Algebra II Lesson #2 Unit 11 Class Worksheet #2 For Worksheets #2 & #3

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

This lesson will introduce and apply the <u>properties of logarithms</u>. Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents.

$$\mathbf{B^k} = \mathbf{N} \implies \log_B \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

We know that $B^0 = 1$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

We know that $B^0 = 1$. Therefore, $Log_B 1 = 0$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

> We know that $B^0 = 1$. Therefore, $Log_B 1 = 0$. We know that $B^1 = B$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

> We know that $B^0 = 1$. Therefore, $Log_B 1 = 0$. We know that $B^1 = B$. Therefore, $Log_B B = 1$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that x = B^u

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\mathbf{log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x = B^u$ and $y = B^v$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \implies \log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x = B^u$ and $y = B^v$. Then xy =

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v)$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that x = B^u and y = B^v. Then xy = (B^u)(B^v) = B^{u+v}. Using the definition of logarithms, we can conclude Log_Bx =

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u$,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u$,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u$,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u, Log_B y =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u, Log_B y = v$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u$, $Log_B y = v$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u$, $Log_B y = v$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (xy) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u$, $Log_B y = v$ and $Log_B (xy) = u + v$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (xy) = u + v$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (xy) = u + v$.

Therefore,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (xy) = u + v$.

Therefore, $Log_B(xy) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \quad \blacksquare \quad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u$, $Log_B y = v$ and $Log_B (xy) = u + v$.

Therefore, $Log_B(xy) = Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (xy) = u + v$.

Therefore, $Log_B(xy) = Log_B x +$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $Log_B x = u$, $Log_B y = v$ and $Log_B (xy) = u + v$. Therefore, $Log_B (xy) = Log_B x + Log_B y$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \qquad \qquad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (xy) = u + v$.

Therefore, $\text{Log}_{B}(xy) = \text{Log}_{B}x + \text{Log}_{B}y$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \qquad \qquad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (xy) = u + v$.

Therefore, $\text{Log}_{B}(xy) = \text{Log}_{B}x + \text{Log}_{B}y$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $xy = (B^u)(B^v) = B^{u+v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (xy) = u + v$.

Therefore, $\text{Log}_{B}(xy) = \text{Log}_{B}x + \text{Log}_{B}y$.

This is called the 'product rule'.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \implies \log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \implies \log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule. $Log_B(x^2) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule. $Log_B(x^2) = Log_B[(x)(x)] =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule. $Log_B(x^2) = Log_B[(x)(x)] = Log_B x + Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule. $Log_B(x^2) = Log_B[(x)(x)] = Log_B x + Log_B x = 2Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule. $Log_B(x^2) = Log_B[(x)(x)] = Log_B x + Log_B x = 2Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $\operatorname{Log}_{B}(x^{2}) = 2\operatorname{Log}_{B}x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $\operatorname{Log}_{B}(x^{2}) = 2\operatorname{Log}_{B}x$

 $\operatorname{Log}_{B}(x^{3}) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = Log_B[(x)(x^2)] =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = Log_B[(x)(x^2)] = Log_B x + Log_B(x^2)$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

=

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = Log_B[(x)(x^2)] = Log_B x + Log_B(x^2) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = Log_B[(x)(x^2)] = Log_B x + Log_B(x^2) =$ $= Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = Log_B[(x)(x^2)] = Log_B x + Log_B(x^2) =$ $= Log_B x + 2Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \qquad \qquad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = Log_B[(x)(x^2)] = Log_B x + Log_B(x^2) =$ $= Log_B x + 2Log_B x =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \quad | \mathbf{og}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = Log_B[(x)(x^2)] = Log_B x + Log_B(x^2) =$ $= Log_B x + 2Log_B x = 3Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \qquad \qquad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = Log_B[(x)(x^2)] = Log_B x + Log_B(x^2) =$ $= Log_B x + 2Log_B x = 3Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$ $Log_{R}(x^{4}) =$

 $B^k = N$ $\log_B N = k$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$ $Log_{B}(x^{4}) = Log_{B}[(x)(x^{3})] =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = 3Log_B x$ $Log_B(x^4) = Log_B[(x)(x^3)] = Log_B x + Log_B(x^3)$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

$$Log_B(x^2) = 2Log_B x$$

$$Log_B(x^3) = 3Log_B x$$

$$Log_B(x^4) = Log_B[(x)(x^3)] = Log_B x + Log_B(x^3) =$$

$$=$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \qquad \qquad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = 3Log_B x$ $Log_B(x^4) = Log_B[(x)(x^3)] = Log_B x + Log_B(x^3) =$ $= Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \quad | \mathbf{og}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$ $Log_{B}(x^{4}) = Log_{B}[(x)(x^{3})] = Log_{B}x + Log_{B}(x^{3}) =$ $= Log_{B}x + 3Log_{B}x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = 3Log_B x$ $Log_B(x^4) = Log_B[(x)(x^3)] = Log_B x + Log_B(x^3) =$ $= Log_B x + 3Log_B x =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = 3Log_B x$ $Log_B(x^4) = Log_B[(x)(x^3)] = Log_B x + Log_B(x^3) =$ $= Log_B x + 3Log_B x = 4Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_B(x^2) = 2Log_B x$ $Log_B(x^3) = 3Log_B x$ $Log_B(x^4) = Log_B[(x)(x^3)] = Log_B x + Log_B(x^3) =$ $= Log_B x + 3Log_B x = 4Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \qquad \qquad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$ $Log_{B}(x^{4}) = 4Log_{B}x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$ $Log_{B}(x^{4}) = 4Log_{B}x$

In general,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \quad \blacksquare \quad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$ $Log_{B}(x^{4}) = 4Log_{B}x$

In general, Log_B(xⁿ)

$$B^k = N$$
 $\log_B N = k$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$ $Log_{B}(x^{4}) = 4Log_{B}x$

In general, $Log_B(x^n) = nLog_B x$.

 $B^k = N$ $\log_B N = k$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$ $Log_{B}(x^{4}) = 4Log_{B}x$

In general, $\text{Log}_{B}(x^{n}) = n\text{Log}_{B}x$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$ Consider the following application of the product rule.

 $Log_{B}(x^{2}) = 2Log_{B}x$ $Log_{B}(x^{3}) = 3Log_{B}x$ $Log_{B}(x^{4}) = 4Log_{B}x$

In general, $Log_B(x^n) = nLog_B x$.

This is called the power rule.

 $\mathbf{B}^{\mathbf{k}} = \mathbf{N}$ \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$

The Power Rule: $Log_B(x^n) = nLog_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x = B^u$ and $y = B^v$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \implies \log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x = B^u$ and $y = B^v$. Then x/y =

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v)$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \implies \log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \quad \blacksquare \quad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \quad \blacksquare \quad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \quad \blacksquare \quad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that x = B^u and y = B^v. Then x/y = (B^u)/(B^v) = B^{u-v}. Using the definition of logarithms, we can conclude Log_Bx =

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $Log_B x = u$,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $Log_B x = u$,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $Log_B x = u$,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $Log_B x = u, Log_B y =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that x = B^u and y = B^v. Then x/y = (B^u)/(B^v) = B^{u-v}. Using the definition of logarithms, we can conclude Log_Bx = u, Log_By = v and

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (x/y) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (x/y) = u - v$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (x/y) = u - v$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (x/y) = u - v$.

Therefore,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (x/y) = u - v$.

Therefore, $Log_B(x/y) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $Log_B x = u$, $Log_B y = v$ and $Log_B (x/y) = u - v$.

Therefore, $Log_B(x/y) = Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (x/y) = u - v$.

Therefore, $\text{Log}_{B}(x/y) = \text{Log}_{B}x -$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $Log_B x = u$, $Log_B y = v$ and $Log_B (x/y) = u - v$. Therefore, $Log_B (x/y) = Log_B x - Log_B y$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \qquad \qquad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (x/y) = u - v$.

Therefore, $\text{Log}_{B}(x/y) = \text{Log}_{B}x - \text{Log}_{B}y$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \qquad \qquad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

Suppose that $x = B^u$ and $y = B^v$. Then $x/y = (B^u)/(B^v) = B^{u-v}$. Using the definition of logarithms, we can conclude $\log_B x = u$, $\log_B y = v$ and $\log_B (x/y) = u - v$.

Therefore, $\text{Log}_{B}(x/y) = \text{Log}_{B}x - \text{Log}_{B}y$.

This is called the 'quotient rule'.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \qquad \qquad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \implies \log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: Log_B(x/y) = Log_Bx – Log_By Consider the following application of the quotient rule. Log_B(1/x)

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

 $\operatorname{Log}_{B}(1/x) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \implies \log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule. $Log_B(1/x) = Log_B 1$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule. $Log_B(1/x) = Log_B 1 -$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

 $Log_B(1/x) = Log_B 1 - Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: Log_B(x/y) = Log_Bx – Log_By

Consider the following application of the quotient rule.

