Algebra II

 Lesson \#2 Unit 11 Class Worksheet \#2For Worksheets \#2 \& \#3

This lesson will introduce and apply the properties of logarithms.

This lesson will introduce and apply the properties of logarithms.

$$
B^{k}=\mathbf{N} \quad \Longrightarrow \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms. Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents.

$$
\mathbf{B}^{\mathbf{k}}=\mathbf{N} \quad \longrightarrow \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms. Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

$$
B^{k}=\mathbf{N} \quad \longrightarrow \log _{B} N=k
$$

This lesson will introduce and apply the properties of logarithms.
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

We know that $\mathbf{B}^{\mathbf{0}}=\mathbf{1}$.

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

We know that $B^{0}=1$. Therefore, $\log _{B} 1=0$.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

> We know that $B^{0}=1$. Therefore, $\log _{B} 1=0$.
> We know that $B^{1}=B$.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

$$
\begin{array}{ll}
\text { We know that } B^{0}=1 . & \text { Therefore, } \log _{B} 1=0 . \\
\text { We know that } B^{1}=B . & \text { Therefore, } \log _{B} B=1 .
\end{array}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad み \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms. Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

$$
B^{k}=\mathbf{N} \quad \longrightarrow \log _{B} N=k
$$

This lesson will introduce and apply the properties of logarithms.
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$

$$
B^{k}=\mathbf{N} \quad \longrightarrow \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.) Suppose that $x=B^{u}$ and $y=B^{v}$.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \longrightarrow \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \longrightarrow \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad み \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=\mathbf{u}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} \mathbf{x}=\mathbf{u}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} \mathbf{x}=\mathbf{u}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{\mathbf{B}} \mathbf{x}=\mathbf{u}, \log _{\mathrm{B}} \mathbf{y}=
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{\mathrm{B}} \mathbf{x}=\mathbf{u}, \log _{\mathrm{B}} \mathbf{y}=\mathbf{v}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{\mathrm{B}} \mathbf{x}=\mathbf{u}, \log _{\mathrm{B}} \mathbf{y}=\mathbf{v}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{\mathrm{B}} \mathbf{x}=\mathbf{u}, \log _{\mathrm{B}} \mathbf{y}=\mathbf{v}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=u, \log _{B} y=v \text { and } \log _{B}(x y)=
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=u, \log _{B} y=v \text { and } \log _{B}(x y)=u+v .
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=u, \log _{B} y=v \text { and } \log _{B}(x y)=u+v .
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x y)=u+v$.
Therefore,

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x y)=u+v$.
Therefore, $\log _{\mathrm{B}}(\mathrm{xy})=$

$$
B^{k}=\mathbf{N} \quad \Longrightarrow \log _{B} \mathbf{N}=k
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x y)=u+v$.
Therefore, $\log _{B}(x y)=\log _{B} x$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x y)=u+v$.
Therefore, $\log _{B}(\mathbf{x y})=\log _{B} x+$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x y)=u+v$.
Therefore, $\log _{B}(x y)=\log _{B} x+\log _{B} y$.

$$
B^{k}=\mathbf{N} \quad \Longrightarrow \log _{B} \mathbf{N}=k
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x y)=u+v$.
Therefore, $\log _{B}(x y)=\log _{B} x+\log _{B} y$.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x y)=u+v$.
Therefore, $\log _{B}(\mathbf{x y})=\log _{B} x+\log _{B} y$.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x y=\left(B^{u}\right)\left(B^{v}\right)=B^{u+v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x y)=u+v$.
Therefore, $\log _{B}(\mathbf{x y})=\log _{B} x+\log _{B} y$.
This is called the 'product rule'.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{B}(x y)=\log _{B} x+\log _{B} y$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{B}(x y)=\log _{B} x+\log _{B} y$
Consider the following application of the product rule.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{B}(x y)=\log _{B} x+\log _{B} y$
Consider the following application of the product rule.
$\log _{B}\left(\mathbf{x}^{\mathbf{2}}\right)=$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{B}(x y)=\log _{B} x+\log _{B} y$
Consider the following application of the product rule.

$$
\log _{B}\left(\mathbf{x}^{2}\right)=\log _{B}[(x)(x)]=
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\log _{B}\left(x^{2}\right)=\log _{B}[(x)(x)]=\log _{B} x+\log _{B} x
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{B}(x y)=\log _{B} x+\log _{B} y$
Consider the following application of the product rule.

