Algebra II

Lesson \#3 Unit 11
 Class Worksheet \#3

For Worksheets \#4 - \#6

This lesson will begin with a discussion about solving exponential equations.

This lesson will begin with a discussion about solving exponential equations. Consider these examples from class worksheet \#3.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

This lesson will begin with a discussion about solving exponential equations. Consider these examples from class worksheet \#3.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Notice how these equations are set up.

This lesson will begin with a discussion about solving exponential equations. Consider these examples from class worksheet \#3.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Notice how these equations are set up. We are solving for x.

This lesson will begin with a discussion about solving exponential equations. Consider these examples from class worksheet \#3.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Notice how these equations are set up. We are solving for x. In these equations the exponents are algebraic expressions in terms of x.

This lesson will begin with a discussion about solving exponential equations. Consider these examples from class worksheet \#3.

1. $\boldsymbol{8}^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Notice how these equations are set up. We are solving for x. In these equations the exponents are algebraic expressions in terms of x. These equations are called 'exponential equations'.

This lesson will begin with a discussion about solving exponential equations. Consider these examples from class worksheet \#3.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Notice how these equations are set up. We are solving for x. In these equations the exponents are algebraic expressions in terms of x. These equations are called 'exponential equations'.

This lesson will begin with a discussion about solving exponential equations. Consider these examples from class worksheet \#3.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Notice how these equations are set up. We are solving for x. In these equations the exponents are algebraic expressions in terms of x. These equations are called 'exponential equations'. We will be using two methods to solve exponential equations.

This lesson will begin with a discussion about solving exponential equations. Consider these examples from class worksheet \#3.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Notice how these equations are set up. We are solving for x. In these equations the exponents are algebraic expressions in terms of x. These equations are called 'exponential equations'. We will be using two methods to solve exponential equations. We will use the common base method to solve the first two equations.

This lesson will begin with a discussion about solving exponential equations. Consider these examples from class worksheet \#3.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Notice how these equations are set up. We are solving for x. In these equations the exponents are algebraic expressions in terms of x. These equations are called 'exponential equations'. We will be using two methods to solve exponential equations. We will use the common base method to solve the first two equations. We will use logarithms to solve the last two equations.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=25^{(\mathrm{x}+1)}$

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=25^{(\mathrm{x}+1)}$

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\text { 1. } 8^{(3 x+1)}=16
$$

2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$

Each side of the equation can be expressed as a power of 2 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

1. $8^{(3 x+1)}=16$
[2 ${ }^{3}$]
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$

Each side of the equation can be expressed as a power of 2 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$ $\left[2^{3}\right]^{(3 x+1)}$

Each side of the equation can be expressed as a power of 2 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=\mathbf{2 5}(\mathrm{x}+1)$

$$
\left[2^{3}\right]^{(3 x+1)}=
$$

Each side of the equation can be expressed as a power of 2 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\text { 1. } \begin{aligned}
8^{(3 x+1)} & =16 \\
{\left[2^{3}\right]^{(3 x+1)} } & =2^{4}
\end{aligned}
$$

2. $\mathbf{1 2 5}^{(\mathbf{x}-1)}=25^{(\mathrm{x}+1)}$

Each side of the equation can be expressed as a power of 2 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
\text { 1. } 8^{(3 x+1)} & =16 \\
{\left[2^{3}\right]^{(3 x+1)} } & =2^{4}
\end{aligned}
$$

$$
\text { 2. } 125^{(2 x-1)}=25^{(x+1)}
$$

Each side of the equation can be expressed as a power of 2 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
\text { 1. } 8^{(3 x+1)} & =16 \\
{\left[2^{3}\right]^{(3 x+1)} } & =2^{4}
\end{aligned}
$$

$$
\text { 2. } \mathbf{1 2 5}^{(2 x-1)}=25^{(x+1)}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

1. $8^{(3 x+1)}=16$
2. $\mathbf{1 2 5}^{(\mathbf{2 x}-1)}=25^{(\mathrm{x}+1)}$
$\left[2^{3}\right]^{(3 \mathrm{x}+1)}=2^{4}$
$2($

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{array}{ll}
\text { 1. } 8^{(3 x+1)}=16 & \text { 2. } 125^{(2 x-1)}=25^{(x+1)} \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} & \\
2^{(9 x+3)} &
\end{array}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{array}{ll}
\text { 1. } 8^{(3 x+1)}=16 & \text { 2. } 125^{(2 x-1)}=25^{(x+1)} \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} & \\
2^{(9 x+3)}= &
\end{array}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{array}{ll}
\text { 1. } 8^{(3 x+1)}=16 & \text { 2. } 125^{(2 x-1)}=25^{(x+1)} \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} & \\
2^{(9 x+3)}=2^{4} &
\end{array}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{array}{ll}
\text { 1. } 8^{(3 x+1)}=16 & \text { 2. } \mathbf{1 2 5}^{(2 x-1)}=25^{(x+1)} \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} & \\
2^{(9 x+3)}=2^{4} &
\end{array}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{array}{ll}
\text { 1. } 8^{(3 x+1)}=16 & \text { 2. } 125^{(2 x-1)}=5^{(x+1)} \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} & \\
2^{(9 x+3)}=2^{4} & \\
9 x+3 &
\end{array}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{array}{ll}
\text { 1. } 8^{(3 x+1)}=16 & \text { 2. } 125^{(2 x-1)}=25^{(x+1)} \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} & \\
2^{(9 x+3)}=2^{4} & \\
9 x+3= &
\end{array}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
\text { 1. } 8^{(3 x+1)} & =16 \\
{\left[2^{3}\right]^{(3 x+1)} } & =2^{4} \\
2^{(9 x+3)} & =2^{4} \\
9 x+3 & =4
\end{aligned} \quad \text { 2. } 125^{(2 x-1)}=25^{(x+1)}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
& \text { 1. } 8^{(3 x+1)}=16 \\
& {\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
& 2^{(9 x+3)}=2^{4} \\
& 9 x+3=4
\end{aligned} \quad \text { 2. } 125^{(2 x-1)}=25^{(x+1)}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
& \text { 1. } 8^{(3 x+1)}=16 \\
& {\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
& 2^{(9 x+3)}=2^{4} \\
& 9 x+3=4 \\
& 9 x=
\end{aligned}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1
\end{gathered}
$$

$$
\text { 2. } \mathbf{1 2 5}^{(2 x-1)}=25^{(x+1)}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
& \text { 1. } 8^{(3 x+1)}=16 \\
& {\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
& 2^{(9 x+3)}=2^{4} \\
& 9 x+3=4 \\
& 9 x=1 \\
& x
\end{aligned}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
& \text { 1. } 8^{(3 x+1)}=16 \\
& {\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
& 2^{(9 x+3)}=2^{4} \\
& 9 x+3=4 \\
& 9 x=1 \\
& x=
\end{aligned}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
& \text { 1. } 8^{(3 x+1)}=16 \\
& {\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
& 2^{(9 x+3)}=2^{4} \\
& 9 x+3=4 \\
& 9 x=1 \\
& x=1 / 9
\end{aligned}
$$

Each side of the equation can be expressed as a power of 2 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
& \text { 1. } 8^{(3 x+1)}=16 \\
& {\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
& 2^{(9 x+3)}=2^{4} \\
& 9 x+3=4 \\
& 9 x=1 \\
& x=1 / 9
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{aligned}
& \text { 1. } 8^{(3 x+1)}=16 \\
& {\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
& 2^{(9 x+3)}=2^{4} \\
& 9 x+3=4 \\
& 9 x=1 \\
& x=1 / 9
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}}^{(3 x} 2^{4} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

Each side of the equation can be expressed as a power of 5 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}}^{(3 x} 2^{4} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

2. $125^{(2 x-1)}=25^{(x+1)}$ [53]

Each side of the equation can be expressed as a power of 5 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}}^{(3 x} 2^{4} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=25^{(\mathrm{x}+1)}$
$\left[5^{3}\right]^{(2 x-1)}$

Each side of the equation can be expressed as a power of 5 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}}^{(3 x} 2^{4} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=25^{(\mathrm{x}+1)}$
$\left[5^{3}\right]^{(2 x-1)}=$

Each side of the equation can be expressed as a power of 5 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

2. $\mathbf{1 2 5}^{(2 x-1)}=25^{(x+1)}$
$\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]$

Each side of the equation can be expressed as a power of 5 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}}^{(3 x} 2^{4} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

2. $\mathbf{1 2 5}^{(2 x-1)}=\mathbf{2 5}^{(x+1)}$
$\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}$

Each side of the equation can be expressed as a power of 5 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

Each side of the equation can be expressed as a power of 5 .