 $\operatorname{Log}_{B}(1/x) = \operatorname{Log}_{B}1 - \operatorname{Log}_{B}x =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$

Consider the following application of the quotient rule.

 $\operatorname{Log}_{B}(1/x) = \operatorname{Log}_{B}1 - \operatorname{Log}_{B}x = 0$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $\log_B(x/y) = \log_B x - \log_B y$

Consider the following application of the quotient rule.

 $\operatorname{Log}_{B}(1/x) = \operatorname{Log}_{B}1 - \operatorname{Log}_{B}x = 0 - \operatorname{Log}_{B}x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $\log_B(x/y) = \log_B x - \log_B y$

Consider the following application of the quotient rule.

 $Log_{B}(1/x) = Log_{B}1 - Log_{B}x = 0 - Log_{B}x =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

 $\operatorname{Log}_{B}(1/x) = \operatorname{Log}_{B}1 - \operatorname{Log}_{B}x = 0 - \operatorname{Log}_{B}x = -\operatorname{Log}_{B}x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

 $Log_B(1/x) = Log_B 1 - Log_B x = 0 - Log_B x = -Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \quad \blacksquare \quad \mathbf{\log}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

$$Log_B(1/x) = Log_B 1 - Log_B x = 0 - Log_B x = -Log_B x$$

Therefore,

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

$$Log_B(1/x) = Log_B 1 - Log_B x = 0 - Log_B x = -Log_B x$$

Therefore, $Log_B(1/x)$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

$$Log_B(1/x) = Log_B 1 - Log_B x = 0 - Log_B x = -Log_B x$$

Therefore, $Log_B(1/x) =$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N} \quad | \mathbf{og}_{\mathbf{B}} \mathbf{N} = \mathbf{k}$$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

 $Log_B(1/x) = Log_B 1 - Log_B x = 0 - Log_B x = -Log_B x$

Therefore, $\text{Log}_{B}(1/x) = -\text{Log}_{B}x$.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$ Consider the following application of the quotient rule.

 $Log_B(1/x) = Log_B 1 - Log_B x = 0 - Log_B x = -Log_B x$

Therefore, $Log_B(1/x) = -Log_B x$. This is called the reciprocal rule.

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be <u>positive</u>.)

The Quotient Rule: $\log_B(x/y) = \log_B x - \log_B y$

The Reciprocal Rule: $Log_B(1/x) = -Log_B x$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$
 \longrightarrow $\log_{\mathbf{B}} \mathbf{N} = \mathbf{k}$

The Properties of Logarithms

 $Log_B B = 1$

 $Log_B 1 = 0$

The Product Rule: $Log_B(xy) = Log_B x + Log_B y$

The Power Rule: $Log_B(x^n) = nLog_B x$

The Quotient Rule: $Log_B(x/y) = Log_B x - Log_B y$

The Reciprocal Rule: $Log_B(1/x) = -Log_B x$

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10.

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100.

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written.

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$,

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2.

$$\log_{B} N = k \qquad \qquad B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10,

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'.

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however,

$$\log_{B} N = k \qquad \qquad B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k.

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3.

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

$$\log_{B} N = k \qquad \qquad B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e.

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e² is written as ln e².

$$\log_{B} N = k \qquad B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^2 is written as ln e^2 . Clearly, ln $e^2 = 2$.

$$\log_{B} N = k \qquad \qquad B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^2 is written as ln e^2 . Clearly, ln $e^2 = 2$. If a number, k, is a power of e,

$$\log_{\mathbf{B}} \mathbf{N} = \mathbf{k} \qquad \qquad \mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^2 is written as ln e^2 . Clearly, ln $e^2 = 2$. If a number, k, is a power of e, then ln k (the natural logarithm of k) 'comes out even'.

$$\log_{B} N = k \qquad B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^2 is written as ln e^2 . Clearly, ln $e^2 = 2$. If a number, k, is a power of e, then ln k (the natural logarithm of k) 'comes out even'. If k is not a power of e, however,

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^2 is written as ln e^2 . Clearly, ln $e^2 = 2$. If a number, k, is a power of e, then ln k (the natural logarithm of k) 'comes out even'. If k is not a power of e, however, a calculator can be used to approximate ln k.

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^2 is written as ln e^2 . Clearly, ln $e^2 = 2$. If a number, k, is a power of e, then ln k (the natural logarithm of k) 'comes out even'. If k is not a power of e, however, a calculator can be used to approximate ln k. For example ln 200, using a calculator, is approximately 5.3.

$$\log_{B} N = k \implies B^{k} = N$$

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100 = 10^2$, Log 100 = 2. If a number, k, is a power of 10, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^2 is written as ln e^2 . Clearly, ln $e^2 = 2$. If a number, k, is a power of e, then ln k (the natural logarithm of k) 'comes out even'. If k is not a power of e, however, a calculator can be used to approximate ln k. For example ln 200, using a calculator, is approximately 5.3. This implies that $e^{5.3} \approx 200$.

$$\log_{B} N = k \implies B^{k} = N$$

Complete each of the following properties of logarithms.

1. $\log_B B =$ _____ 2. $\log_B 1 =$ _____

3. $\log_B(mn) =$ 4. $\log_B(m^n) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 6. $\log_{B}(\frac{1}{n}) =$

Complete each of the following properties of logarithms.

1. $\log_B B =$ _____ 2. $\log_B 1 =$ _____

3. $\text{Log}_{B}(mn) =$ 4. $\text{Log}_{B}(m^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

Complete each of the following properties of logarithms.

1.
$$\log_B B =$$
_____ 2. $\log_B 1 =$ _____

3. $\text{Log}_{B}(mn) =$ 4. $\text{Log}_{B}(m^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

Complete each of the following properties of logarithms.

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 1$

3. $\text{Log}_{B}(mn) =$ 4. $\text{Log}_{B}(m^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

Complete each of the following properties of logarithms.

1. $\log_B B = 1$ 2. $\log_B 1 = 1$

3. $\log_B(mn) =$ 4. $\log_B(m^n) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____
Complete each of the following properties of logarithms.

1. $\log_B B = 1$ **2.** $\log_B 1 = 1$

3. $\text{Log}_{B}(mn) =$ 4. $\text{Log}_{B}(m^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\text{Log}_{B}(mn) =$$
 4. $\text{Log}_{B}(m^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

Complete each of the following properties of logarithms.

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3. $\text{Log}_{B}(mn) =$ 4. $\text{Log}_{B}(m^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

Complete each of the following properties of logarithms.

1. $\log_B B = 1$ 2. $\log_B 1 = 0$

3. $\text{Log}_{B}(mn) =$ 4. $\text{Log}_{B}(m^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

Complete each of the following properties of logarithms.

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3. $\log_{B}(mn) = \log_{B}m$ 4. $\log_{B}(m^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

Complete each of the following properties of logarithms.

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3. $\log_B(mn) = \log_B m +$ 4. $\log_B(m^n) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

Complete each of the following properties of logarithms.

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3. $\operatorname{Log}_{B}(mn) = \operatorname{Log}_{B}m + \operatorname{Log}_{B}n$ 4. $\operatorname{Log}_{B}(m^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

Complete each of the following properties of logarithms.

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3. $\text{Log}_{B}(\text{mn}) = \frac{\text{Log}_{B}\text{m} + \text{Log}_{B}\text{n}}{4}$ 4. $\text{Log}_{B}(\text{m}^{n}) =$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_{B}(mn) = \log_{B}m + \log_{B}n$$
 4.