$$
\log _{B}\left(x^{2}\right)=\log _{B}[(x)(x)]=\log _{B} x+\log _{B} x=2 \log _{B} x
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\log _{B}\left(x^{2}\right)=\log _{B}[(x)(x)]=\log _{B} x+\log _{B} x=2 \log _{B} x
$$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{B}(x y)=\log _{B} x+\log _{B} y$
Consider the following application of the product rule.

$$
\log _{B}\left(x^{2}\right)=2 \log _{B} x
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\log _{B}\left(x^{2}\right)=2 \log _{B} x
$$

$\log _{B}\left(\mathbf{x}^{3}\right)=$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\left.\left.\log _{B}\left(x^{3}\right)=\log _{B}\left(x^{2}\right)=2 \log _{B} x \text { (} x\right)\left(x^{2}\right)\right]=
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{gathered}
\log _{B}\left(x^{2}\right)=2 \log _{B} x \\
\log _{B}\left(x^{3}\right)=\log _{B}\left[(x)\left(x^{2}\right)\right]=\log _{B} x+\log _{B}\left(x^{2}\right)
\end{gathered}
$$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right)=\log _{B}\left[(x)\left(x^{2}\right)\right] & =\log _{B} x+\log _{B}\left(x^{2}\right)= \\
& =
\end{aligned}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad み \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right)=\log _{B}\left[(x)\left(x^{2}\right)\right] & =\log _{B} x+\log _{B}\left(x^{2}\right)= \\
& =\log _{B} x
\end{aligned}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad み \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right)=\log _{B}\left[(x)\left(x^{2}\right)\right] & =\log _{B} x+\log _{B}\left(x^{2}\right)= \\
& =\log _{B} x+2 \log _{B} x
\end{aligned}
$$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right)=\log _{B}\left[(\mathbf{x})\left(x^{2}\right)\right] & =\log _{B} x+\log _{B}\left(x^{2}\right)= \\
& =\log _{B} x+2 \log _{B} x=
\end{aligned}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad み \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right)=\log _{B}\left[(x)\left(x^{2}\right)\right] & =\log _{B} x+\log _{B}\left(x^{2}\right)= \\
& =\log _{B} x+2 \log _{B} x=3 \log _{B} x
\end{aligned}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad み \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right)=\log _{B}\left[(x)\left(x^{2}\right)\right] & =\log _{B} x+\log _{B}\left(x^{2}\right)= \\
& =\log _{B} x+2 \log _{B} x=3 \log _{B} x
\end{aligned}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
& \log _{B}\left(x^{2}\right)=2 \log _{B} x \\
& \log _{B}\left(x^{3}\right)=3 \log _{B} x
\end{aligned}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
& \log _{B}\left(x^{2}\right)=2 \log _{B} x \\
& \log _{B}\left(x^{3}\right)=3 \log _{B} x
\end{aligned}
$$

$\log _{B}\left(\mathbf{x}^{4}\right)=$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
& \log _{B}\left(x^{2}\right)=2 \log _{B} x \\
& \log _{B}\left(x^{3}\right)=3 \log _{B} x
\end{aligned}
$$

$\log _{B}\left(x^{4}\right)=\log _{B}\left[(x)\left(x^{3}\right)\right]=$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \longrightarrow \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{gathered}
\log _{B}\left(x^{2}\right)=2 \log _{B} x \\
\log _{B}\left(x^{3}\right)=3 \log _{B} x \\
\log _{B}\left(x^{4}\right)=\log _{B}\left[(x)\left(x^{3}\right)\right]=\log _{B} x+\log _{B}\left(x^{3}\right)
\end{gathered}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \longrightarrow \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right) & =3 \log _{B} x
\end{aligned}
$$