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}}^{(3 x} 2^{4} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=25^{(\mathrm{x}+1)}$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

$$
5
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

$$
5^{(6 x-3)}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

$$
5^{(6 x-3)}=
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

$$
5^{(6 x-3)}=5
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

$$
5^{(6 x-3)}=5^{(2 x+2)}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}}_{2^{(9 x+3)}=2^{4}}^{9 x+3=4} \begin{array}{c}
9 x=1 \\
x=1 / 9
\end{array}
\end{gathered}
$$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

$$
5^{(6 x-3)}=5^{(2 x+2)}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}}_{2^{(9 x+3)}=2^{4}}^{9 x+3=4} \begin{array}{c}
9 x=1 \\
x=1 / 9
\end{array}
\end{gathered}
$$

2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=25^{(\mathrm{x}+1)}$

$$
\begin{aligned}
& {\left[5^{3}\right]^{(2 x-1)} }=\left[5^{2}\right]^{(x+1)} \\
& 5^{(6 x-3)}=5^{(2 x+2)} \\
& 6 x-3
\end{aligned}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

$$
5^{(6 x-3)}=5^{(2 x+2)}
$$

$$
6 x-3=
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

$$
\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}
$$

$$
5^{(6 x-3)}=5^{(2 x+2)}
$$

$$
6 x-3=2 x+2
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}}_{2^{(9 x+3)}=2^{4}}^{9 x+3=4} \begin{array}{c}
9 x=1 \\
x=1 / 9
\end{array}
\end{gathered}
$$

2. $125^{(2 x-1)}=25^{(x+1)}$

$$
\begin{aligned}
{\left[5^{3}\right]^{(2 x-1)} } & =\left[5^{2}\right]^{(x+1)} \\
5^{(6 x-3)} & =5^{(2 x+2)} \\
6 x-3 & =2 x+2 \\
4 x &
\end{aligned}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}}_{2^{(9 x+3)}=2^{4}}^{9 x+3=4} \begin{array}{c}
9 x=1 \\
x=1 / 9
\end{array}
\end{gathered}
$$

2. $125^{(2 x-1)}=25^{(x+1)}$

$$
\begin{aligned}
{\left[5^{3}\right]^{(2 x-1)} } & =\left[5^{2}\right]^{(x+1)} \\
5^{(6 x-3)} & =5^{(2 x+2)} \\
6 x-3 & =2 x+2 \\
4 x & =
\end{aligned}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}}_{2^{(9 x+3)}=2^{4}}^{9 x+3=4} \begin{array}{c}
9 x=1 \\
x=1 / 9
\end{array}
\end{gathered}
$$

2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=25^{(\mathrm{x}+1)}$

$$
\begin{aligned}
{\left[5^{3}\right]^{(2 x-1)} } & =\left[5^{2}\right]^{(x+1)} \\
5^{(6 x-3)} & =5^{(2 x+2)} \\
6 x-3 & =2 x+2 \\
4 x & =5
\end{aligned}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

2. $125^{(2 x-1)}=25^{(x+1)}$

$$
\begin{aligned}
{\left[5^{3}\right]^{(2 x-1)} } & =\left[5^{2}\right]^{(x+1)} \\
5^{(6 x-3)} & =5^{(2 x+2)} \\
6 x-3 & =2 x+2 \\
4 x & =5 \\
x &
\end{aligned}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}}^{(3 x} 2^{4} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=25^{(\mathrm{x}+1)}$

$$
\begin{aligned}
{\left[5^{3}\right]^{(2 x-1)} } & =\left[5^{2}\right]^{(x+1)} \\
5^{(6 x-3)} & =5^{(2 x+2)} \\
6 x-3 & =2 x+2 \\
4 x & =5 \\
x & =
\end{aligned}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{gathered}
\text { 1. } 8^{(3 x+1)}=16 \\
{\left[2^{3}\right]^{(3 x+1)}}^{(3 x} 2^{4} \\
2^{(9 x+3)}=2^{4} \\
9 x+3=4 \\
9 x=1 \\
x=1 / 9
\end{gathered}
$$

2. $\mathbf{1 2 5}^{(2 \mathrm{x}-1)}=25^{(\mathrm{x}+1)}$

$$
\begin{gathered}
{\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}} \\
5^{(6 x-3)}=5^{(2 x+2)} \\
6 x-3=2 x+2 \\
4 x=5 \\
x=5 / 4
\end{gathered}
$$

Each side of the equation can be expressed as a power of 5 .

Use the properties of exponents to express the equation in the form $B^{g}=B^{h}$.

The exponents are equal. Solve the equation $g=h$.

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{array}{cc}
\text { 1. } 8^{(3 x+1)}=16 & \text { 2. } 125^{(2 x-1)}=25^{(x+1)} \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} & {\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}} \\
2^{(9 x+3)}=2^{4} & 5^{(6 x-3)}=5^{(2 x+2)} \\
9 x+3=4 & 6 x-3=2 x+2 \\
9 x=1 & 4 x=5 \\
x=1 / 9 & x=5 / 4
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the common base method to solve each of the equations.

$$
\begin{array}{cc}
1.8^{(3 x+1)}=16 & 2.125^{(2 x-1)}=2^{(x+1)} \\
{\left[2^{3}\right]^{(3 x+1)}=2^{4}} & {\left[5^{3}\right]^{(2 x-1)}=\left[5^{2}\right]^{(x+1)}} \\
2^{(9 x+3)}=2^{4} & 5^{(6 x-3)}=5^{(2 x+2)} \\
9 x+3=4 & 6 x-3=2 x+2 \\
9 x=1 & 4 x=5 \\
x=1 / 9 & x=5 / 4
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Take the log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log [
$$

Take the \log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Take the \log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Take the \log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Take the \log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$(2 x-3)(\log 5)$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$2 \mathrm{x} \log 5$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$2 \mathrm{x} \log 5$ -

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$2 x \log 5-3 \log 5$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$2 \times \log 5-3 \log 5=$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$2 \mathrm{x} \log 5-3 \log 5=\log 3$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$2 \mathrm{x} \log 5-3 \log 5=\log 3$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$2 x \log 5-3 \log 5=\log 3$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Add $3 \log 5$ to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5
\end{aligned}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Add $3 \log 5$ to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=
\end{aligned}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Add $3 \log 5$ to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3
\end{aligned}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Add $3 \log 5$ to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+
\end{aligned}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Add $3 \log 5$ to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5
\end{aligned}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Add $3 \log 5$ to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5
\end{aligned}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5
\end{aligned}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Divide each side by $2 \log 5$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=
\end{aligned}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Divide each side by $2 \log 5$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{(3 x+2)}=e^{(x+1)}
\end{aligned}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Divide each side by $2 \log 5$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5}
\end{aligned}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Divide each side by $2 \log 5$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Divide each side by $2 \log 5$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 \times \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

Take the \log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{ll}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log [\\
(2 x-3)(\log 5)=\log 3 & \\
2 \times \log 5-3 \log 5=\log 3 & \\
2 \times \log 5=\log 3+3 \log 5 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \log \left[2^{(3 x+2)}\right]
\end{aligned}
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$$
2 x \log 5-3 \log 5=\log 3
$$

$$
2 x \log 5=\log 3+3 \log 5
$$

$$
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
$$

Take the \log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$
4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
\log \left[2^{(3 x+2)}\right]=
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$$
2 x \log 5-3 \log 5=\log 3
$$

$$
2 x \log 5=\log 3+3 \log 5
$$

$$
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
$$

Take the \log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[2^{(3 x+2)}\right]=\log [
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$$
2 x \log 5-3 \log 5=\log 3
$$

$$
2 x \log 5=\log 3+3 \log 5
$$

$$
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
$$

Take the \log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3
\end{aligned}
$$