4.
$$Log_{B}(m^{n}) =$$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_B(mn) = \frac{\log_B m + \log_B n}{\log_B (m^n)}$$
 4. $\log_B(m^n) = \frac{n \log_B m}{\log_B m}$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_B(mn) = \log_B m + \log_B n$$
 4. $\log_B(m^n) = n \log_B m$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_{B}(mn) = \frac{\log_{B}m + \log_{B}n}{4}$$
 4. $\log_{B}(m^{n}) = \frac{n \log_{B}m}{4}$

5.
$$\log_{B}(\frac{m}{n}) =$$
 _____ 6. $\log_{B}(\frac{1}{n}) =$ _____

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_{B}(mn) = \frac{\log_{B}m + \log_{B}n}{4}$$
 4. $\log_{B}(m^{n}) = \frac{n \log_{B}m}{4}$

5.
$$\operatorname{Log}_{B}(\frac{m}{n}) = \underline{\operatorname{Log}_{B}m}$$
 6. $\operatorname{Log}_{B}(\frac{1}{n}) = \underline{$

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_{B}(mn) = \frac{\log_{B}m + \log_{B}n}{4}$$
 4. $\log_{B}(m^{n}) = \frac{n \log_{B}m}{4}$

5.
$$\operatorname{Log}_{B}(\frac{m}{n}) = \underline{\operatorname{Log}_{B}m} - 6. \operatorname{Log}_{B}(\frac{1}{n}) = \underline{$$

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_B(mn) = \lfloor \log_B m + \log_B n \rfloor$$
 4. $\log_B(m^n) = \lfloor n \log_B m \rfloor$

5.
$$\operatorname{Log}_{B}(\frac{m}{n}) = \underline{\operatorname{Log}_{B}m - \operatorname{Log}_{B}n}$$
 6. $\operatorname{Log}_{B}(\frac{1}{n}) = \underline{$

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_{B}(mn) = \frac{\log_{B}m + \log_{B}n}{4}$$
 4. $\log_{B}(m^{n}) = \frac{n \log_{B}m}{4}$

5.
$$\operatorname{Log}_{B}(\frac{m}{n}) = \frac{\operatorname{Log}_{B}m - \operatorname{Log}_{B}n}{6}$$
 6. $\operatorname{Log}_{B}(\frac{1}{n}) =$

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_B(mn) = \frac{\log_B m + \log_B n}{4}$$
 4. $\log_B(m^n) = \frac{n \log_B m}{4}$

5.
$$\operatorname{Log}_{B}(\frac{m}{n}) = \frac{\operatorname{Log}_{B}m - \operatorname{Log}_{B}n}{6}$$
 6. $\operatorname{Log}_{B}(\frac{1}{n}) =$

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_{B}(mn) = \frac{\log_{B}m + \log_{B}n}{4}$$
 4. $\log_{B}(m^{n}) = \frac{n\log_{B}m}{4}$

5.
$$\operatorname{Log}_{B}(\frac{m}{n}) = \frac{\operatorname{Log}_{B}m - \operatorname{Log}_{B}n}{6}$$
 6. $\operatorname{Log}_{B}(\frac{1}{n}) = -\operatorname{Log}_{B}n$

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_{B}(mn) = \frac{\log_{B}m + \log_{B}n}{4}$$
 4. $\log_{B}(m^{n}) = \frac{n \log_{B}m}{4}$

5.
$$\operatorname{Log}_{B}(\frac{m}{n}) = \operatorname{Log}_{B}m - \operatorname{Log}_{B}n$$
 6. $\operatorname{Log}_{B}(\frac{1}{n}) = \operatorname{Log}_{B}n$

Complete each of the following properties of logarithms.

1.
$$\log_B B = 1$$
 2. $\log_B 1 = 0$

3.
$$\log_B(mn) = \frac{\log_B m + \log_B n}{4}$$
 4. $\log_B(m^n) = \frac{n \log_B m}{4}$

5.
$$\operatorname{Log}_{B}(\frac{m}{n}) = \frac{\operatorname{Log}_{B}m - \operatorname{Log}_{B}n}{6}$$
 6. $\operatorname{Log}_{B}(\frac{1}{n}) = \frac{-\operatorname{Log}_{B}n}{6}$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$

9. $\log_{N} 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$

9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$

9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$ = $\log_{N} [(3)(5)]$
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$ = $\log_{N} [(3)(5)] =$
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3$
- 9. $\log_{N} 12 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 +$
- 9. $\log_{N} 12 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5$
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 =$ 8. $\log_{N} 125 =$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 =$
- 9. $\log_{N} 12 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b} +$ $= \log_{N} [(3)(5)] =$ $= \log_{N} 3 + \log_{N} 5 =$
- 9. $\log_{N} 12 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$
- 9. $\log_{N} 12 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 =$
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = b + c$ $= \log_{N} [(3)(5)] =$ $= \log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 =$
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

7.
$$\log_{N} 15 = b + c$$

 $= \log_{N} [(3)(5)] = = =$
 $= \log_{N} 3 + \log_{N} 5 =$
8. $\log_{N} 125 =$

9. $Log_N 12 =$ _____
Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 =$ = $\log_{N} (5^{3})$
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 =$ = $\log_{N} (5^{3}) =$ =
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 =$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5$
- 9. $\log_{N} 12 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 =$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $Log_N 12 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3\log_{N} 5 =$
- 9. $Log_N 12 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$

=

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ _____

 $= \text{Log}_{N} [(2^{2})(3)]$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ = $\log_{N} [(2^{2})(3)] =$ =

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2})$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) +$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ =

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 +$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 =$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$

9.
$$\log_{N} 12 = 2a +$$

= $\log_{N} [(2^{2})(3)] =$
= $\log_{N} (2^{2}) + \log_{N} 3 =$
= $2 \log_{N} 2 + \log_{N} 3 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$

9.
$$\log_{N} 12 = 2a + b$$

= $\log_{N} [(2^{2})(3)] =$
= $\log_{N} (2^{2}) + \log_{N} 3 =$
= $2 \log_{N} 2 + \log_{N} 3 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$

9.
$$\log_{N} 12 = 2a + b$$

= $\log_{N} [(2^{2})(3)] =$
= $\log_{N} (2^{2}) + \log_{N} 3 =$
= $2 \log_{N} 2 + \log_{N} 3 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] = \frac{1}{2} = \log_{N} (5^{3}) = \frac{1}{2} \log_{N} 5 = \frac{1}{2} \log_{$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] = \frac{1}{2} = \log_{N} (5^{3}) = \frac{1}{2} \log_{N} 5 = \frac{1}{2} \log_{$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$

10. $\log_N 0.75 =$ = $\log_N [(3)/(2^2)]$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$

10.
$$\log_N 0.75 =$$

= $\log_N [(3)/(2^2)] =$
=

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$
- 10. $\log_{N} 0.75 =$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$

10. $\log_{N} 0.75 =$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3 -$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$

10. $\log_{N} 0.75 =$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3 - \log_{N} (2^{2})$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$
- 10. $\log_{N} 0.75 =$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3 - \log_{N} (2^{2}) =$ =

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$
- 10. $\log_{N} 0.75 =$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3 - \log_{N} (2^{2}) =$ = $\log_{N} 3$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$
- 10. $\log_{N} 0.75 =$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3 - \log_{N} (2^{2}) =$ = $\log_{N} 3 -$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$
- 10. $\log_{N} 0.75 =$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3 - \log_{N} (2^{2}) =$ = $\log_{N} 3 - 2\log_{N} 2$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$
- 10. $\log_{N} 0.75 =$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3 - \log_{N} (2^{2}) =$ = $\log_{N} 3 - 2\log_{N} 2 =$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$
- 10. $\log_{N} 0.75 = \underline{b}$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3 - \log_{N} (2^{2}) =$ = $\log_{N} 3 - 2\log_{N} 2 =$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$
- 10. $\log_{N} 0.75 = \underline{b} \frac{10}{2}$ = $\log_{N} [(3)/(2^{2})] = \frac{100}{2} - \frac{100}{2} \log_{N} (2^{2}) = \frac{100}{2} \log_{N} 3 - 2\log_{N} 2 = \frac{100}{2} \log_{N} 3 - 2\log_{N} 2 = \frac{100}{2} \log_{N} 2 \log_{N} 2 = \frac{100}{2} \log_{N} 2 \log_{$
- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$
- 10. $\log_{N} 0.75 = b 2a$ = $\log_{N} [(3)/(2^{2})] =$ = $\log_{N} 3 - \log_{N} (2^{2}) =$ = $\log_{N} 3 - 2 \log_{N} 2 =$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ = $\log_{N} [(2^{2})(3)] =$ = $\log_{N} (2^{2}) + \log_{N} 3 =$ = $2 \log_{N} 2 + \log_{N} 3 =$

10.
$$\log_{N} 0.75 = b - 2a$$

= $\log_{N} [(3)/(2^{2})] =$
= $\log_{N} 3 - \log_{N} (2^{2}) =$
= $\log_{N} 3 - 2\log_{N} 2 =$

- 7. $\log_{N} 15 = \underline{b + c}$ = $\log_{N} [(3)(5)] =$ = $\log_{N} 3 + \log_{N} 5 =$ 8. $\log_{N} 125 = \underline{3c}$ = $\log_{N} (5^{3}) =$ = $3 \log_{N} 5 =$
- 9. $\log_{N} 12 = 2a + b$ $= \log_{N} [(2^{2})(3)] =$ $= \log_{N} (2^{2}) + \log_{N} 3 =$ $= 2\log_{N} 2 + \log_{N} 3 =$ 10. $\log_{N} 0.75 = b - 2a$ $= \log_{N} 0.75 = b - 2a$ $= \log_{N} 0.75 = b - 2a$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_N(3N^3) =$ 12. $\log_N 0.125 =$

13. $\log_N 0.6 =$ 14. $\log_N \sqrt{6} =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_N(3N^3) =$ 12. $\log_N 0.125 =$