$\log _{B}\left(x^{4}\right)=\log _{B}\left[(x)\left(x^{3}\right)\right]=\log _{B} x+\log _{B}\left(x^{3}\right)=$

$$
=
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \longrightarrow \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right) & =3 \log _{B} x \\
\log _{B}\left(x^{4}\right)=\log _{B}\left[(x)\left(x^{3}\right)\right] & =\log _{B} x+\log _{B}\left(x^{3}\right)= \\
& =\log _{B} x
\end{aligned}
$$

$$
B^{k}=\mathbf{N} \quad \longrightarrow \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right) & =3 \log _{B} x \\
\log _{B}\left(x^{4}\right)=\log _{B}\left[(x)\left(x^{3}\right)\right] & =\log _{B} x+\log _{B}\left(x^{3}\right)= \\
& =\log _{B} x+3 \log _{B} x
\end{aligned}
$$

$$
B^{k}=\mathbf{N} \quad \longrightarrow \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right) & =3 \log _{B} x \\
\log _{B}\left(x^{4}\right)=\log _{B}\left[(x)\left(x^{3}\right)\right] & =\log _{B} x+\log _{B}\left(x^{3}\right)= \\
& =\log _{B} x+3 \log _{B} x=
\end{aligned}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right) & =3 \log _{B} x \\
\log _{B}\left(x^{4}\right)=\log _{B}\left[(x)\left(x^{3}\right)\right] & =\log _{B} x+\log _{B}\left(x^{3}\right)= \\
& =\log _{B} x+3 \log _{B} x=4 \log _{B} x
\end{aligned}
$$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \Longrightarrow \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
\log _{B}\left(x^{2}\right) & =2 \log _{B} x \\
\log _{B}\left(x^{3}\right) & =3 \log _{B} x \\
\log _{B}\left(x^{4}\right)=\log _{B}\left[(x)\left(x^{3}\right)\right] & =\log _{B} x+\log _{B}\left(x^{3}\right)= \\
& =\log _{B} x+3 \log _{B} x=4 \log _{B} x
\end{aligned}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{B}(x y)=\log _{B} x+\log _{B} y$
Consider the following application of the product rule.

$$
\begin{aligned}
& \log _{B}\left(x^{2}\right)=2 \log _{B} x \\
& \log _{B}\left(x^{3}\right)=3 \log _{B} x \\
& \log _{B}\left(x^{4}\right)=4 \log _{B} x
\end{aligned}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
& \log _{B}\left(x^{2}\right)=2 \log _{B} x \\
& \log _{B}\left(x^{3}\right)=3 \log _{B} x \\
& \log _{B}\left(x^{4}\right)=4 \log _{B} x
\end{aligned}
$$

In general,

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
& \log _{B}\left(x^{2}\right)=2 \log _{B} x \\
& \log _{B}\left(x^{3}\right)=3 \log _{B} x \\
& \log _{B}\left(x^{4}\right)=4 \log _{B} x
\end{aligned}
$$

In general, $\log _{B}\left(\mathbf{x}^{\mathbf{n}}\right)$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
& \log _{B}\left(x^{2}\right)=2 \log _{B} x \\
& \log _{B}\left(x^{3}\right)=3 \log _{B} x \\
& \log _{B}\left(x^{4}\right)=4 \log _{B} x
\end{aligned}
$$

In general, $\log _{B}\left(\mathbf{x}^{n}\right)=\operatorname{nLog}_{B} x$.

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
& \log _{B}\left(x^{2}\right)=2 \log _{B} x \\
& \log _{B}\left(x^{3}\right)=3 \log _{B} x \\
& \log _{B}\left(x^{4}\right)=4 \log _{B} x
\end{aligned}
$$

In general, $\log _{B}\left(x^{n}\right)=\operatorname{nLog}_{B} x$.

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Product Rule: $\log _{\mathrm{B}}(\mathbf{x y})=\log _{\mathrm{B}} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the product rule.

$$
\begin{aligned}
& \log _{B}\left(x^{2}\right)=2 \log _{B} x \\
& \log _{B}\left(x^{3}\right)=3 \log _{B} x \\
& \log _{B}\left(x^{4}\right)=4 \log _{B} x
\end{aligned}
$$

In general, $\log _{B}\left(x^{n}\right)=\operatorname{nLog}_{B} x$.
This is called the power rule.

$$
B^{k}=\mathbf{N} \quad \longrightarrow \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