4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[2^{(3 x+2)}\right]=\log \left[\mathrm{e}^{(\mathrm{x}+1)}\right]
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$$
2 x \log 5-3 \log 5=\log 3
$$

$$
2 x \log 5=\log 3+3 \log 5
$$

$$
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
$$

Take the \log of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3
\end{aligned}
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$$
2 x \log 5-3 \log 5=\log 3
$$

$$
2 x \log 5=\log 3+3 \log 5
$$

$$
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right]
\end{aligned}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3
\end{aligned}
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$$
2 x \log 5-3 \log 5=\log 3
$$

$$
2 x \log 5=\log 3+3 \log 5
$$

$$
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
$$

4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[2^{(3 x+2)}\right]=\log \left[\mathrm{e}^{(\mathrm{x}+1)}\right]
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3
\end{aligned}
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$$
2 x \log 5-3 \log 5=\log 3
$$

$$
2 x \log 5=\log 3+3 \log 5
$$

$$
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
$$

4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[2^{(3 x+2)}\right]=\log \left[\mathrm{e}^{(\mathrm{x}+1)}\right]
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{align*}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& \log \left[2^{(3 x+2)}=e^{(x+1)}\right]=\log \left[e^{(x+1)}\right] \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{(3 x+2)(}{2 \log 3+3 \log 5} \approx 1.84
\end{align*}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& \log \left[2^{(3 x+2)}=e^{(x+1)}\right]=\log \left[e^{(x+1)}\right] \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{(3 x+2)(\log 2)}{2 \log 5}+3 \log 5 \\
& 2
\end{aligned}{ }^{(2.84} \begin{aligned}
& \\
&
\end{aligned}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[\mathrm{e}^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)= \\
2 x \log 5-3 \log 5=\log 3 & \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{ll}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[\mathrm{e}^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)= \\
2 x \log 5-3 \log 5=\log 3 & \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{ll}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \left(2^{(3 x+2)}\right]=\log \left[\mathrm{e}^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\\
2 x \log 5-3 \log 5=\log 3 & \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

$$
\log _{B}\left(m^{n}\right)=n \log _{B} m
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{ll}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2 \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms. Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+ \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{ll}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2 \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2= \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms. Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2= \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms. Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+ \\
2 \times \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms. Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms. Perform the indicated operation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Add -xloge-2log 2 to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{ll}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Add -xloge-2log 2 to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{ll}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \\
\log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Add -xloge-2log 2 to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{ll}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e= \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Add -xloge-2log 2 to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e=\log e \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Add -xloge-2log 2 to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Add -xloge-2log 2 to each side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{lc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 &
\end{array}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Factor out the x from this expression.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cl}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \\
\log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 \times \log 5-3 \log 5=\log 3 & 3 \times \log 2+2 \log 2=x \log e+\log e \\
2 \times \log 5=\log 3+3 \log 5 & 3 \times \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 & (3 \log 2
\end{array}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Factor out the x from this expression.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{ll}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \\
\log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 \times \log 5=\log 3+3 \log 5 & 3 \times \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 & (3 \log 2- \\
x
\end{array}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Factor out the \mathbf{x} from this expression.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \quad \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
& (3 x+2)(\log 2)=(x+1)(\log e) \\
& 3 x \log 2+2 \log 2=x \log e+\log e \\
& 3 x \log 2-x \log e=\log e-2 \log 2 \\
& (3 \log 2-\log e)
\end{aligned}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Factor out the x from this expression.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 \times \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \quad \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
& (3 x+2)(\log 2)=(x+1)(\log e) \\
& 3 x \log 2+2 \log 2=x \log e+\log e \\
& 3 x \log 2-x \log e=\log e-2 \log 2 \\
& (3 \log 2-\log e) x
\end{aligned}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Factor out the x from this expression.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 \times \log 5-3 \log 5=\log 3 \\
& 2 \times \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
& (3 x+2)(\log 2)=(x+1)(\log e)
\end{aligned}
$$

$$
3 x \log 2+2 \log 2=x \log e+\log e
$$

$$
3 x \log 2-x \log e=\log e-2 \log 2
$$

$$
(3 \log 2-\log e) x=
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Factor out the x from this expression.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
& (3 x+2)(\log 2)=(x+1)(\log e)
\end{aligned}
$$

$$
3 x \log 2+2 \log 2=x \log e+\log e
$$

$$
3 x \log 2-x \log e=\log e-2 \log 2
$$

$$
(3 \log 2-\log e) x=\log e-2 \log 2
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Factor out the x from this expression.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 \times \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
& (3 x+2)(\log 2)=(x+1)(\log e)
\end{aligned}
$$

$$
3 x \log 2+2 \log 2=x \log e+\log e
$$

$$
3 x \log 2-x \log e=\log e-2 \log 2
$$

$$
(3 \log 2-\log e) x=\log e-2 \log 2
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 \times \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
& (3 x+2)(\log 2)=(x+1)(\log e)
\end{aligned}
$$

$$
3 x \log 2+2 \log 2=x \log e+\log e
$$

$$
3 x \log 2-x \log e=\log e-2 \log 2
$$

$$
(3 \log 2-\log e) x=\log e-2 \log 2
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Divide each side by $3 \log 2-\log e$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 & (3 \log 2-\log e) x=\log e-2 \log 2 \\
x & x=
\end{array}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Divide each side by $3 \log 2-\log e$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 & (3 \log 2-\log e) x=\log e-2 \log 2 \\
x & x=\underline{\log e-2 \log 2}
\end{array}
$$

Take the \log of both sides of the equation. Apply the 'power rule' of logarithms. Divide each side by $3 \log 2-\log e$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
& (3 x+2)(\log 2)=(x+1)(\log e) \\
& 3 x \log 2+2 \log 2=x \log e+\log e \\
& 3 x \log 2-x \log e=\log e-2 \log 2 \\
& (3 \log 2-\log e) x=\log e-2 \log 2 \\
& x=\frac{\log e-2 \log 2}{3 \log 2-\log e}
\end{aligned}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Divide each side by $3 \log 2-\log e$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 3. } 5^{(2 x-3)}=3 \\
& \log \left[5^{(2 x-3)}\right]=\log 3 \\
& (2 x-3)(\log 5)=\log 3 \\
& 2 x \log 5-3 \log 5=\log 3 \\
& 2 x \log 5=\log 3+3 \log 5 \\
& x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
& \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
& (3 x+2)(\log 2)=(x+1)(\log e) \\
& 3 x \log 2+2 \log 2=x \log e+\log e \\
& 3 x \log 2-x \log e=\log e-2 \log 2 \\
& (3 \log 2-\log e) x=\log e-2 \log 2 \\
& x=\frac{\log e-2 \log 2}{3 \log 2-\log e} \approx-0.36
\end{aligned}
$$

Take the \log of both sides of the equation.
Apply the 'power rule' of logarithms.
Divide each side by $3 \log 2-\log e$.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 & (3 \log 2-\log e) x=\log e-2 \log 2 \\
& x=\frac{\log e-2 \log 2}{3 \log 2-\log e} \approx-0.36
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 & (3 \log 2-\log e) x=\log e-2 \log 2 \\
& x=\frac{\log e-2 \log 2}{3 \log 2-\log e} \approx-0.36
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$

$$
\text { 4. } 2^{(3 x+2)}=e^{(x+1)}
$$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
\log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right]
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$$
(3 x+2)(\log 2)=(x+1)(\log e)
$$

$$
2 x \log 5-3 \log 5=\log 3
$$

$$
3 x \log 2+2 \log 2=x \log e+\log e
$$

$$
2 x \log 5=\log 3+3 \log 5
$$

$$
3 x \log 2-x \log e=\log e-2 \log 2
$$

$$
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
$$

$$
(3 \log 2-\log e) x=\log e-2 \log 2
$$

$$
x=\frac{\log e-2 \log 2}{3 \log 2-\log e} \approx-0.36
$$

Common logarithms were used when solving these problems.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.
3. $5^{(2 x-3)}=3$

$$
\log \left[5^{(2 x-3)}\right]=\log 3
$$

$$
(2 x-3)(\log 5)=\log 3
$$

$$
2 x \log 5-3 \log 5=\log 3
$$

$$
2 x \log 5=\log 3+3 \log 5
$$

$$
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84
$$

4. $2^{(3 x+2)}=e^{(x+1)}$

$$
\log \left[2^{(3 x+2)}\right]=\log \left[\mathrm{e}^{(\mathrm{x}+1)}\right]
$$

$$
(3 x+2)(\log 2)=(x+1)(\log e)
$$

$$
3 x \log 2+2 \log 2=x \log e+\log e
$$

$$
3 x \log 2-x \log e=\log e-2 \log 2
$$

$$
(3 \log 2-\log e) x=\log e-2 \log 2
$$

$$
x=\frac{\log e-2 \log 2}{3 \log 2-\log e} \approx-0.36
$$

Common logarithms were used when solving these problems. Natural logarithms would have worked as well.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] \\
(2 x-3)(\log 5)=\log 3 & (3 x+2)(\log 2)=(x+1)(\log e) \\
2 x \log 5-3 \log 5=\log 3 & 3 x \log 2+2 \log 2=x \log e+\log e \\
2 x \log 5=\log 3+3 \log 5 & 3 x \log 2-x \log e=\log e-2 \log 2 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 & (3 \log 2-\log e) x=\log e-2 \log 2 \\
& x=\frac{\log e-2 \log 2}{3 \log 2-\log e} \approx-0.36
\end{array}
$$

Common logarithms were used when solving these problems. Natural logarithms would have worked as well. What follows are these two problem done using natural logarithms for comparison.