13.
$$\log_N 0.6 =$$
_____ 14. $\log_N \sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ _____ 12. $\log_{N} 0.125 =$ _____

13. $\log_N 0.6 =$ _____ 14. $\log_N \sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ _____ 12. $\log_{N} 0.125 =$ _____ = 13. $\log_{N} 0.6 =$ _____ 14. $\log_{N} \sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ _____ 12. $\log_{N} 0.125 =$ _____ = $\log_{N} 3$ 13. $\log_{N} 0.6 =$ _____ 14. $\log_{N} \sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ _____ 12. $\log_{N} 0.125 =$ _____ = $\log_{N} 3 +$ 13. $\log_{N} 0.6 =$ _____ 14. $\log_{N} \sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ _____ 12. $\log_{N} 0.125 =$ _____ = $\log_{N} 3 + \log_{N}(N^{3})$ 13. $\log_{N} 0.6 =$ _____ 14. $\log_{N} \sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ ______ 12. $\log_{N} 0.125 =$ ______ = Log_N 3 + Log_N(N³) = = 13. $\log_{N} 0.6 =$ ______ 14. $\log_{N} \sqrt{6} =$ ______

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ _____ 12. $\log_{N} 0.125 =$ _____ = $\log_{N} 3 + \log_{N}(N^{3}) =$ = $\log_{N} 3$

14. $\log_{N}\sqrt{6} =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ _____ 12. $\log_{N} 0.125 =$ _____ = $\log_{N} 3 + \log_{N}(N^{3}) =$ = $\log_{N} 3 +$

14. $\log_{N}\sqrt{6} =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ 12. $\log_{N} 0.125 =$ = $\log_{N} 3 + \log_{N}(N^{3}) =$ = $\log_{N} 3 + 3\log_{N} N$

14. $\log_{N}\sqrt{6} =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_N(3N^3) =$ 12. $\log_N 0.125 =$ $= \operatorname{Log}_{N} 3 + \operatorname{Log}_{N} (N^{3}) =$ $= Log_N 3 + 3 Log_N N =$ = 14. $\log_{N}\sqrt{6} =$ _____

- 11. $\log_{N}(3N^{3}) =$ 12. $\log_{N} 0.125 =$ = $\log_{N} 3 + \log_{N}(N^{3}) =$ = $\log_{N} 3 + 3\log_{N} N =$ = $\log_{N} 3$
- 13. $\log_N 0.6 =$ _____
- 14. $\log_{N}\sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ ______ 12. $\log_{N} 0.125 =$ _____ = $\log_{N} 3 + \log_{N}(N^{3}) =$ = $\log_{N} 3 + 3\log_{N} N =$ = $\log_{N} 3 +$ 13. $\log_{N} 0.6 =$ _____ 14. $\log_{N} \sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ _____ 12. $\log_{N} 0.125 =$ _____ = $\log_{N} 3 + \log_{N}(N^{3}) =$ = $\log_{N} 3 + 3\log_{N} N =$ = $\log_{N} 3 + 3(1)$ 13. $\log_{N} 0.6 =$ _____ 14. $\log_{N} \sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) =$ ______ 12. $\log_{N} 0.125 =$ _____ = $\log_{N} 3 + \log_{N}(N^{3}) =$ = $\log_{N} 3 + 3\log_{N} N =$ = $\log_{N} 3 + 3(1) =$ 13. $\log_{N} 0.6 =$ _____ 14. $\log_{N} \sqrt{6} =$ _____

- 11. $\log_N(3N^3) = b$ 12. $\log_N 0.125 =$ $= \operatorname{Log}_{N} 3 + \operatorname{Log}_{N} (N^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N}3 + 3(1) =$ 14. $\log_{N}\sqrt{6} =$ _____
- 13. $\log_N 0.6 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b} + 12. \log_{N} 0.125 =$$

13. $\log_N 0.6 =$ 14. $\log_N \sqrt{6} =$

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

= $\log_{N} 3 + \log_{N}(N^{3}) =$
= $\log_{N} 3 + 3\log_{N} N =$
= $\log_{N} 3 + 3(1) =$
13. $\log_{N} 0.6 = \underline{ 14. \log_{N} \sqrt{6}} = \underline{ 14. \log_{N} \sqrt{6} = \underline{ 14. \log_{N} \sqrt{6}} = \underline{ 14. \log_{N} \sqrt{6}} = \underline{ 14. \log_{N} \sqrt{6} = \underline{ 14. \log_{N} \sqrt{6}} = \underline{ 14. \log_{N} \sqrt{6} = \underline{ 14. \log_{N} \sqrt{6}} = \underline{ 14. \log_{N} \sqrt{6} = \underline{ 14. \log_{N} \sqrt{6} } = \underline{ 14. \log_{N} \sqrt{6} = \underline{ 14. \log_{N} \sqrt{6} } = \underline{ 14. \log_{N}$

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

= $\log_{N}3 + \log_{N}(N^{3}) =$
= $\log_{N}3 + 3\log_{N}N =$
= $\log_{N}3 + 3(1) =$
13. $\log_{N}0.6 = \underline{ 14. \log_{N}\sqrt{6}} = \underline{ 14. \log_{N}\sqrt{6} = \underline{ 14. \log_{N}\sqrt{6} = \underline{ 14.$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 =$

13. $\log_N 0.6 =$ _____

14. $\log_{N}\sqrt{6} =$ _____

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) = =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 =$ =
- 13. $\log_{N} 0.6 =$ _____

14.
$$\log_{N}\sqrt{6} =$$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 =$ = $\log_{N}(1/8)$

13. $\log_N 0.6 =$ _____

14. $\log_{N}\sqrt{6} =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 =$ = $\log_{N}(1/8) =$

14.
$$\log_{N}\sqrt{6} =$$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

= $\log_{N}3 + \log_{N}(N^{3}) =$
= $\log_{N}3 + 3\log_{N}N =$
= $\log_{N}3 + 3(1) =$
12. $\log_{N}0.125 =$
= $\log_{N}(1/8) = \log_{N}(1/2^{3})$

14.
$$\log_{N}\sqrt{6} =$$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

= $\log_{N} 3 + \log_{N}(N^{3}) =$
= $\log_{N} 3 + 3\log_{N} N =$
= $\log_{N} 3 + 3(1) =$
12. $\log_{N} 0.125 = _$
= $\log_{N} (1/8) = \log_{N} (1/2^{3}) =$
= $\log_{N} 3 + 3(1) =$

14.
$$\log_{N}\sqrt{6} =$$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

= $\log_{N}3 + \log_{N}(N^{3}) =$
= $\log_{N}3 + 3\log_{N}N =$
= $\log_{N}3 + 3(1) =$
12. $\log_{N}0.125 = _$
= $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$
= $\log_{N}1$

14.
$$\log_{N}\sqrt{6} =$$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

= $\log_{N}3 + \log_{N}(N^{3}) =$
= $\log_{N}3 + 3\log_{N}N =$
= $\log_{N}3 + 3(1) =$
12. $\log_{N}0.125 =$
= $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$
= $\log_{N}1 -$

14.
$$\log_{N}\sqrt{6} =$$

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = _$ = $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3})$
- 13. $\log_N 0.6 =$ _____

14.
$$\log_{N}\sqrt{6} =$$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

= $\log_{N} 3 + \log_{N}(N^{3}) =$
= $\log_{N} 3 + 3\log_{N} N =$
= $\log_{N} 3 + 3(1) =$
12. $\log_{N} 0.125 = \underline{}$
= $\log_{N} (1/8) = \log_{N} (1/2^{3}) =$
= $\log_{N} 1 - \log_{N} (2^{3}) =$
=

14.
$$\log_{N}\sqrt{6} =$$

- 11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 =$ $= \text{Log}_{N}3 + \text{Log}_{N}(N^{3}) =$ $= \text{Log}_{N}(1/8) = \text{Log}_{N}(1/2^{3}) =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N}3 + 3(1) =$ = 0 13. $\log_{N} 0.6 =$
 - 14. $\log_{N}\sqrt{6} =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 =$ $= \text{Log}_{N}3 + \text{Log}_{N}(N^{3}) =$ $= \text{Log}_{N}(1/8) = \text{Log}_{N}(1/2^{3}) =$ $= Log_N 1 - Log_N (2^3) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N}3 + 3(1) =$ = 0 -13. $\log_{N} 0.6 =$

14.
$$\log_{N}\sqrt{6} =$$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{b+3}$ = $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3}) =$ = $0 - 3\log_{N}2$
- 13. $\log_N 0.6 =$ _____