> The Product Rule: $\log _{B}(x y)=\log _{B} x+\log _{B} y$
> The Power Rule: $\log _{B}\left(x^{n}\right)=\operatorname{LLog}_{B} x$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms. Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

$$
B^{k}=\mathbf{N} \quad \longrightarrow \log _{B} N=k
$$

This lesson will introduce and apply the properties of logarithms.
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.) Suppose that $x=B^{u}$ and $y=B^{v}$.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \longrightarrow \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \longrightarrow \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.) Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms. Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.) Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$. Using the definition of logarithms,

$$
\mathbf{B}^{k}=\mathbf{N} \quad \longrightarrow \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\mathbf{B}^{k}=\mathbf{N} \quad \longrightarrow \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\mathbf{B}^{k}=\mathbf{N} \quad み \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=\mathbf{u}
$$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} \mathbf{x}=\mathbf{u}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} \mathbf{x}=\mathbf{u}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{\mathrm{B}} \mathbf{x}=\mathbf{u}, \log _{\mathrm{B}} \mathbf{y}=
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{\mathrm{B}} \mathbf{x}=\mathbf{u}, \log _{\mathrm{B}} \mathbf{y}=\mathbf{v}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{\mathrm{B}} \mathbf{x}=\mathbf{u}, \log _{\mathrm{B}} \mathbf{y}=\mathbf{v}
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{\mathbf{B}} x=\mathbf{u}, \log _{\mathbf{B}} y=\mathbf{v} \text { and }
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=u, \log _{B} y=v \text { and }
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=u, \log _{B} y=v \text { and } \log _{B}(x / y)=
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude

$$
\log _{B} x=u, \log _{B} y=v \text { and } \log _{B}(x / y)=u-v .
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x / y)=u-v$.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x / y)=u-v$.
Therefore,

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x / y)=u-v$.
Therefore, $\log _{B}(x / y)=$

$$
B^{k}=\mathbf{N} \quad \Longrightarrow \log _{B} \mathbf{N}=k
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x / y)=u-v$.
Therefore, $\log _{B}(x / y)=\log _{B} x$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x / y)=u-v$.
Therefore, $\log _{B}(x / y)=\log _{B} \mathbf{x}-$

$$
B^{k}=\mathbf{N} \quad \Longrightarrow \log _{B} \mathbf{N}=k
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x / y)=u-v$.
Therefore, $\log _{B}(x / y)=\log _{B} x-\log _{B} y$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x / y)=u-v$.
Therefore, $\log _{B}(x / y)=\log _{B} x-\log _{B} y$.

$$
B^{k}=\mathbf{N} \quad \Longrightarrow \log _{B} \mathbf{N}=k
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

Suppose that $x=B^{u}$ and $y=B^{v}$. Then $x / y=\left(B^{u}\right) /\left(B^{v}\right)=B^{u-v}$.
Using the definition of logarithms, we can conclude
$\log _{B} x=u, \log _{B} y=v$ and $\log _{B}(x / y)=u-v$.
Therefore, $\log _{B}(x / y)=\log _{B} x-\log _{B} y$.
This is called the 'quotient rule'.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$

$$
B^{k}=\mathbf{N} \quad \longrightarrow \log _{B} N=k
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.
$\log _{B}(1 / x)$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.
$\log _{B}(1 / \mathbf{x})=$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.
$\log _{B}(1 / x)=\log _{B} 1$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.
$\log _{B}(1 / x)=\log _{B} \mathbf{1}-$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.
$\log _{B}(1 / x)=\log _{B} 1-\log _{B} x$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.
$\log _{B}(1 / \mathbf{x})=\log _{B} 1-\log _{B} x=$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.
$\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longleftrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.
$\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0-\log _{B} x$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{B} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{\mathrm{B}}(\mathrm{x} / \mathbf{y})=\log _{\mathrm{B}} \mathbf{x}-\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the quotient rule.
$\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0-\log _{B} x=$

$$
\mathbf{B}^{k}=\mathbf{N} \quad \Longrightarrow \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{\mathrm{B}}(\mathrm{x} / \mathbf{y})=\log _{\mathrm{B}} \mathbf{x}-\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the quotient rule.

$$
\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0-\log _{B} x=-\log _{B} x
$$

$$
\mathbf{B}^{k}=\mathbf{N} \quad み \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{\mathrm{B}}(\mathrm{x} / \mathbf{y})=\log _{\mathrm{B}} \mathbf{x}-\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the quotient rule.

$$
\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0-\log _{B} x=-\log _{B} x
$$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{\mathrm{B}}(\mathrm{x} / \mathbf{y})=\log _{\mathrm{B}} \mathbf{x}-\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the quotient rule.

$$
\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0-\log _{B} x=-\log _{B} x
$$

Therefore,

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.

$$
\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0-\log _{B} x=-\log _{B} x
$$

Therefore, $\log _{B}(1 / x)$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \square \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.

$$
\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0-\log _{B} x=-\log _{B} x
$$