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 3. } 5^{(2 x-3)}=3 & \text { 3. } 5^{(2 x-3)}=3 \\
\log \left[5^{(2 x-3)}\right]=\log 3 & \ln \left[5^{(2 x-3)}\right]=\ln 3 \\
(2 x-3)(\log 5)=\log 3 & (2 x-3)(\ln 5)=\ln 3 \\
2 x \log 5-3 \log 5=\log 3 & 2 x \ln 5-3 \ln 5=\ln 3 \\
2 x \log 5=\log 3+3 \log 5 & 2 x \ln 5=\ln 3+3 \ln 5 \\
x=\frac{\log 3+3 \log 5}{2 \log 5} \approx 1.84 & x=\frac{\ln 3+3 \ln 5}{2 \ln 5} \approx 1.84
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Use logarithms to solve each of the equations. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{cc}
\text { 4. } 2^{(3 x+2)}=e^{(x+1)} & \text { 4. } 2^{(3 x+2)}=e^{(x+1)} \\
\log \left[2^{(3 x+2)}\right]=\log \left[e^{(x+1)}\right] & \ln \left[2^{(3 x+2)}\right]=\ln \left[e^{(x+1)}\right] \\
(3 x+2)(\log 2)=(x+1)(\log e) & (3 x+2)(\ln 2)=(x+1)(\ln e) \\
3 x \log 2+2 \log 2=x \log e+\log e & 3 x \ln 2+2 \ln 2=x+1 \\
3 x \log 2-x \log e=\log e-2 \log 2 & 3 x \ln 2-x=1-2 \ln 2 \\
(3 \log 2-\log e) x=\log e-2 \log 2 & (3 \ln 2-1) x=1-2 \ln 2 \\
x=\frac{\log e-2 \log 2}{3 \log 2-\log e} \approx-0.36 & x=\frac{1-2 \ln 2}{3 \ln 2-1} \approx-0.36
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
6. $\log _{2} x=-3$
7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
6. $\log _{2} x=-3$
7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
6. $\log _{2} x=-3$
7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
6. $\log _{2} x=-3$
$\mathbf{x}=$
7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
6. $\log _{2} x=-3$
$x=2^{3}$
7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
6. $\log _{2} x=-3$
$x=2^{3}$
$\mathbf{x}=$
7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
6. $\log _{2} x=-3$
$x=2^{3}$
$x=8$
7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\text { 5. } \begin{gathered}
\log _{2} x=3 \\
x=2^{3} \\
x=8
\end{gathered}
$$

7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
6. $\log _{2} x=-3$
$x=2^{3}$

$$
x=8
$$

7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$

$$
x=8
$$

7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$
11. $\log _{2} x=-3$
$\mathbf{x}=$
$\log _{B} x=k$
$\mathbf{x}=\mathbf{B}^{\mathbf{k}}$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$

$$
x=8
$$

7. $\log _{4} x=2.5$
8. $\log _{3} x=1.5$
9. $\log _{2} x=-3$

$$
x=2^{-3}
$$

8. $\log _{4} x=-1.5$
9. $\log x=0.8$
.
10. $\log x=0.8$

$$
\mathbf{x}=\mathbf{B}^{\mathbf{k}}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$
6. $\log _{2} x=-3$
$\mathrm{x}=2^{-3}=$

$$
x=8
$$

7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$
6. $\log _{2} x=-3$

$$
x=2^{-3}=1 / 2^{3}
$$

$$
x=8
$$

7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$

$$
x=8
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=
\end{gathered}
$$

7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$

$$
x=8
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$

$$
x=8
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$

$$
x=8
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$
8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\text { 5. } \begin{gathered}
\log _{2} x=3 \\
x=2^{3} \\
x=8
\end{gathered}
$$

7. $\log _{4} x=2.5$
$\mathbf{x}=$
8. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$
9. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\text { 5. } \begin{gathered}
\log _{2} x=3 \\
x=2^{3} \\
x=8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
x=4^{2.5}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$
9. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=\mathbf{B}^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\text { 5. } \begin{gathered}
\log _{2} x=3 \\
x=2^{3} \\
x=8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
x=4^{2.5}=
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$
9. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\text { 5. } \begin{gathered}
\log _{2} x=3 \\
x=2^{3} \\
x=8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
x=4^{2.5}=4^{(5 / 2)}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$
9. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \quad x=2^{3} \\
& x=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \quad x=2^{3} \\
& x=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \quad x=2^{3} \\
& x=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\text { 5. } \begin{gathered}
\log _{2} x=3 \\
x=2^{3} \\
x=8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5}
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$
9. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$\mathrm{x}=\mathbf{2}^{3}$

$$
x=8
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=
\end{aligned}
$$

9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=\mathbf{B}^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$\mathrm{x}=\mathbf{2}^{3}$
6. $\log _{2} x=-3$

$$
x=8
$$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

9. $\log _{3} x=1.5$
10. $\log _{4} x=-1.5$
11. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=\mathbf{B}^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$\mathrm{x}=\mathbf{2}^{3}$
6. $\log _{2} x=-3$

$$
x=8
$$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

9. $\log _{3} x=1.5$
10. $\log _{4} x=-1.5$
11. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$\mathrm{x}=\mathbf{2}^{3}$
6. $\log _{2} x=-3$

$$
x=8
$$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

8. $\log _{4} x=-1.5$
9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& \mathrm{x}=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathrm{x}=32
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
\mathbf{x}=
$$

9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$\mathrm{x}=\mathbf{2}^{3}$
6. $\log _{2} x=-3$

$$
x=8
$$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

9. $\log _{3} x=1.5$
10. $\log _{4} x=-1.5$

$$
x=4^{-1.5}
$$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$\mathrm{x}=\mathbf{2}^{3}$
$\mathrm{x}=8$
6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

9. $\log _{3} x=1.5$
10. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=
$$

10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$

$$
x=8
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

9. $\log _{3} x=1.5$
10. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}
$$

10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$

$$
x=8
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

9. $\log _{3} x=1.5$
10. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=
$$

10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$x=2^{3}$

$$
x=8
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

9. $\log _{3} x=1.5$
10. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
\mathbf{x}=
$$

9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathrm{x}=32
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}
$$

9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathbf{x}=32
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=
$$

9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathbf{x}=32
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathbf{x}=32
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& x=2^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathrm{x}=32
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

9. $\log _{3} x=1.5$
10. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
\mathbf{x}=
$$

10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& x=2^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathbf{x}=32
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

9. $\log _{3} x=1.5$
10. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& x=2^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathrm{x}=32
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

9. $\log _{3} x=1.5$
10. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

9. $\log _{3} x=1.5$
10. $\log x=0.8$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathbf{x}=32
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$\mathrm{x}=\mathbf{2}^{3}$
6. $\log _{2} x=-3$

$$
x=8
$$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

$$
\begin{aligned}
& \text { 9. } \log _{3} x=1.5 \\
& x=
\end{aligned}
$$

10. $\log x=0.8$
$\log _{B} x=k$
$\mathbf{x}=\mathbf{B}^{\mathbf{k}}$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathbf{x}=32
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

$$
\text { 9. } \begin{aligned}
& \log _{3} x=1.5 \\
& x=3^{1.5}
\end{aligned}
$$

$$
\log _{B} x=k \quad x^{2}=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$\mathrm{x}=\mathbf{2}^{3}$
6. $\log _{2} x=-3$

$$
x=8
$$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

$$
\text { 9. } \begin{aligned}
& \log _{3} x=1.5 \\
& x=3^{1.5} \approx
\end{aligned}
$$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
5. $\log _{2} x=3$
$\mathrm{x}=\mathbf{2}^{3}$
6. $\log _{2} x=-3$

$$
x=8
$$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

$$
\text { 9. } \begin{aligned}
\log _{3} x & =1.5 \\
x=3^{1.5} & \approx 5.20
\end{aligned}
$$

10. $\log x=0.8$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

9. $\log _{3} x=1.5$

$$
x=3^{1.5} \approx 5.20
$$

8. $\log _{4} x=-1.5$
9. $\log x=0.8$

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathrm{x}=32
\end{aligned}
$$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

9. $\log _{3} x=1.5$

$$
x=3^{1.5} \approx 5.20
$$

10. $\log x=0.8$

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathbf{x}=32
\end{aligned}
$$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& x=2^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathbf{x}=\mathbf{3 2}
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