14. $\log_{N}\sqrt{6} =$ _____
Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{bog_{N}(1/2^{3})} =$ = $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3}) =$ = $0 - 3\log_{N}2 =$
- 13. $\log_N 0.6 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{bog_{N}(1/2^{3})} =$ = $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3}) =$ = $0 - 3\log_{N}2 = 0$
- 13. $\log_N 0.6 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{bog_{N}(1/2^{3})} =$ = $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3}) =$ = $0 - 3\log_{N}2 = 0 -$
- 13. $\log_N 0.6 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{b}$ = $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3}) =$ = $0 - 3\log_{N}2 = 0 - 3a$
- 13. $\log_N 0.6 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{bog_{N}(1/2^{3})} =$ = $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3}) =$ = $0 - 3\log_{N}2 = 0 - 3a =$

13. $\log_N 0.6 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{-3a}$ = $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3}) =$ = $0 - 3\log_{N}2 = 0 - 3a =$
- 13. $\log_N 0.6 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{-3a}$ = $\log_{N}(1/8) = \log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3}) =$ = $0 - 3\log_{N}2 = 0 - 3a =$
- 13. $\log_N 0.6 =$ _____

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

- 11. $\log_{N}(3N^{3}) = \underline{b+3}$ $= \log_{N} 3 + \log_{N}(N^{3}) =$ $= \log_{N} 3 + 3\log_{N} N =$ $= \log_{N} 3 + 3(1) =$ 12. $\log_{N} 0.125 = \underline{-3a}$ $= \log_{N} (1/8) = \log_{N} (1/2^{3}) =$ $= \log_{N} 1 - \log_{N} (2^{3}) =$ $= 0 - 3\log_{N} 2 = 0 - 3a =$
- 13. $\log_{N} 0.6 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_N(3N^3) = \underline{b+3}$$
 12. $\log_N 0.125 = \underline{-3a}$
 $= \log_N 3 + \log_N(N^3) =$
 $= \log_N(1/8) = \log_N(1/2^3) =$
 $= \log_N 3 + 3\log_N N =$
 $= \log_N 1 - \log_N(2^3) =$
 $= \log_N 3 + 3(1) =$
 $= 0 - 3\log_N 2 = 0 - 3a =$

 13. $\log_N 0.6 = \underline{$
 14. $\log_N \sqrt{6} = \underline{$

=

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

 $= \log_{N} 3 + \log_{N}(N^{3}) =$
 $= \log_{N} 3 + 3\log_{N} N =$
 $= \log_{N} 3 + 3(1) =$
12. $\log_{N} 0.125 = \underline{-3a}$
 $= \log_{N} (1/2^{3}) =$
 $= \log_{N} 1 - \log_{N} (2^{3}) =$
 $= 0 - 3\log_{N} 2 = 0 - 3a =$
13. $\log_{N} 0.6 = \underline{-3a}$
 $= \log_{N} (3/5) =$
 $=$
14. $\log_{N} \sqrt{6} = \underline{-3a}$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = \underline{b+3}$ $= \log_{N} 3 + \log_{N}(N^{3}) =$ $= \log_{N} 3 + 3\log_{N} N =$ $= \log_{N} 3 + 3(1) =$ 12. $\log_{N} 0.125 = \underline{-3a}$ $= \log_{N}(1/2^{3}) =$ $= \log_{N} 1 - \log_{N}(2^{3}) =$ $= 0 - 3\log_{N} 2 = 0 - 3a =$ 13. $\log_{N} 0.6 = \underline{-}$ $= \log_{N}(3/5) =$ $= \log_{N} 3$ 14. $\log_{N} \sqrt{6} = \underline{-}$ $= \log_{N} 3$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = \underline{b+3}$ $= \log_{N} 3 + \log_{N}(N^{3}) =$ $= \log_{N} 3 + 3\log_{N} N =$ $= \log_{N} 3 + 3(1) =$ 12. $\log_{N} 0.125 = \underline{-3a}$ $= \log_{N}(1/2^{3}) =$ $= \log_{N} 1 - \log_{N}(2^{3}) =$ $= 0 - 3\log_{N} 2 = 0 - 3a =$ 13. $\log_{N} 0.6 = \underline{-}$ $= \log_{N}(3/5) =$ $= \log_{N} 3 -$ 14. $\log_{N} \sqrt{6} = \underline{-}$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = \underline{b+3}$ $= \log_{N}3 + \log_{N}(N^{3}) =$ $= \log_{N}3 + 3\log_{N}N =$ $= \log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{-3a}$ $= \log_{N}(1/2^{3}) =$ $= \log_{N}1 - \log_{N}(2^{3}) =$ $= 0 - 3\log_{N}2 = 0 - 3a =$ 13. $\log_{N}0.6 = \underline{-3a}$ $= \log_{N}(3/5) =$ $= \log_{N}3 - \log_{N}5$ 14. $\log_{N}\sqrt{6} = \underline{-3a}$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = \underline{b+3}$ = $\log_{N}3 + \log_{N}(N^{3}) =$ = $\log_{N}3 + 3\log_{N}N =$ = $\log_{N}3 + 3(1) =$ 12. $\log_{N}0.125 = \underline{-3a}$ = $\log_{N}(1/2^{3}) =$ = $\log_{N}1 - \log_{N}(2^{3}) =$ = $0 - 3\log_{N}2 = 0 - 3a =$ 13. $\log_{N}0.6 = \underline{-3a}$ = $\log_{N}(3/5) =$ = $\log_{N}(3/5) =$ = $\log_{N}3 - \log_{N}5 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

 $= \log_{N}3 + \log_{N}(N^{3}) =$
 $= \log_{N}3 + 3\log_{N}N =$
 $= \log_{N}3 + 3(1) =$
12. $\log_{N}0.125 = \underline{-3a}$
 $= \log_{N}(1/8) = \log_{N}(1/2^{3}) =$
 $= \log_{N}1 - \log_{N}(2^{3}) =$
 $= 0 - 3\log_{N}2 = 0 - 3a =$
13. $\log_{N}0.6 = \underline{b}$
 $= \log_{N}(3/5) =$
 $= \log_{N}3 - \log_{N}5 =$
14. $\log_{N}\sqrt{6} = \underline{-3a}$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

 $= \log_{N} 3 + \log_{N}(N^{3}) =$
 $= \log_{N} 3 + 3\log_{N} N =$
 $= \log_{N} 3 + 3(1) =$
12. $\log_{N} 0.125 = \underline{-3a}$
 $= \log_{N} (1/2^{3}) =$
 $= \log_{N} 1 - \log_{N} (2^{3}) =$
 $= 0 - 3\log_{N} 2 = 0 - 3a =$
13. $\log_{N} 0.6 = \underline{b-}$
 $= \log_{N} (3/5) =$
 $= \log_{N} 3 - \log_{N} 5 =$
14. $\log_{N} \sqrt{6} = \underline{-}$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

 $= \log_{N}3 + \log_{N}(N^{3}) =$
 $= \log_{N}3 + 3\log_{N}N =$
 $= \log_{N}3 + 3(1) =$
12. $\log_{N}0.125 = \underline{-3a}$
 $= \log_{N}(1/8) = \log_{N}(1/2^{3}) =$
 $= \log_{N}1 - \log_{N}(2^{3}) =$
 $= 0 - 3\log_{N}2 = 0 - 3a =$
13. $\log_{N}0.6 = \underline{b-c}$
 $= \log_{N}(3/5) =$
14. $\log_{N}\sqrt{6} = \underline{-2}$

 $= Log_N 3 - Log_N 5 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

 $= \log_{N} 3 + \log_{N}(N^{3}) =$
 $= \log_{N} 3 + 3\log_{N} N =$
 $= \log_{N} 3 + 3(1) =$
12. $\log_{N} 0.125 = \underline{-3a}$
 $= \log_{N} (1/2^{3}) =$
 $= \log_{N} 1 - \log_{N} (2^{3}) =$
 $= 0 - 3\log_{N} 2 = 0 - 3a =$
13. $\log_{N} 0.6 = \underline{b-c}$
 $= \log_{N} (3/5) =$
 $= \log_{N} 3 - \log_{N} 5 =$
14. $\log_{N} \sqrt{6} = \underline{-1}$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= Log_{N}3 + 3(1) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= Log_{N}3 + 3(1) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ _____ $= Log_{N} (3/5) =$ = $= Log_N 3 - Log_N 5 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= Log_{N}3 + 3(1) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}]$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= Log_{N}3 + 3(1) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ =

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= Log_{N}3 + 3(1) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ = 0.5

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= Log_{N}3 + 3(1) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= Log_{N}3 + 3(1) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}[(2)(3)]$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ $= Log_{N}3 + 3(1) =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}[(2)(3)] =$ =

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= Log_N 3 + 3 Log_N N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ $= Log_{N}3 + 3(1) =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}[(2)(3)] =$ = 0.5(