Therefore, $\log _{\mathrm{B}}(1 / \mathbf{x})=$

$$
\mathbf{B}^{\mathrm{k}}=\mathbf{N} \quad \log _{\mathrm{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
Consider the following application of the quotient rule.

$$
\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0-\log _{B} x=-\log _{B} x
$$

Therefore, $\log _{B}(1 / x)=-\log _{B} x$.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{\mathrm{B}}(\mathrm{x} / \mathbf{y})=\log _{\mathrm{B}} \mathbf{x}-\log _{\mathrm{B}} \mathbf{y}$
Consider the following application of the quotient rule.

$$
\log _{B}(1 / x)=\log _{B} 1-\log _{B} x=0-\log _{B} x=-\log _{B} x
$$

Therefore, $\log _{B}(1 / x)=-\log _{B} x$.
This is called the reciprocal rule.

$$
\mathbf{B}^{k}=\mathbf{N} \quad \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

This lesson will introduce and apply the properties of logarithms.
Because the \log of a number is an exponent, the properties of logarithms are closely related to the properties of exponents. (Note: The base, B, of a logarithmic expression, must be positive.)

The Quotient Rule: $\log _{B}(x / y)=\log _{B} x-\log _{B} y$
The Reciprocal Rule: $\log _{B}(1 / x)=-\log _{B} x$

$$
\mathbf{B}^{k}=\mathbf{N} \quad み \log _{\mathbf{B}} \mathbf{N}=\mathbf{k}
$$

The Properties of Logarithms

$\log _{B} B=1$
$\log _{\mathrm{B}} \mathbf{1}=\mathbf{0}$
The Product Rule: $\log _{B}(\mathbf{x y})=\log _{B} \mathbf{x}+\log _{\mathrm{B}} \mathbf{y}$
The Power Rule: $\log _{B}\left(\mathbf{x}^{n}\right)=\mathbf{n L o g}_{B} \mathbf{x}$
The Quotient Rule: $\log _{\mathrm{B}}(\mathrm{x} / \mathrm{y})=\log _{\mathrm{B}} \mathrm{x}-\log _{\mathrm{B}} \mathbf{y}$
The Reciprocal Rule: $\log _{B}(1 / x)=-\log _{B} x$

Next we will introduce common logarithm and natural logarithm.

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm. Common logarithm is log base 10.

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10. The common logarithm of 100 is written as $\log 100$.

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written.

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $100=\mathbf{1 0}^{2}$,

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=\mathbf{1 0}^{\mathbf{2}}, \log \mathbf{1 0 0}=\mathbf{2}$.

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=1 \mathbf{1 0}^{\mathbf{2}}, \log \mathbf{1 0 0}=\mathbf{2}$. If a number, k, is a power of $\mathbf{1 0}$,

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=10^{\mathbf{2}}, \log \mathbf{1 0 0}=\mathbf{2}$. If a number, k, is a power of $\mathbf{1 0}$, then Log k (the common logarithm of k) 'comes out even'.

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $100=10^{2}, \log 100=2$. If a number, k, is a power of 10 , then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10 , however,

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10. The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $100=10^{2}, \log 100=2$. If a number, k, is a power of $\mathbf{1 0}$, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10 , however, a calculator can be used to approximate $\log k$.

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=10^{2}, \log \mathbf{1 0 0}=\mathbf{2}$. If a number, k, is a power of $\mathbf{1 0}$, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3.

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10. The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=10^{2}, \log \mathbf{1 0 0}=\mathbf{2}$. If a number, k, is a power of $\mathbf{1 0}$, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10. The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=10^{\mathbf{2}}, \log \mathbf{1 0 0}=\mathbf{2}$. If a number, k, is a power of $\mathbf{1 0}$, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $\mathbf{1 0}^{2.3} \approx 200$

Natural logarithm is \log base e.

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=10^{2}, \log \mathbf{1 0 0}=\mathbf{2}$. If a number, k, is a power of $\mathbf{1 0}$, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $\mathbf{1 0}^{2.3} \approx 200$

Natural logarithm is \log base e. The natural logarithm of e^{2} is written as $\ln \mathrm{e}^{2}$.

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=10^{\mathbf{2}}, \log \mathbf{1 0 0}=\mathbf{2}$. If a number, k, is a power of $\mathbf{1 0}$, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $\mathbf{1 0}^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^{2} is written as $\ln \mathrm{e}^{2}$. Clearly, $\ln \mathrm{e}^{2}=2$.