9. $\log _{3} x=1.5$

$$
x=3^{1.5} \approx 5.20
$$

8. $\log _{4} x=-1.5$
$x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}$
$x=1 /(\sqrt{4})^{3}=1 / 2^{3}$

$$
x=1 / 8
$$

10. $\log x=0.8$
$\mathbf{x}=$
$\log _{B} x=k$
$\mathbf{x}=\mathbf{B}^{k}$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.
6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

9. $\log _{3} x=1.5$

$$
x=3^{1.5} \approx 5.20
$$

10. $\log x=0.8$ $\mathrm{x}=10^{0.8}$

$$
\log _{B} x=k \quad x^{k}=B^{k}
$$

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathbf{x}=32
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& \mathrm{x}=\mathbf{2}^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathrm{x}=32
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

9. $\log _{3} x=1.5$

$$
x=3^{1.5} \approx 5.20
$$

8. $\log _{4} x=-1.5$
$x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}$
$x=1 /(\sqrt{4})^{3}=1 / 2^{3}$

$$
x=1 / 8
$$

10. $\log x=0.8$

$$
x=10^{0.8} \approx
$$

$$
\log _{B} x=k \quad \longrightarrow \quad \mathbf{x}=\mathbf{B}^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& x=2^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathrm{x}=32
\end{aligned}
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

9. $\log _{3} x=1.5$

$$
x=3^{1.5} \approx 5.20
$$

8. $\log _{4} x=-1.5$
$x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}$
$x=1 /(\sqrt{4})^{3}=1 / 2^{3}$

$$
x=1 / 8
$$

10. $\log x=0.8$

$$
x=10^{0.8} \approx 6.31
$$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 5. } \log _{2} x=3 \\
& x=2^{3} \\
& \mathrm{x}=8 \\
& \text { 7. } \log _{4} x=2.5 \\
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& \mathrm{x}=32
\end{aligned}
$$

9. $\log _{3} x=1.5$

$$
x=3^{1.5} \approx 5.20
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$

$$
x=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}
$$

$$
x=1 /(\sqrt{4})^{3}=1 / 2^{3}
$$

$$
x=1 / 8
$$

10. $\log x=0.8$

$$
x=10^{0.8} \approx 6.31
$$

$$
\log _{B} x=k \quad x=B^{k}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve for x. Express irrational solutions rounded to the nearest hundredth.

$$
\text { 5. } \begin{gathered}
\log _{2} x=3 \\
x=2^{3} \\
x=8
\end{gathered}
$$

7. $\log _{4} x=2.5$

$$
\begin{aligned}
& x=4^{2.5}=4^{(5 / 2)} \\
& x=(\sqrt{4})^{5}=2^{5} \\
& x=32
\end{aligned}
$$

9. $\log _{3} x=1.5$

$$
x=3^{1.5} \approx 5.20
$$

6. $\log _{2} x=-3$

$$
\begin{gathered}
x=2^{-3}=1 / 2^{3} \\
x=1 / 8
\end{gathered}
$$

8. $\log _{4} x=-1.5$
$\mathrm{x}=4^{-1.5}=4^{(-3 / 2)}=1 / 4^{(3 / 2)}$
$x=1 /(\sqrt{4})^{3}=1 / 2^{3}$

$$
x=1 / 8
$$

10. $\log x=0.8$

$$
x=10^{0.8} \approx 6.31
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=$
12. $\log _{5} 3=$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=$
12. $\log _{5} 3=$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=$
12. $\log _{5} 3=$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

We will begin by deriving the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=$
13. $\log _{2} 7=$
12. $\log _{5} 3=$
14. $\log _{8} 200=$

We will begin by deriving the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=$
12. $\log _{5} 3=$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

We will begin by deriving the change of base formula. Suppose $\log _{5} 8=A$.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=A
$$

We will begin by deriving the change of base formula. Suppose $\log _{5} 8=A$.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=A
$$

We will begin by deriving the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=A
$$

We will begin by deriving the change of base formula.
Using the definition of $\log s$,

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=A
$$

We will begin by deriving the change of base formula.
Using the definition of logs, this implies that $5^{\mathrm{A}}=8$.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8
\end{gathered}
$$

We will begin by deriving the change of base formula. Using the definition of logs, this implies that $5^{\mathrm{A}}=8$.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8
\end{gathered}
$$

We will begin by deriving the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8
\end{gathered}
$$

We will begin by deriving the change of base formula.
Next, we will take the $\log _{B}$ of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 11. } \log _{5} 8=A \\
& 5^{A}=8 \\
& \log _{B}\left(5^{A}\right)
\end{aligned}
$$

We will begin by deriving the change of base formula.
Next, we will take the $\log _{B}$ of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=
\end{gathered}
$$

We will begin by deriving the change of base formula.
Next, we will take the $\log _{B}$ of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=\log _{B} 8
\end{gathered}
$$

We will begin by deriving the change of base formula.
Next, we will take the $\log _{B}$ of both sides of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=\log _{B} 8
\end{gathered}
$$

We will begin by deriving the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=\log _{B} 8
\end{gathered}
$$

We will begin by deriving the change of base formula.
Next, we will apply the power rule on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 11. } \log _{5} 8=A \\
& 5^{A}=8 \\
& \log _{B}\left(5^{A}\right)=\log _{B} 8 \\
& \operatorname{ALog}_{B} 5
\end{aligned}
$$

We will begin by deriving the change of base formula.
Next, we will apply the power rule on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=\log _{B} 8 \\
\operatorname{ALog}_{B} 5=
\end{gathered}
$$

We will begin by deriving the change of base formula.
Next, we will apply the power rule on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11 } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=\log _{B} 8 \\
\operatorname{ALog}_{B} 5=\log _{B} 8
\end{gathered}
$$

We will begin by deriving the change of base formula.
Next, we will apply the power rule on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11 } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=\log _{B} 8 \\
\operatorname{ALog}_{B} 5=\log _{B} 8
\end{gathered}
$$

We will begin by deriving the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=\log _{B} 8 \\
\operatorname{ALog}_{B} 5=\log _{B} 8
\end{gathered}
$$

We will begin by deriving the change of base formula.
Finally, we will divide each side of the equation by $\log _{\mathrm{B}} 5$ to solve for A.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 11 } \log _{5} 8=A \\
& 5^{A}=8 \\
& \log _{B}\left(5^{A}\right)=\log _{B} 8 \\
& \operatorname{ALog}_{B} 5=\log _{B} 8 \\
& A=
\end{aligned}
$$

We will begin by deriving the change of base formula.
Finally, we will divide each side of the equation by $\log _{\mathrm{B}} 5$ to solve for A.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=\log _{B} 8 \\
\operatorname{ALog}_{B} 5=\log _{B} 8 \\
A=\underline{\log _{B} 8}
\end{gathered}
$$

We will begin by deriving the change of base formula.
Finally, we will divide each side of the equation by $\log _{\mathrm{B}} 5$ to solve for A.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{gathered}
\text { 11. } \log _{5} 8=A \\
5^{A}=8 \\
\log _{B}\left(5^{A}\right)=\log _{B} 8 \\
\operatorname{ALog}_{B} 5=\log _{B} 8 \\
A=\frac{\log _{B} 8}{\log _{B} 5}
\end{gathered}
$$

We will begin by deriving the change of base formula.
Finally, we will divide each side of the equation by $\log _{\mathrm{B}} 5$ to solve for A.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 11. } \log _{5} 8=A \\
& 5^{A}=8 \\
& \log _{B}\left(5^{A}\right)=\log _{B} 8 \\
& \operatorname{ALog}_{B} 5=\log _{B} 8 \\
& A=\frac{\log _{B} 8}{\log _{B} 5}
\end{aligned}
$$

We will begin by deriving the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 11. } \log _{5} 8=A \\
& 5^{A}=8 \\
& \log _{B}\left(5^{A}\right)=\log _{B} 8 \\
& \operatorname{ALog}_{B} 5=\log _{B} 8 \\
& A=\frac{\log _{B} 8}{\log _{B} 5}
\end{aligned}
$$

We will begin by deriving the change of base formula.
Now, we can substitute this expression for A in the original equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 11. } \log _{5} 8=A=\frac{\log _{B} 8}{\log _{B} 5} \\
& 5^{A}=8 \\
& \log _{B}\left(5^{A}\right)=\log _{B} 8 \\
& \operatorname{ALog}_{B} 5=\log _{B} 8 \\
& A=\frac{\log _{B} 8}{\log _{B} 5}
\end{aligned}
$$

We will begin by deriving the change of base formula.
Now, we can substitute this expression for A in the original equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{aligned}
& \text { 11. } \log _{5} 8=\frac{\log _{B} 8}{\log _{B} 5} \\
& 5^{A}=8 \\
& \log _{B}\left(5^{A}\right)=\log _{B} 8 \\
& \operatorname{ALog}_{B} 5=\log _{B} 8 \\
& A=\frac{\log _{B} 8}{\log _{B} 5}
\end{aligned}
$$