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= \operatorname{Log}_{N} 3 + 3 \operatorname{Log}_{N} N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ $= Log_{N}3 + 3(1) =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}[(2)(3)] =$ $= 0.5(Log_N 2)$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= \operatorname{Log}_{N} 3 + 3 \operatorname{Log}_{N} N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ $= Log_{N}3 + 3(1) =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}[(2)(3)] =$ $= 0.5(Log_{N}2 +$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= \operatorname{Log}_{N} 3 + 3 \operatorname{Log}_{N} N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ $= Log_{N}3 + 3(1) =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}[(2)(3)] =$ $= 0.5(Log_{N}2 + Log_{N}3)$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= Log_{N}3 + Log_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= \operatorname{Log}_{N} 3 + 3 \operatorname{Log}_{N} N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ $= Log_{N}3 + 3(1) =$ 13. $\log_{N} 0.6 = b - c$ 14. $\log_{N}\sqrt{6} =$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}[(2)(3)] =$ $= 0.5(Log_N 2 + Log_N 3) =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= \text{Log}_{N}3 + \text{Log}_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= \operatorname{Log}_{N} 3 + 3 \operatorname{Log}_{N} N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ $= Log_{N}3 + 3(1) =$ 14. $\log_{N}\sqrt{6} = \frac{a+b}{2}$ 13. $\log_{N} 0.6 = b - c$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}[(2)(3)] =$ $= 0.5(Log_N 2 + Log_N 3) =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11. $\log_{N}(3N^{3}) = b + 3$ 12. $\log_{N} 0.125 = -3a$ $= \text{Log}_{N}3 + \text{Log}_{N}(N^{3}) =$ $= Log_{N}(1/8) = Log_{N}(1/2^{3}) =$ $= \operatorname{Log}_{N} 3 + 3 \operatorname{Log}_{N} N =$ $= Log_{N} 1 - Log_{N} (2^{3}) =$ $= 0 - 3 \text{Log}_{N} 2 = 0 - 3a =$ $= Log_{N}3 + 3(1) =$ 14. $\log_{N}\sqrt{6} = \frac{a+b}{2}$ 13. $\log_{N} 0.6 = b - c$ $= Log_{N} [6^{0.5}] =$ $= Log_{N} (3/5) =$ $= Log_N 3 - Log_N 5 =$ $= 0.5 \text{Log}_{N}[(2)(3)] =$ $= 0.5(Log_N 2 + Log_N 3) =$

Given: $\log_N 2 = a$; $\log_N 3 = b$; $\log_N 5 = c$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

11.
$$\log_{N}(3N^{3}) = \underline{b+3}$$

 $= \log_{N}3 + \log_{N}(N^{3}) =$
 $= \log_{N}3 + 3\log_{N}N =$
 $= \log_{N}3 + 3(1) =$
12. $\log_{N}0.125 = \underline{-3a}$
 $= \log_{N}(1/2^{3}) =$
 $= \log_{N}(1/2^{3}) =$
 $= \log_{N}(1/2^{3}) =$
 $= 0 - 3\log_{N}(2^{3}) =$
 $= 14. \log_{N}\sqrt{6} = \underline{2}$
 $= \log_{N}(3/5) =$
 $= 0.5\log_{N}[(2)(3)] =$
 $= 0.5(\log_{N}2 + \log_{N}3) =$

Evaluate each of the following.

15. $\log_2 32 =$ 16. $\log_3(1/9) =$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

19.
$$\log_2(1/16) =$$
 20. $\log_5 \sqrt{5} =$
Evaluate each of the following.

15. $\log_2 32 =$ 16. $\log_3(1/9) =$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

15. $\log_2 32 =$ 16. $\log_3(1/9) =$

17. $Log_9 3 =$ _____

18. $\log_8 0.125 =$

Evaluate each of the following.

15. $\log_2 32 = _$ 16. $\log_3 (1/9) = _$ 32

17. $\log_9 3 =$ _____ 18

18.
$$\log_8 0.125 =$$

Evaluate each of the following.

15. $\log_2 32 =$ 16. $\log_3 (1/9) =$ _____ 32 =

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

15. $\log_2 32 = _$ 16. $\log_3 (1/9) = _$ $32 = 2^5$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

15. $\log_2 32 = 5$ $32 = 2^5$ 16. $\log_3(1/9) = _____$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

15. $\log_2 32 = 5$ $32 = 2^5$ 16. $\log_3(1/9) = 5$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

19. $\log_2(1/16) =$ _____ 20. $\log_5 \sqrt{5} =$ _____

Evaluate each of the following.

15. $\log_2 32 = 5$ $32 = 2^5$ 16. $\log_3(1/9) = 5$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = _____

 <math>32 = 2^5$ 1/9
- 17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = _____

 <math>32 = 2^5$ 1/9 =

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = 1/3^2$
 $32 = 2^5$ $1/9 = 1/3^2$
- 17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = 1/3^2 = 1$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = 5$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$

17. $\log_9 3 =$ _____ 18. $\log_8 0.125 =$ _____

Evaluate each of the following.

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 =$ _____

18. $\log_8 0.125 =$ _____

- 15. $\log_2 32 = 5$ $32 = 2^5$ 16. $\log_3 (1/9) = -2$ $1/9 = 1/3^2 = 3^{-2}$ 17. $\log_9 3 = _____$ 18. $\log_8 0.125 = _____$
- 19. $\log_2(1/16) =$ 20. $\log_5 \sqrt{5} =$

Evaluate each of the following.

15. $\log_2 32 = 5$ $32 = 2^5$ 16. $\log_3 (1/9) = -2$ $1/9 = 1/3^2 = 3^{-2}$ 17. $\log_9 3 = _____$ $3 = 18. \log_8 0.125 = _____$

Evaluate each of the following.

- 15. $\text{Log}_2 32 = 5$ 16. $\text{Log}_3(1/9) = -2$ $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_{9}3 =$ _____ $3 = \sqrt{9}$

18. $\log_8 0.125 =$

20. $\log_5 \sqrt{5} =$ _____ 19. $\log_2(1/16) =$ _____

Evaluate each of the following.

- 15. $\log_2 32 = 5$ $32 = 2^5$ 16. $\log_3(1/9) = -2$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 =$ _____ $3 = \sqrt{9} =$

18. $\log_8 0.125 =$ _____

Evaluate each of the following.

 $3 = \sqrt{9} = 9^{(1/2)}$

15. $\text{Log}_2 32 = 5$ 16. $\text{Log}_3(1/9) = -2$ $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$ 17. $Log_{9}3 =$ _____ 18. $\log_8 0.125 =$

19. $\log_2(1/16) =$ _____

20. $\log_5 \sqrt{5} =$ _____

Evaluate each of the following.

- 15. $\text{Log}_2 32 = 5$ 16. $\text{Log}_3(1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = \frac{1/2}{3}$ $3 = \sqrt{9} = 9^{(1/2)}$

18. $\log_8 0.125 =$

Evaluate each of the following.

- 15. $\text{Log}_2 32 = 5$ 16. $\text{Log}_3(1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$

18. $\log_8 0.125 =$

- 15. $\text{Log}_2 32 = 5$ 16. $\text{Log}_3(1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ 18. $\log_8 0.125 =$ _____ $3 = \sqrt{9} = 9^{(1/2)}$
- 19. $\log_2(1/16) =$ 20. $\log_5 \sqrt{5} =$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 = 1/2$ 18. $Log_8 0.125 =$
 $3 = \sqrt{9} = 9^{(1/2)}$ 0.125
- 19. $\log_2(1/16) =$ 20. $\log_5 \sqrt{5} =$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 = 1/2$ 18. $Log_8 0.125 =$
 $3 = \sqrt{9} = 9^{(1/2)}$ 0.125 =
- 19. $\log_2(1/16) =$ 20. $\log_5 \sqrt{5} =$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 = 1/2$ 18. $Log_8 0.125 =$
 $3 = \sqrt{9} = 9^{(1/2)}$ 0.125 = 1/8
- 19. $\log_2(1/16) =$ 20. $\log_5 \sqrt{5} =$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 = 1/2$ 18. $Log_8 0.125 =$
 $3 = \sqrt{9} = 9^{(1/2)}$ 0.125 = 1/8 =
- 19. $\log_2(1/16) =$ 20. $\log_5 \sqrt{5} =$

- 15. $\text{Log}_2 32 = 5$ 16. $\text{Log}_3(1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 = 1/2$ 18. $Log_8 0.125 = _____

 <math>3 = \sqrt{9} = 9^{(1/2)}$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) =$ 20. $\log_5 \sqrt{5} =$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 = 1/2$ 18. $Log_8 0.125 = -1$
 $3 = \sqrt{9} = 9^{(1/2)}$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) =$ 20. $\log_5 \sqrt{5} =$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 = 1/2$ 18. $Log_8 0.125 = -1$
 $3 = \sqrt{9} = 9^{(1/2)}$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) =$ 20. $\log_5 \sqrt{5} =$

Evaluate each of the following.