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=10^{2}, \log \mathbf{1 0 0}=\mathbf{2}$. If a number, k, is a power of $\mathbf{1 0}$, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^{2} is written as $\ln \mathrm{e}^{\mathbf{2}}$. Clearly, $\ln \mathrm{e}^{\mathbf{2}}=2$. If a number, k , is a power of e ,

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10 . The common logarithm of 100 is written as $\log 100$. Notice that the base is not written. Clearly, since $\mathbf{1 0 0}=10^{2}, \log \mathbf{1 0 0}=\mathbf{2}$. If a number, k, is a power of $\mathbf{1 0}$, then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $10^{2.3} \approx 200$

Natural logarithm is log base e. The natural logarithm of e^{2} is written as $\ln e^{2}$. Clearly, In $e^{2}=2$. If a number, k, is a power of e, then In k (the natural logarithm of k) 'comes out even'.

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100=10^{2}, \log 100=2$. If a number, k, is a power of 10 , then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $\mathbf{1 0}^{\mathbf{2 . 3}} \approx \mathbf{2 0 0}$

Natural logarithm is \log base e. The natural logarithm of e^{2} is written as $\ln \mathrm{e}^{2}$. Clearly, $\ln \mathrm{e}^{2}=2$. If a number, k, is a power of e, then In k (the natural logarithm of k) 'comes out even'. If k is not a power of e , however,

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100=10^{2}, \log 100=2$. If a number, k, is a power of 10 , then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $\mathbf{1 0}^{\mathbf{2 . 3}} \approx \mathbf{2 0 0}$

Natural logarithm is log base e. The natural logarithm of e^{2} is written as $\ln \mathrm{e}^{2}$. Clearly, $\ln \mathrm{e}^{2}=2$. If a number, k, is a power of e, then In k (the natural logarithm of k) 'comes out even'. If k is not a power of e, however, a calculator can be used to approximate $\ln k$.

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.
Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100=10^{2}, \log 100=2$. If a number, k, is a power of 10 , then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $\mathbf{1 0}^{\mathbf{2 . 3}} \approx \mathbf{2 0 0}$

Natural logarithm is log base e. The natural logarithm of e^{2} is written as $\ln \mathrm{e}^{2}$. Clearly, $\ln \mathrm{e}^{2}=2$. If a number, k, is a power of e, then In k (the natural logarithm of k) 'comes out even'. If k is not a power of e, however, a calculator can be used to approximate $\ln k$. For example $\ln 200$, using a calculator, is approximately 5.3.

$$
\log _{B} N=k \quad B^{k}=\mathbf{N}
$$

Next we will introduce common logarithm and natural logarithm.

Common logarithm is log base 10. The common logarithm of 100 is written as Log 100. Notice that the base is not written. Clearly, since $100=10^{2}, \log 100=2$. If a number, k, is a power of 10 , then Log k (the common logarithm of k) 'comes out even'. If k is not a power of 10, however, a calculator can be used to approximate Log k. For example Log 200, using a calculator, is approximately 2.3. This implies that $\mathbf{1 0}^{\mathbf{2 . 3}} \approx \mathbf{2 0 0}$

Natural logarithm is \log base e. The natural logarithm of e^{2} is written as $\ln \mathrm{e}^{2}$. Clearly, $\ln \mathrm{e}^{2}=2$. If a number, k, is a power of e, then In k (the natural logarithm of k) 'comes out even'. If k is not a power of e, however, a calculator can be used to approximate ln k. For example $\ln \mathbf{2 0 0}$, using a calculator, is approximately 5.3. This implies that $\mathrm{e}^{5.3} \approx 200$.