We will begin by deriving the change of base formula.
Now, we can substitute this expression for A in the original equation.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log _{B} 8}{\log _{B} 5}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log _{B} 8}{\log _{B} 5}
$$

We will begin by deriving the change of base formula. We have 'changed the base' from base 5 to base B.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log _{B} 8}{\log _{B} 5}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log _{B} 8}{\log _{B} 5}
$$

We will begin by deriving the change of base formula.
Here is the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log _{B} 8}{\log _{B} 5}
$$

The Change of Base Formula

We will begin by deriving the change of base formula.
Here is the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log _{B} 8}{\log _{B} 5}
$$

$$
\begin{aligned}
& \text { The Change of Base Formula } \\
& \qquad \log _{K} N=
\end{aligned}
$$

We will begin by deriving the change of base formula.
Here is the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log _{B} 8}{\log _{B} 5}
$$

$$
\begin{aligned}
& \text { The Change of Base Formula } \\
& \qquad \log _{K} N=\underline{\log _{B} N}
\end{aligned}
$$

We will begin by deriving the change of base formula.
Here is the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log _{B} 8}{\log _{B} 5}
$$

$$
\begin{aligned}
& \text { The Change of Base Formula } \\
& \qquad \log _{K} N=\frac{\log _{B} N}{\log _{B} K}
\end{aligned}
$$

We will begin by deriving the change of base formula.
Here is the change of base formula.

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{\mathrm{B}} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=$
12. $\log _{5} 3=$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=$
12. $\log _{5} 3=$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=
$$

12. $\log _{5} 3=$

We will change the base to base 10 , the common logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{\mathrm{B}} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\underline{\log 8}
$$

12. $\log _{5} 3=$

We will change the base to base 10 , the common logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log 8}{\log 5}
$$

12. $\log _{5} 3=$

We will change the base to base 10 , the common logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log 8}{\log 5} \approx
$$

12. $\log _{5} 3=$

We will change the base to base 10 , the common logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29 \quad \text { 12. } \log _{5} 3=
$$

We will change the base to base 10 , the common logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29 \quad \text { 12. } \log _{5} 3=
$$

We could have changed the base to base e, the natural logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{\mathrm{B}} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \begin{aligned}
\log _{5} 8 & =\frac{\log 8}{\log 5} \approx 1.29 \\
\log _{5} 8 & =
\end{aligned}
$$

We could have changed the base to base e, the natural logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \begin{aligned}
\log _{5} 8 & =\frac{\log 8}{\log 5} \approx 1.29 \\
\log _{5} 8 & =\xrightarrow[\ln 8]{ }
\end{aligned}
$$

We could have changed the base to base e, the natural logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{\mathrm{B}} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \begin{aligned}
\log _{5} 8 & =\frac{\log 8}{\log 5} \approx 1.29 \\
\log _{5} 8 & =\frac{\ln 8}{\ln 5}
\end{aligned}
$$

We could have changed the base to base e, the natural logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \begin{aligned}
\log _{5} 8 & =\frac{\log 8}{\log 5} \approx 1.29 \\
\log _{5} 8 & =\frac{\ln 8}{\ln 5} \approx
\end{aligned}
$$

We could have changed the base to base e, the natural logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \begin{aligned}
\log _{5} 8 & =\frac{\log 8}{\log 5} \approx 1.29 \\
\log _{5} 8 & =\frac{\ln 8}{\ln 5} \approx 1.29
\end{aligned}
$$

We could have changed the base to base e, the natural logarithm.
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\begin{array}{rlr}
\text { 11. } \log _{5} 8 & =\frac{\log 8}{\log 5} \approx 1.29 & \text { 12. } \log _{5} 3= \\
\log _{5} 8 & =\frac{\ln 8}{\ln 5} \approx 1.29 &
\end{array}
$$

13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{\mathrm{B}} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.

$$
\text { 11. } \begin{aligned}
\log _{5} 8 & =\frac{\log 8}{\log 5} \approx 1.29 \\
\log _{5} 8 & =\frac{\ln 8}{\ln 5} \approx 1.29
\end{aligned}
$$

The results are exactly equal to each other, as expected.

13. $\log _{2} 7=$

14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{\mathrm{B}} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{\mathrm{B}} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\underline{\log 3}$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5}$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\underline{\log 7}$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2}$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx 2.81$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx 2.81$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx 2.81$
14. $\log _{8} 200=$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx 2.81$
14. $\log _{8} 200=\underline{\log 200}$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx 2.81$
14. $\log _{8} 200=\frac{\log 200}{\log 8}$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx 2.81$
14. $\log _{8} 200=\frac{\log 200}{\log 8} \approx$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx 2.81$
14. $\log _{8} 200=\frac{\log 200}{\log 8} \approx 2.55$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx 2.81$
14. $\log _{8} 200=\frac{\log 200}{\log 8} \approx 2.55$

The Change of Base Formula

$$
\log _{K} N=\frac{\log _{B} N}{\log _{B} K}
$$

Algebra II Class Worksheet \#3 Unit 11

Use the change of base formula to evaluate each of the following logarithms. Express your answers rounded to the nearest hundredth.
11. $\log _{5} 8=\frac{\log 8}{\log 5} \approx 1.29$
12. $\log _{5} 3=\frac{\log 3}{\log 5} \approx 0.68$
13. $\log _{2} 7=\frac{\log 7}{\log 2} \approx 2.81$
14. $\log _{8} 200=\frac{\log 200}{\log 8} \approx 2.55$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach \$600?

Write the compound interest formula.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach \$600?

$$
\mathbf{A}=\mathbf{P}(1+\mathbf{R} / \mathbf{N})^{\mathrm{NT}}
$$

Write the compound interest formula.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{R} / \mathbf{N})^{\mathbf{N T}}
$$

Write the compound interest formula.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{R} / \mathbf{N})^{\mathbf{N T}}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{R} / \mathbf{N})^{\mathbf{N T}}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(1+R / N)^{N T} \\
A=\mathbf{6 0 0}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(1+R / N)^{N T} \\
A=600
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(1+R / N)^{N T} \\
A=\mathbf{6 0 0}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(1+R / N)^{N T} \\
A=\mathbf{6 0 0} \\
P=\mathbf{5 0 0}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(1+R / N)^{N T} \\
A=\mathbf{6 0 0} \\
P=\mathbf{5 0 0}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(1+R / N)^{N T} \\
A=\mathbf{6 0 0} \\
P=\mathbf{5 0 0}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(1+R / N)^{\mathrm{NT}} \\
A=\mathbf{6 0 0} \\
P=500 \\
R=\mathbf{0 . 0 3}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(1+R / N)^{\mathrm{NT}} \\
A=\mathbf{6 0 0} \\
P=500 \\
R=\mathbf{0 . 0 3}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach \$600?

$$
\begin{gathered}
A=P(1+R / N)^{N T} \\
A=\mathbf{6 0 0} \\
P=\mathbf{5 0 0} \\
R=\mathbf{0 . 0 3}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach \$600?

$$
\begin{gathered}
A=P(\mathbf{1}+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} \\
A=\mathbf{6 0 0} \\
\mathbf{P}=\mathbf{5 0 0} \\
\mathrm{R}=\mathbf{0 . 0 3} \\
\mathrm{N}=\mathbf{1 2}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(\mathbf{1}+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} \\
A=\mathbf{6 0 0} \\
\mathbf{P}=\mathbf{5 0 0} \\
\mathrm{R}=\mathbf{0 . 0 3} \\
\mathrm{N}=\mathbf{1 2}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{gathered}
A=P(\mathbf{1}+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} \\
A=\mathbf{6 0 0} \\
\mathbf{P}=\mathbf{5 0 0} \\
\mathrm{R}=\mathbf{0 . 0 3} \\
\mathrm{N}=\mathbf{1 2}
\end{gathered}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A= P(1+R / N)^{\mathrm{NT}} \longrightarrow 600 \\
& \mathrm{~A}=\mathbf{6 0 0} \\
& \mathrm{P}=\mathbf{5 0 0} \\
& \mathrm{R}=\mathbf{0 . 0 3} \\
& \mathrm{N}=\mathbf{1 2}
\end{aligned}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A=P(1+R / N)^{\mathrm{NT}} \longrightarrow 600= \\
& \mathrm{A}=\mathbf{6 0 0} \\
& \mathrm{P}=\mathbf{5 0 0} \\
& \mathrm{R}=\mathbf{0 . 0 3} \\
& \mathrm{N}=\mathbf{1 2}
\end{aligned}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A=P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(\\
& A=600 \\
& P=500 \\
& R=\mathbf{0 . 0 3} \\
& \mathrm{N}=\mathbf{1 2}
\end{aligned}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A=P(1+R / N)^{N T} \longrightarrow 600=500(1+0.03 / \\
& A=600 \\
& P=500 \\
& R=0.03 \\
& \mathrm{~N}=12
\end{aligned}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A=P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12) \\
& \mathrm{A}=\mathbf{6 0 0} \\
& P=500 \\
& \mathrm{R}=\mathbf{0 . 0 3} \\
& \mathrm{N}=\mathbf{1 2}
\end{aligned}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A=P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
& \mathrm{R}=0.03 \\
& \mathrm{~N}=12
\end{aligned}
$$

