Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following logarithms as an algebraic expression in terms of a, b, and/or c.

1. $\quad \log _{\mathrm{N}} \mathbf{3 0}=\underline{\mathbf{a}+\mathbf{b}+\mathbf{c}}$

$$
=\log _{N}[(2)(3)(5)]=
$$

$$
=\log _{N} 2+\log _{N} 3+\log _{N} 5
$$

5. $\log _{\mathrm{N}} 0.8=\underline{2 a-c}$

$$
\begin{aligned}
=\log _{N}\left(\frac{4}{5}\right) & =\log _{N} 4-\log _{N} 5= \\
& =\log _{N} 2^{2}-\log _{N} 5 \\
& =2 \log _{N} 2-\log _{N} 5
\end{aligned}
$$

9. $\quad \log _{\mathrm{N}} 2.5=\underline{\mathbf{c}-\mathbf{a}}$

$$
=\log _{N}(5 / 2)=\log _{N} 5-\log _{N} 2
$$

13. $\log { }_{\mathrm{N}} \sqrt{3}=\underline{0.5 b \text { or } b / 2}$
$=\log _{\mathrm{N}} 3^{0.5}=0.5 \log _{\mathrm{N}} 3$
14. $\log _{\mathrm{N}} 45=\underline{2 b+c}$
$=\log _{\mathrm{N}}\left[\left(3^{2}\right)(5)\right]=$
$=2 \log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5$
15. $\underset{\mathrm{N}}{\boldsymbol{\operatorname { L o g }} \mathbf{0 . 3}}=\underline{b-a-c}$
$=\log _{\mathrm{N}}\left(\frac{3}{10}\right)=\log _{\mathrm{N}} 3-\log _{\mathrm{N}} 10=$ $=\log _{\mathbf{N}} 3-\log _{\mathbf{N}}(2 \cdot 5)=$

$$
=\log _{N} 3-\left(\log _{N} 2+\log _{N} 5\right)=
$$

$$
=\log _{N} 3-\log _{N} 2-\log _{N} 5
$$

11. $\quad \log _{N}(6 N)=\underline{a+b+1}$
$=\log _{\mathrm{N}}[(2)(3)(\mathrm{N})]=$
$=\log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3+\log _{\mathrm{N}} \mathrm{N}$
12. $\log _{\mathrm{N}}\left(\frac{3}{8}\right)=\mathbf{b - 3 a}$
$=\log _{\mathrm{N}} 3-\log _{\mathrm{N}} 8=$
$=\log _{\mathrm{N}} 3-\log _{\mathrm{N}} \mathbf{2}^{3}=$
$=\log _{\mathrm{N}} 3-3 \log _{\mathrm{N}} 2$
Evaluate each of the following.
13. $\log _{8} 4=\underline{2 / 3}$

$$
4=8^{(2 / 3)}
$$

20. $\quad \log _{2} 0.125=-3$
$0.125=1 / 8=2^{-3}$