$$
\log _{B} \mathbf{N}=\mathbf{k} \quad B^{k}=\mathbf{N}
$$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{B} B=$ \qquad
2. $\log _{B}(m n)=$ \qquad 4. $\log _{B}\left(m^{\mathrm{n}}\right)=$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}} 1=$ \qquad
5. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{B} B=$ \qquad
2. $\log _{B}(m n)=$ \qquad 4. $\log _{B}\left(m^{\mathrm{n}}\right)=$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}} 1=$ \qquad
5. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{B} B=$ \qquad
2. $\log _{B}(m n)=$ \qquad 4. $\log _{B}\left(m^{\mathrm{n}}\right)=$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}} 1=$ \qquad
5. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{B} B=\underline{1}$
2. $\log _{\mathrm{B}}(\mathrm{mn})=$ \qquad 4. $\log _{\mathrm{B}}\left(\mathrm{m}^{\mathrm{n}}\right)=$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}} 1=$ \qquad
5. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{\mathrm{B}}(\mathrm{mn})=$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}} 1=$ \qquad
5. $\log _{\mathrm{B}}\left(\mathrm{m}^{\mathrm{n}}\right)=$ \qquad
6. $\log _{\mathrm{B}}\left(\frac{1}{\mathrm{n}}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{\mathrm{B}}(\mathrm{mn})=$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}} 1=$ \qquad
5. $\log _{\mathrm{B}}\left(\mathrm{m}^{\mathrm{n}}\right)=$ \qquad
6. $\log _{\mathrm{B}}\left(\frac{1}{\mathrm{n}}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}} 1=\underline{0}$
5. $\log _{\mathrm{B}}\left(\mathrm{m}^{\mathrm{n}}\right)=$ \qquad
6. $\log _{\mathrm{B}}\left(\frac{1}{\mathrm{n}}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{\mathrm{B}}(\mathrm{mn})=$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}} 1=\underline{0}$
5. $\log _{\mathrm{B}}\left(\mathrm{m}^{\mathrm{n}}\right)=$ \qquad
6. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{\mathrm{B}}(\mathrm{mn})=$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}} 1=\underline{0}$
5. $\log _{\mathrm{B}}\left(\mathrm{m}^{\mathrm{n}}\right)=$ \qquad
6. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m$
3. $\log _{\mathrm{B}} 1=\underline{0}$
4. $\log _{\mathrm{B}}\left(\mathrm{m}^{\mathrm{n}}\right)=$ \qquad
5. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad 6. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\underline{\log _{B} m+}$ \qquad
\qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{B}\left(m^{n}\right)=$
5. $\log _{\mathrm{B}} 1=\underline{0}$
6. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\underline{\log _{B} m+\log _{B} n}$ \qquad
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{\mathrm{B}}\left(\mathrm{m}^{\mathrm{n}}\right)=$
5. $\log _{\mathrm{B}} 1=\underline{0}$
6. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{\mathrm{n}}\right)=$ \qquad
4. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
5. $\log _{\mathrm{B}} 1=\underline{0}$
6. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{\mathrm{n}}\right)=$ \qquad
4. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
5. $\log _{\mathrm{B}} 1=\underline{0}$
6. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{B}\left(m^{n}\right)=\underline{\operatorname{LLog}_{B} m}$
5. $\log _{\mathrm{B}} 1=\underline{0}$
6. $\log _{\mathrm{B}}\left(\frac{1}{\mathrm{n}}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
5. $\log _{\mathrm{B}} 1=\underline{0}$
6. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(\frac{m}{n}\right)=$ \qquad
4. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
5. $\log _{\mathrm{B}} 1=\underline{0}$
6. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
4. $\log _{B}\left(\frac{m}{n}\right)=\log _{B} m$
5. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} \mathrm{B}=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
4. $\log _{B}\left(\frac{m}{n}\right)=\log _{B} m-$
5. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
4. $\log _{B}\left(\frac{m}{n}\right)=\underline{\log _{B} m-\log _{B} n}$
5. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
4. $\log _{B}\left(\frac{m}{n}\right)=\underline{\log _{B} m-\log _{B} n}$
5. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
4. $\log _{B}\left(\frac{m}{n}\right)=\underline{\log _{B} m-\log _{B} n}$
5. $\log _{B}\left(\frac{1}{n}\right)=$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} \mathrm{B}=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
4. $\log _{B}\left(\frac{m}{n}\right)=\underline{\log _{B} m-\log _{B} n}$
5. $\log _{B}\left(\frac{1}{n}\right)=-\log _{B} n$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} \mathrm{B}=\underline{1}$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
4. $\log _{B}\left(\frac{m}{n}\right)=\underline{\log _{B} m-\log _{B} n}$
5. $\log _{B}\left(\frac{1}{n}\right)=-\log _{B} n$

Algebra II Class Worksheet \#2 Unit 11

Complete each of the following properties of logarithms.