Write the compound interest formula. Substitute the given values of A, P, R, and N.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of 3% compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
A= & P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
\mathrm{R} & =0.03 \\
\mathrm{~N} & =12
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A=P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
& \mathrm{R}=0.03 \\
& \mathrm{~N}=\mathbf{1 2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
A= & P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
\mathrm{R} & =0.03 \\
\mathrm{~N} & =12
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A=P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
& \mathrm{R}=0.03 \\
& \mathrm{~N}=12
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A=P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
& \mathrm{R}=0.03 \\
& \mathrm{~N}=\mathbf{1 2}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
A=P(1+R / N)^{\mathrm{NT}} \longrightarrow & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
\mathrm{R} & =0.03 \\
\mathrm{~N} & =12
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
A= & P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
\mathrm{R} & =0.03 \\
\mathrm{~N} & =12
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
\mathrm{A}= & \mathrm{P}(1+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} \longrightarrow \mathrm{600}=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
\mathrm{R} & =0.03 \\
\mathrm{~N} & =12
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& A=P(1+R / N)^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
& \mathrm{R}=0.03 \\
& \mathrm{~N}=12
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
\mathrm{A}= & \mathrm{P}(1+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} \longrightarrow \mathrm{600}=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& \mathrm{~A}=600 \\
& \mathrm{P}=500 \\
\mathrm{R} & =0.03 \\
\mathrm{~N} & =12
\end{aligned}
$$

Solve for T.

Reorder the equation, and 'take the Log of each side'.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

\[

\]

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{\mathrm{NT}} & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
A=600 & 1.2=1.0025^{12 \mathrm{~T}} \\
P=500 & \log \left(1.0025^{12 \mathrm{~T}}\right)= \\
\mathrm{R}=0.03 & \\
\mathrm{~N}=12 &
\end{array}
$$

Solve for T.

Reorder the equation, and 'take the Log of each side'.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{rlc}
A=P(1+R / N)^{\mathrm{NT}} & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& 1.2=1.0025^{12 \mathrm{~T}} \\
\mathrm{~A} & =600 & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{P}=500 & \\
\mathrm{R}=0.03 & \\
\mathrm{~N}=12 &
\end{array}
$$

Solve for T.

Reorder the equation, and 'take the Log of each side'.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{\mathrm{NT}} & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
A=600 & 1.2=1.0025^{12 \mathrm{~T}} \\
P=500 & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{R}=0.03 & \\
\mathrm{~N}=12 &
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{rlc}
A=P(1+R / N)^{\mathrm{NT}} & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& 1.2=1.0025^{12 \mathrm{~T}} \\
\mathrm{~A} & =600 & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{P}=500 & \\
\mathrm{R}=0.03 & \\
\mathrm{~N}=12 &
\end{array}
$$

Solve for T.

Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}(1+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& A=600 \\
& \mathrm{P}=500 \\
& \mathrm{R}=0.03 \\
& 1.2=1.0025^{12 \mathrm{~T}} \\
& \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
& \text { 12T } \\
& \mathrm{N}=12
\end{aligned}
$$

Solve for T.

Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
\mathrm{A}=\mathrm{P}(1+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} & \mathrm{600}=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
\mathrm{~A}=\mathbf{6 0 0} & 1.2=1.0025^{12 \mathrm{~T}} \\
\mathrm{P}=500 & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{R}=\mathbf{0 . 0 3} & 12 \mathrm{CLog} 1.0025 \\
\mathrm{~N}=12 &
\end{array}
$$

Solve for T.

Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{\mathrm{NT}} & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& 1.2=1.0025^{12 \mathrm{~T}} \\
\mathrm{~A}=\mathbf{6 0 0} & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{P}=500 & 12 \mathrm{LLog} 1.0025= \\
\mathrm{R}=\mathbf{0 . 0 3} & \\
\mathrm{N}=12 &
\end{array}
$$

Solve for T.

Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{rlc}
A=P(1+R / N)^{N T} & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& 1.2=1.0025^{12 \mathrm{~T}} \\
\mathrm{~A}=600 & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{P}=500 & 12 \mathrm{~L} \log 1.0025=\log 1.2 \\
\mathrm{R}=0.03 & \\
\mathrm{~N}=12 &
\end{array}
$$

Solve for T.
Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{\mathrm{NT}} & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
A=600 & 1.2=1.0025^{12 \mathrm{~T}} \\
\mathrm{P}=500 & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{R}=\mathbf{0 . 0 3} & 12 \mathrm{~L} \log 1.0025=\log 1.2 \\
\mathrm{~N}=12 &
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{rlc}
A=P(1+R / N)^{N T} & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& 1.2=1.0025^{12 \mathrm{~T}} \\
\mathrm{~A}=600 & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{P}=500 & 12 \mathrm{~L} \log 1.0025=\log 1.2 \\
\mathrm{R}=0.03 & \\
\mathrm{~N}=12 &
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}(1+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& A=600 \\
& \mathrm{P}=500 \\
& \mathrm{R}=0.03 \\
& \mathrm{~N}=12 \\
& 1.2=1.0025^{12 T} \\
& \log \left(\mathbf{1 . 0 0 2 5}{ }^{12 \mathrm{~T}}\right)=\log 1.2 \\
& 12 T \log 1.0025=\log 1.2 \\
& \text { T }
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}(1+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} \longrightarrow 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
& A=600 \\
& \mathrm{P}=500 \\
& \mathrm{R}=0.03 \\
& \mathrm{~N}=12 \\
& 1.2=1.0025^{12 \mathrm{~T}} \\
& \log \left(\mathbf{1 . 0 0 2 5}{ }^{12 \mathrm{~T}}\right)=\log 1.2 \\
& 12 T \log 1.0025=\log 1.2 \\
& T=
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
\mathrm{A}=\mathrm{P}(1+\mathrm{R} / \mathrm{N})^{\mathrm{NT}} \quad \mathrm{600}=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
\mathrm{~A}=\mathbf{6 0 0} & 1.2=1.0025^{12 \mathrm{~T}} \\
\mathrm{P}=500 & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{R}=\mathbf{0 . 0 3} & \text { 12TLLOg } 1.0025=\log 1.2 \\
\mathrm{~N}=12 & \mathrm{~T}=\frac{\log 1.2}{12 \log 1.0025}
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{N T} & 600=500(1+0.03 / 12)^{12 T} \\
A=600 & 1.2=1.0025^{12 T} \\
P=500 & \log \left(1.0025^{12 T}\right)=\log 1.2 \\
R=0.03 & 12 T \log 1.0025=\log 1.2 \\
\mathrm{~N}=12 & T=\frac{\log 1.2}{12 \log 1.0025}
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{N T} & 600=500(1+0.03 / 12)^{12 T} \\
A=600 & 1.2=1.0025^{12 T} \\
P=500 & \log \left(1.0025^{12 T}\right)=\log 1.2 \\
R=0.03 & 12 T \log 1.0025=\log 1.2 \\
N=12 & T=\frac{\log 1.2}{12 \log 1.0025} \approx 6.1
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{N T} & 600=500(1+0.03 / 12)^{12 T} \\
A=600 & 1.2=1.0025^{12 T} \\
P=500 & \log \left(1.0025^{12 T}\right)=\log 1.2 \\
R=0.03 & 12 T \log 1.0025=\log 1.2 \\
N=12 & T=\frac{\log 1.2}{12 \log 1.0025} \approx 6.1
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{N T} & 600=500(1+0.03 / 12)^{12 T} \\
A=600 & 1.2=1.0025^{12 T} \\
P=500 & \log \left(1.0025^{12 T}\right)=\log 1.2 \\
R=0.03 & 12 T \log 1.0025=\log 1.2 \\
N=12 & T=\frac{\log 1.2}{12 \log 1.0025} \approx 6.1
\end{array}
$$

Solve for T.
Answer the question.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{N T} & 600=500(1+0.03 / 12)^{12 T} \\
A=600 & 1.2=1.0025^{12 T} \\
P=500 & \log \left(1.0025^{12 T}\right)=\log 1.2 \\
R=0.03 & 12 T \log 1.0025=\log 1.2 \\
N=12 & T=\frac{\log 1.2}{12 \log 1.0025} \approx 6.1
\end{array}
$$

It will take about 6.1 years.