- 15. $\log_2 32 = 5$ $32 = 2^5$ 16. $\log_3(1/9) = -2$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $\text{Log}_2(1/16) =$

20. $\log_5 \sqrt{5} =$ _____

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) =$ ______1/16

20.
$$\log_5 \sqrt{5} =$$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) =$ _____ 1/16 =

20.
$$\log_5 \sqrt{5} =$$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) =$ ______ $1/16 = 1/2^4$

20.
$$\log_5 \sqrt{5} =$$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) =$ _____ $1/16 = 1/2^4 =$

20.
$$\log_5 \sqrt{5} =$$

Evaluate each of the following.

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$

19. $\log_2(1/16) =$ ______ $1/16 = 1/2^4 = 2^{-4}$

20.
$$\log_5 \sqrt{5} =$$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) = -4$ $1/16 = 1/2^4 = 2^{-4}$

20.
$$\log_5 \sqrt{5} =$$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) = -4$ $1/16 = 1/2^4 = 2^{-4}$

20.
$$\log_5 \sqrt{5} =$$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) = -4$ $1/16 = 1/2^4 = 2^{-4}$

20.
$$\log_5 \sqrt{5} =$$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $Log_2(1/16) = -4$ 20. $Log_5 \sqrt{5}$
 $1/16 = 1/2^4 = 2^{-4}$ $\sqrt{5}$

20.
$$\log_5 \sqrt{5} =$$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 = 1/2$ 18. $Log_8 0.125 = -1$
 $3 = \sqrt{9} = 9^{(1/2)}$ $0.125 = 1/8 = 8^{-1}$
- 19. $Log_2(1/16) = _-4$ 20. $Log_5 \sqrt{5} = _$
 $1/16 = 1/2^4 = 2^{-4}$ $\sqrt{5} =$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $Log_2(1/16) = _-4$ 20. $Log_5 \sqrt{5} = _$
 $1/16 = 1/2^4 = 2^{-4}$ $\sqrt{5} = 5^{(1/2)}$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $Log_2(1/16) = -4$ 20. $Log_5 \sqrt{5} = 1/2$
 $1/16 = 1/2^4 = 2^{-4}$ $\sqrt{5} = 5^{(1/2)}$

- 15. $Log_2 32 = 5$ 16. $Log_3 (1/9) = -2$
 $32 = 2^5$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $\log_9 3 = 1/2$ $3 = \sqrt{9} = 9^{(1/2)}$ 18. $\log_8 0.125 = -1$ $0.125 = 1/8 = 8^{-1}$
- 19. $Log_2(1/16) = __4$ 20. $Log_5 \sqrt{5} = __{1/2}$
 $1/16 = 1/2^4 = 2^{-4}$ $\sqrt{5} = 5^{(1/2)}$

- 15. $\log_2 32 = 5$ $32 = 2^5$ 16. $\log_3(1/9) = -2$ $1/9 = 1/3^2 = 3^{-2}$
- 17. $Log_9 3 = 1/2$ 18. $Log_8 0.125 = -1$
 $3 = \sqrt{9} = 9^{(1/2)}$ $0.125 = 1/8 = 8^{-1}$
- 19. $\log_2(1/16) = \underline{-4}$ $1/16 = 1/2^4 = 2^{-4}$ 20. $\log_5 \sqrt{5} = \underline{1/2}$ $\sqrt{5} = 5^{(1/2)}$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 =____ 22. Log 0.001 =____

23. Log 60 =____ 24. Log 0.3 =____

25. $\ln e^3 =$ 26. $\ln e^{-3} =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 =____
 22. Log 0.001 =____

 23. Log 60 =____
 24. Log 0.3 =____

25. $\ln e^3 =$ ____ 26. $\ln e^{-3} =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $Log 1000 = _____
 22. <math>Log 0.001 = _____

 1000
 23. <math>Log 60 = _____

 24. <math>Log 0.3 = _____$

25. $\ln e^3 =$ ____ 26. $\ln e^{-3} =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = 22. Log 0.001 =

 1000 =
 23. Log 60 =

 24. Log 0.3 =

25. $\ln e^3 =$ ____ 26. $\ln e^{-3} =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $Log 1000 = _____
 22. <math>Log 0.001 = _____

 1000 = 10³
 24. <math>Log 0.3 = _____$

25. $\ln e^3 =$ ____ 26. $\ln e^{-3} =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = 3 22. $Log 0.001 = ____

 <math>1000 = 10^3$ 23. $Log 60 = ____

 23. <math>Log 60 = ____
 24. <math>Log 0.3 = ____$

25. $\ln e^3 =$ ____ 26. $\ln e^{-3} =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = 3 22. $Log 0.001 = ____

 <math>1000 = 10^3$ 23. $Log 60 = ____

 23. <math>Log 60 = ____
 24. <math>Log 0.3 = ____$

25. $\ln e^3 =$ ____ 26. $\ln e^{-3} =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. Log 1000 = 3 22. $Log 0.001 = _____$
- 23. Log 60 =____ 24. Log 0.3 =____

25. $\ln e^3 =$ _____ 26. $\ln e^{-3} =$ _____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. Log 1000 = 3 22. $Log 0.001 = ____

 <math>1000 = 10^3$ 0.001
- 23. Log 60 =____ 24. Log 0.3 =____

25. $\ln e^3 =$ _____ 26. $\ln e^{-3} =$ _____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. Log 1000 = 3 22. $Log 0.001 = ____

 <math>1000 = 10^3$ 0.001 = ____
- 23. Log 60 =____ 24. Log 0.3 =____

25. $\ln e^3 =$ _____ 26. $\ln e^{-3} =$ _____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. Log 1000 = 3 22. $Log 0.001 = ____

 <math>1000 = 10^3$ $0.001 = 10^{-3}$
- 23. Log 60 =____ 24. Log 0.3 =____

25. $\ln e^3 =$ ____ 26. $\ln e^{-3} =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. Log 1000 = 3 22. Log 0.001 = -3

 $1000 = 10^3$ $0.001 = 10^{-3}$
- 23. Log 60 =____ 24. Log 0.3 =____

25. $\ln e^3 =$ ____ 26. $\ln e^{-3} =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. Log 1000 = 3 22. Log 0.001 = -3

 $1000 = 10^3$ $0.001 = 10^{-3}$
- 23. Log 60 =____ 24. Log 0.3 =____

25. $\ln e^3 =$ 26. $\ln e^{-3} =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\text{Log } 1000 = \underline{3}$ 22. $\text{Log } 0.001 = \underline{-3}$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\text{Log } 60 = \underline{}$ 24. $\text{Log } 0.3 = \underline{}$

 25. $\ln e^3 = \underline{}$ 26. $\ln e^{-3} = \underline{}$

 27. $\ln 60 =$ 28. $\ln 0.3 =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = 3 22. Log 0.001 = -3

 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\text{Log } 60 = _$ 24. $\text{Log } 0.3 = _$

 25. $\ln e^3 = _$ 26. $\ln e^{-3} = _$

 27. $\ln 60 =$ 28. $\ln 0.3 =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = 3 22. Log 0.001 = -3

 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $Log 60 \approx 1.8$ 24. $Log 0.3 = _____

 Use a calculator.
 26. <math>\ln e^{-3} = _____$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\text{Log } 1000 = \underline{3}$ 22. $\text{Log } 0.001 = \underline{-3}$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\text{Log } 60 \approx \underline{1.8}$ 24. $\text{Log } 0.3 = \underline{-}$

 25. $\ln e^3 = \underline{-}$ 26. $\ln e^{-3} = \underline{-}$

 27. $\ln 60 =$ 28. $\ln 0.3 =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\log 1000 = 3$ 22. $\log 0.001 = -3$

 1000 = 10³
 0.001 = 10⁻³

 23. $\log 60 \approx 1.8$ 24. $\log 0.3 = _____

 60
 25. <math>\ln e^3 = _____

 25. <math>\ln e^3 = _____
 26. <math>\ln e^{-3} = _____

 27. <math>\ln 60 = _____
 28. <math>\ln 0.3 = _____$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\log 1000 = 3$ 22. $\log 0.001 = -3$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\log 60 \approx 1.8$ 24. $\log 0.3 = _____

 <math>60 \approx$ 26. $\ln e^{-3} = _____

 25. <math>\ln e^3 = _____
 26. <math>\ln e^{-3} = _____

 27. <math>\ln 60 =$ 28. $\ln 0.3 =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\log 1000 = 3$ 22. $\log 0.001 = -3$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\log 60 \approx 1.8$ 24. $\log 0.3 = _____

