good luck on your homework !!
 $m = \frac{x_2 - x_1}{x_2 - x_1} = \frac{-7 - 2}{x_1 - 7 - 2}$
 $y - y_1 = m(x - x_1)$
 $y - 0 = \frac{-2}{3}(x - 2)$
 $y = \frac{-2}{3}x + \frac{4}{3}$