Solve for T.
Answer the question.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{N T} & 600=500(1+0.03 / 12)^{12 T} \\
A=600 & 1.2=1.0025^{12 T} \\
P=500 & \log \left(1.0025^{12 T}\right)=\log 1.2 \\
R=0.03 & 12 T \log 1.0025=\log 1.2 \\
N=12 & T=\frac{\log 1.2}{12 \log 1.0025} \approx 6.1
\end{array}
$$

It will take about 6.1 years.
Solve for T.
Answer the question.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
15. $\$ 500$ is invested in an account that pays interest at an annual rate of $\mathbf{3 \%}$ compounded monthly. How long will it take for the value of the account to reach $\$ 600$?

$$
\begin{array}{cc}
A=P(1+R / N)^{N T} & 600=500(1+0.03 / 12)^{12 \mathrm{~T}} \\
A=600 & 1.2=1.0025^{12 \mathrm{~T}} \\
P=500 & \log \left(1.0025^{12 \mathrm{~T}}\right)=\log 1.2 \\
\mathrm{R}=0.03 & 12 \mathrm{~L} \log 1.0025=\log 1.2 \\
\mathrm{~N}=12 & \mathrm{~T}=\frac{\log 1.2}{12 \log 1.0025} \approx 6.1
\end{array}
$$

It will take about 6.1 years.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\mathbf{A}=\mathbf{P e}^{\mathrm{RT}}
$$

Write the continuously compounded interest formula.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\mathbf{A}=\mathbf{P e}^{\mathrm{RT}}
$$

Write the continuously compounded interest formula.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\mathbf{A}=\mathbf{P e}^{\mathrm{RT}}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\mathbf{A}=\mathbf{P e}^{\mathrm{RT}}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathbf{A}=\mathbf{P e}^{\mathrm{RT}} \\
& \mathbf{A}=
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathbf{A}=\mathbf{P e}^{\mathrm{RT}} \\
& \mathbf{A}=\mathbf{2 P}
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathbf{A}=\mathbf{P e}^{\mathrm{RT}} \\
& \mathbf{A}=\mathbf{2 P}
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathbf{A}=\mathbf{P e}^{\mathrm{RT}} \\
& \mathbf{A}=\mathbf{2 P}
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathbf{A}=\mathbf{P e}^{\mathrm{RT}} \\
& \mathbf{A}=\mathbf{2 P} \\
& \mathbf{R}=
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \\
& \mathbf{A}=\mathbf{2 P} \\
& \mathbf{R}=\mathbf{0 . 0 5}
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \\
& \mathbf{A}=\mathbf{2 P} \\
& \mathbf{R}=\mathbf{0 . 0 5}
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \\
& \mathbf{A}=\mathbf{2 P} \\
& \mathbf{R}=\mathbf{0 . 0 5}
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \square \quad 2 \mathrm{P} \\
& \mathrm{~A}=\mathbf{2 P} \\
& \mathrm{R}=\mathbf{0 . 0 5}
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \square \quad 2 \mathrm{P}= \\
& \mathrm{A}=2 \mathrm{P} \\
& \mathrm{R}=0.05
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \square \quad 2 \mathrm{P}=\mathrm{P} \\
& \mathrm{~A}=2 \mathrm{P} \\
& \mathrm{R}=0.05
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \square \quad 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
& \mathrm{~A}=2 \mathrm{P} \\
& \mathrm{R}=0.05
\end{aligned}
$$

Write the continuously compounded interest formula. Use the given information to substitute into the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \square \quad 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
& \mathrm{~A}=2 \mathrm{P} \\
& \mathrm{R}=0.05
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \longrightarrow \quad 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
& \mathrm{~A}=2 \mathrm{P} \\
& \mathrm{R}=\mathbf{0 . 0 5}
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \square \quad 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
& \mathrm{~A}=2 \mathrm{P} \\
& \mathrm{R}=0.05
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \square \quad 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
& \mathrm{~A}=2 \mathrm{P} \\
& \mathrm{R}=0.05
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{ll}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & \square \\
\mathrm{~A}=2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{R}=0.05
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lr}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & \square \\
\mathrm{~A}=2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{R}=0.05 & \mathrm{e}^{0.05 \mathrm{~T}}= \\
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{ll}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & \square \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=0.05
\end{array}
$$

Solve for T.
Reorder the equation, and divide each side by P.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \square \quad 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
& \mathrm{~A}=2 \mathrm{P} \\
& \mathrm{R}=0.05
\end{aligned}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} \quad \square \quad 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
& \mathrm{~A}=2 \mathrm{P} \\
& \mathrm{R}=0.05
\end{aligned}
$$

Solve for T.
'Take the natural log' of each side.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lr}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & \square \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)
\end{array}
$$

Solve for T.
'Take the natural log' of each side.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lr}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & \square \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
A=P^{R T} & 2 P=P e^{0.05 T} \\
A=2 P & e^{0.05 T}=2 \\
R=0.05 & \ln \left(e^{0.05 T}\right)=\ln 2
\end{array}
$$

Solve for T.
'Take the natural log' of each side.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & \square \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{R}=\mathbf{0 . 0 5} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
A=P^{\mathrm{RT}} & \square \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2
\end{array}
$$

Solve for T.
Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
A=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T}
\end{array}
$$

Solve for \mathbf{T}.

Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
A=P e^{R T} & 2 P=P e^{0.05 T} \\
A=2 P & e^{0.05 T}=2 \\
R=0.05 & \ln \left(e^{0.05 T}\right)=\ln 2 \\
& 0.05 T \ln \mathrm{e}
\end{array}
$$

Solve for \mathbf{T}.

Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
A=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=
\end{array}
$$

Solve for T.
Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & \square \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2
\end{array}
$$

Solve for T.
Apply the 'power rule' on the left side of the equation.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & \square \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
A=P e^{R T} & 2 P=P e^{0.05 T} \\
A=2 P & e^{0.05 T}=2 \\
R=0.05 & \ln \left(e^{0.05 T}\right)=\ln 2 \\
& 0.05 T \ln e=\ln 2 \\
& T=
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
A=P^{R T} & 2 P=P e^{0.05 T} \\
A=2 P & e^{0.05 T}=2 \\
R=0.05 & \ln \left(\mathrm{e}^{0.05 T}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2 \\
& \mathrm{~T}=\frac{\ln 2}{0.05}
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
A=P^{R T} & 2 P=P e^{0.05 T} \\
A=2 P & e^{0.05 T}=2 \\
R=0.05 & \ln \left(\mathrm{e}^{0.05 T}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2 \\
& \mathrm{~T}=\frac{\ln 2}{0.05}
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2 \\
& \mathrm{~T}=\frac{\ln 2}{0.05} \approx 13.9
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=0.05 & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2 \\
& \mathrm{~T}=\frac{\ln 2}{0.05} \approx 13.9
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2 \\
& \mathrm{~T}=\frac{\ln 2}{0.05} \approx 13.9
\end{array}
$$

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=0.05 & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2 \\
& \mathrm{~T}=\frac{\ln 2}{0.05} \approx 13.9
\end{array}
$$

It will take about 13.9 years.
Solve for T.
Answer the question.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=\mathbf{2 P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2 \\
& \mathrm{~T}=\frac{\ln 2}{0.05} \approx 13.9
\end{array}
$$

It will take about 13.9 years.
Solve for T.
Answer the question.

Algebra II Class Worksheet \#3 Unit 11

Solve the following problems. Express your answers rounded to the nearest tenth of a year.
16. Money is invested in an account that pays interest at an annual rate of 5% compounded continuously. How long will it take for the value of the account to double?

$$
\begin{array}{lc}
\mathrm{A}=\mathrm{Pe}^{\mathrm{RT}} & 2 \mathrm{P}=\mathrm{Pe}^{0.05 \mathrm{~T}} \\
\mathrm{~A}=2 \mathrm{P} & \mathrm{e}^{0.05 \mathrm{~T}}=2 \\
\mathrm{R}=\mathbf{0 . 0 5} & \ln \left(\mathrm{e}^{0.05 \mathrm{~T}}\right)=\ln 2 \\
& 0.05 \mathrm{~T} \ln \mathrm{e}=\ln 2 \\
& \mathrm{~T}=\frac{\ln 2}{0.05} \approx 13.9
\end{array}
$$

It will take about 13.9 years.

