Algebra II Worksheet \#5 Unit 11 Selected Solutions

Solve for x . Express irrational solutions rounded to the nearest hundredth.

1. $4^{(x-3)}=32$
$\left(2^{2}\right)^{(x-3)}=2^{5}$
$2^{(2 x-6)}=2^{5}$
$2 x-6=5$
$2 \mathrm{x}=11$
$\mathrm{x}=5.5$
2. $\log _{3} x=2$

$$
\begin{aligned}
x & =3^{2} \\
x & =9
\end{aligned}
$$

4. $3^{(2 x-1)}=75$

$\log \left(3^{(2 x-1)}\right)=\log 75$
$(2 x-1) \log 3=\log 75$
$2 x \log 3-\log 3=\log 75$
$2 x \log 3=\log 75+\log 3$
$x=\frac{\log 75+\log 3}{2 \log 3} \approx 2.46$
9. $\quad \log _{2} x=2.75$
$\mathrm{x}=2^{2.75} \approx 6.73$
11. $\$ 1000$ is invested in an account that pays interest at an annual rate of 6% compounded monthly. How long will it take for the value of the account to double?

$$
\begin{array}{cc}
\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{\mathrm{~N}}\right)^{\mathrm{Nt}} & 2000=1000\left(1+\frac{0.06}{12}\right)^{12 \mathrm{t}} \\
\mathrm{~A}=\$ 2000 & 1.005^{12 \mathrm{t}}=2 \\
\mathrm{P}=\$ 1000 & 12 \log 1.005=\log 2 \\
\mathrm{R}=0.06 & \mathrm{t}=\frac{\log 2}{12 \log 1.005} \approx 5.4 \\
\mathrm{~N}=12 & \mathrm{t}=? ?
\end{array}
$$

It will take about 5.4 years.
13. $\$ 600$ is invested in an account that pays interest at an annual rate of 7% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{Rt}} & 1200=600 \mathrm{e}^{0.07 \mathrm{t}} \\
\mathrm{~A}=\$ 1200 & \mathrm{e}^{0.07 \mathrm{t}}=2 \\
\mathrm{P}=\$ 600 & 0.07 \mathrm{t}=\ln 2 \\
\mathrm{R}=0.07 & \mathrm{t}=(\ln 2) \div 0.07 \approx 9.9 \\
\mathrm{t}=? ? &
\end{array}
$$

18. Money is invested in an account that pays interest at an annual rate of 4% compounded daily. How long will it take for the value of the account to double?

$$
\begin{array}{lcc}
\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{\mathrm{~N}}\right)^{\mathrm{Nt}} & 2 \mathrm{P}=\mathrm{P}\left(1+\frac{0.04}{365}\right)^{365 \mathrm{t}} & \mathrm{t}=\frac{\log 2}{365 \log \left(1+\frac{0.04}{365}\right)} \approx 17.3 \\
\mathrm{~A}=2 \mathrm{P} & \left(1+\frac{0.04}{365}\right)^{365 \mathrm{t}}=2 & \\
\mathrm{P}=\mathrm{P} & \mathrm{R}=0.04 \\
\mathrm{~N}=365 & 365 \mathrm{t} \log \left(1+\frac{0.04}{365}\right)=\log 2 & \text { It will take about 17.3 years. } \\
\mathrm{t}=? ?
\end{array}
$$