 <math>60 \approx 10^{1.8}$ 26. $\ln e^{-3} = _____$

27.
$$\ln 60 =$$
____ 28. $\ln 0.3 =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\text{Log } 1000 = \underline{3}$ 22. $\text{Log } 0.001 = \underline{-3}$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\text{Log } 60 \approx \underline{1.8}$ 24. $\text{Log } 0.3 = \underline{-}$
 $60 \approx 10^{1.8}$ 26. $\ln e^{-3} = \underline{-}$

27.
$$\ln 60 =$$
____ 28. $\ln 0.3 =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = _3 _____
 22. Log 0.001 = _-3 _____

 1000 = 10³
 0.001 = 10⁻³

 23. Log 60 \approx _1.8 _____
 24. Log 0.3 = ______

 60 \approx 10^{1.8}
 26. ln e⁻³ = _____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = _3 _____
 22. Log 0.001 = _-3 _____

 1000 = 10³
 0.001 = 10⁻³

 23. Log 60 \approx _1.8 _____
 24. Log 0.3 = ______

 60 \approx 10^{1.8}
 26. ln e⁻³ = _____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\text{Log } 1000 = \underline{3}$ 22. $\text{Log } 0.001 = \underline{-3}$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\text{Log } 60 \approx \underline{1.8}$ 24. $\text{Log } 0.3 = \underline{-1}$
 $60 \approx 10^{1.8}$ 24. $\text{Log } 0.3 = \underline{-1}$

 25. $\ln e^3 =$ 26. $\ln e^{-3} =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\text{Log } 1000 = \underline{3}$ 22. $\text{Log } 0.001 = \underline{-3}$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\text{Log } 60 \approx \underline{1.8}$ 24. $\text{Log } 0.3 \approx \underline{-0.5}$
 $60 \approx 10^{1.8}$ Use a calculator.

 25. $\ln e^3 =$ 26. $\ln e^{-3} =$
Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. $\log 1000 = 3$ $1000 = 10^{3}$ 22. $\log 0.001 = -3$ $0.001 = 10^{-3}$ 23. $\log 60 \approx 1.8$ $60 \approx 10^{1.8}$ 24. $\log 0.3 \approx -0.5$ $60 \approx 10^{1.8}$ 25. $\ln e^{3} = 26$ $\ln e^{-3} = 26$

27. $\ln 60 =$ 28. $\ln 0.3 =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = 3 22. Log 0.001 = -3

 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $Log 60 \approx 1.8$ 24. $Log 0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ 0.3

 25. $\ln e^3 = 5$ 26. $\ln e^{-3} = 5$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = 3 22. Log 0.001 = -3

 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $Log 60 \approx 1.8$ 24. $Log 0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ $0.3 \approx$

 25. $\ln e^3 = 26$ 26. $\ln e^{-3} = 26$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\text{Log } 1000 = \underline{3}$ 22. $\text{Log } 0.001 = \underline{-3}$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\text{Log } 60 \approx \underline{1.8}$ 24. $\text{Log } 0.3 \approx \underline{-0.5}$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 = \underline{}$ 26. $\ln e^{-3} = \underline{}$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = 3 22. Log 0.001 = -3

 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $Log 60 \approx 1.8$ 24. $Log 0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 =$ 26. $\ln e^{-3} =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\log 1000 = 3$ 22. $\log 0.001 = -3$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\log 60 \approx 1.8$ 24. $\log 0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 = 26$ $\ln e^{-3} = 26$

 27. $\ln 60 = 28$ $\ln 0.3 = 28$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log $1000 = 3$	22. $Log 0.001 = -3$
$1000 = 10^3$	$0.001 = 10^{-3}$
23. Log 60 ≈ <u>1.8</u>	24. Log 0.3 ≈ <u>-0.5</u>
$60 pprox 10^{1.8}$	$0.3 \approx 10^{-0.5}$
25. $\ln e^3 = 3$	26. $\ln e^{-3} =$
27. $\ln 60 =$	28. $\ln 0.3 =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log $1000 = 3$	22. $Log 0.001 = -3$
$1000 = 10^3$	$0.001 = 10^{-3}$
23. Log 60 ≈ <u>1.8</u>	24. Log 0.3 ≈ <u>-0.5</u>
$60 pprox 10^{1.8}$	$0.3 pprox 10^{-0.5}$
25. $\ln e^3 = 3$	26. $\ln e^{-3} = $
27. $\ln 60 =$	28. $\ln 0.3 =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\log 1000 = 3$ 22. $\log 0.001 = -3$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\log 60 \approx 1.8$ 24. $\log 0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -$

 27. $\ln 60 = -$ 28. $\ln 0.3 = -$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\log 1000 = 3$ 22. $\log 0.001 = -3$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\log 60 \approx 1.8$ 24. $\log 0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$

 27. $\ln 60 = 28. \ln 0.3 = 5$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\log 1000 = 3$ 22. $\log 0.001 = -3$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\log 60 \approx 1.8$ 24. $\log 0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$

 27. $\ln 60 =$ 28. $\ln 0.3 =$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = _3
 22. Log 0.001 = _3

 1000 = 10³
 0.001 = 10⁻³

 23. Log 60 \approx _1.8
 24. Log 0.3 \approx _0.5

 60 \approx 10^{1.8}
 0.3 \approx 10^{-0.5}

 25. ln e³ = _3
 26. ln e⁻³ = _3

27. $\ln 60 =$

28.
$$\ln 0.3 =$$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. $\text{Log } 1000 = \underline{3}$ 22. $\text{Log } 0.001 = \underline{-3}$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\text{Log } 60 \approx \underline{1.8}$ 24. $\text{Log } 0.3 \approx \underline{-0.5}$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 = \underline{3}$ 26. $\ln e^{-3} = \underline{-3}$

27. $\ln 60 =$

28.
$$\ln 0.3 =$$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 =$
 - Use a calculator.

28.
$$\ln 0.3 =$$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. $\log 1000 = 3$ 22. $\log 0.001 = -3$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\log 60 \approx 1.8$ 24. $\log 0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$
- 27. In 60 ≈ <u>4.1</u>
 Use a calculator.

$$28. \quad \ln 0.3 = _$$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

 21. Log 1000 = 3 22. Log 0.001 = -3

 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. Log $60 \approx 1.8$ 24. Log $0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. ln $e^3 = 3$ 26. ln $e^{-3} = -3$

27. $\ln 60 \approx 4.1$

28.
$$\ln 0.3 =$$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 =$ **60**

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 =$ 60 ≈

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 =$ $60 \approx e^{4.1}$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ ln 60 ≈ <u>4.1</u> 28. $\ln 0.3 =$ 27. $60 \approx e^{4.1}$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. $\text{Log } 1000 = \underline{3}$ 22. $\text{Log } 0.001 = \underline{-3}$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\text{Log } 60 \approx \underline{1.8}$ 24. $\text{Log } 0.3 \approx \underline{-0.5}$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 = \underline{3}$ 26. $\ln e^{-3} = \underline{-3}$

 27. $\ln 60 \approx \underline{4.1}$ 28. $\ln 0.3 = \underline{-3}$
 - $60 \approx e^{4.1}$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

- 21. $\log 1000 = 3$ 22. $\log 0.001 = -3$
 $1000 = 10^3$ $0.001 = 10^{-3}$

 23. $\log 60 \approx 1.8$ 24. $\log 0.3 \approx -0.5$
 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$

 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$
- 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 =$ ____

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 =$ $60 \approx e^{4.1}$ Use a calculator.

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 \approx -1.2$ $60 \approx e^{4.1}$ Use a calculator.

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 \approx -1.2$ $60 \approx e^{4.1}$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 \approx -1.2$ $60 \approx e^{4.1}$ 0.3

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 \approx -1.2$ $60 \approx e^{4.1}$ **0.3** ≈

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 27. $\ln 60 \approx 4.1$ 28. $\ln 0.3 \approx -1.2$ $60 \approx e^{4.1}$ $0.3 \approx e^{-1.2}$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ 1.8 24. Log 0.3 ≈ -0.5 $60 \approx 10^{1.8}$ $0.3 \approx 10^{-0.5}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 28. $\ln 0.3 \approx -1.2$ 27. $\ln 60 \approx 4.1$ $60 \approx e^{4.1}$ $0.3 \approx e^{-1.2}$

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.

21. Log 1000 = 322. Log 0.001 = -3 $1000 = 10^3$ $0.001 = 10^{-3}$ 23. Log 60 ≈ <u>1.8</u> 24. Log 0.3 ≈ -0.5 $0.3 \approx 10^{-0.5}$ $60 \approx 10^{1.8}$ 25. $\ln e^3 = 3$ 26. $\ln e^{-3} = -3$ 28. ln 0.3 ≈ -1.2 27. ln 60 **≈** 4.1 $0.3 \approx e^{-1.2}$ $60 \approx e^{4.1}$