1. $\log _{\mathrm{B}} B=1$
2. $\log _{B}(m n)=\log _{B} m+\log _{B} n$
3. $\log _{B}\left(m^{n}\right)=\operatorname{nLog}_{B} m$
4. $\log _{B}\left(\frac{m}{n}\right)=\underline{\log _{B} m-\log _{B} n}$
5. $\log _{B}\left(\frac{1}{n}\right)=-\log _{B} n$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$ \qquad
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$ \qquad
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$ \qquad
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$ \qquad

$$
=
$$

9. $\log _{\mathrm{N}} 12=$ \qquad
10. $\log _{\mathrm{N}} 125=$ \qquad
11. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$
$=\log _{N}[(3)(5)]$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$
$=\log _{\mathrm{N}}[(3)(5)]=$
=
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} \mathbf{3}$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} \mathbf{3}+$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}} 5$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=\underline{b}$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=\underline{b+}$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{N} 15=\underline{b+c}$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{N} 15=b+c$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{N} 15=b+c$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{N} 15=b+c$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
$=$
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{N} 15=b+c$
$=\log _{\mathrm{N}}[(\mathbf{3})(5)]=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad

$$
=\log _{N}\left(5^{3}\right)
$$

10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{N} 15=b+c$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
$=\log _{\mathrm{N}}\left(5^{\mathbf{3}}\right)=$
$=$
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{N} 15=b+c$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
$=\log _{\mathrm{N}}\left(5^{\mathbf{3}}\right)=$
$=3 \log _{N} 5$
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{N} 15=b+c$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=$ \qquad
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=\quad b+c$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=\underline{b+c}$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=\quad b+\mathbf{c}$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad

$$
\text { 8. } \begin{aligned}
& \log _{N} 125=\ldots 3 c \\
= & \log _{N}\left(5^{3}\right)= \\
= & 3 \log _{N} 5=
\end{aligned}
$$

10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{N} 15=\underline{b+c}$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
8. $\log _{\mathrm{N}} 125=3 \mathrm{C}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{\mathbf{3}}\right)=$
$=3 \log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=$ \qquad
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{\mathbf{2}}\right)(3)\right]$
10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=$ \qquad

$$
\begin{aligned}
& =\log _{\mathrm{N}}\left[\left(2^{2}\right)(3)\right]= \\
& =
\end{aligned}
$$

8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=$

$$
\begin{aligned}
& =\log _{\mathrm{N}}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{\mathrm{N}}\left(2^{2}\right)
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \log _{N} 125=\ldots 3 c \\
= & \log _{N}\left(5^{3}\right)= \\
= & 3 \log _{N} 5=
\end{aligned}
$$

10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=$ \qquad

$$
\begin{aligned}
& =\log _{\mathrm{N}}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+
\end{aligned}
$$

8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=$ \qquad

$$
\begin{aligned}
& =\log _{N}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{N}\left(2^{2}\right)+\log _{N} 3
\end{aligned}
$$

8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=$ \qquad

$$
\begin{aligned}
& =\log _{N}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{N}\left(2^{2}\right)+\log _{N} 3= \\
& =
\end{aligned}
$$

8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=$ \qquad

$$
\begin{aligned}
& =\log _{N}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{N}\left(2^{2}\right)+\log _{N} 3= \\
& =2 \log _{N} 2
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \log _{N} 125=\ldots 3 c \\
= & \log _{N}\left(5^{3}\right)= \\
= & 3 \log _{N} 5=
\end{aligned}
$$

10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=$ \qquad

$$
\begin{aligned}
& =\log _{N}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{N}\left(2^{2}\right)+\log _{N} 3= \\
& =2 \log _{N} 2+
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \log _{\mathrm{N}} 125=\ldots \mathbf{C} \\
= & \log _{\mathrm{N}}\left(5^{3}\right)= \\
= & 3 \log _{\mathrm{N}} 5=
\end{aligned}
$$

10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=$ \qquad

$$
\begin{aligned}
& =\log _{N}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{N}\left(2^{2}\right)+\log _{N} 3= \\
& =2 \log _{N} 2+\log _{N} 3
\end{aligned}
$$

$$
\text { 8. } \begin{aligned}
& \log _{N} 125=\ldots 3 C \\
= & \log _{N}\left(5^{3}\right)= \\
= & 3 \log _{N} 5=
\end{aligned}
$$

10. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=$ \qquad

$$
\begin{aligned}
& =\log _{N}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{N}\left(2^{2}\right)+\log _{N} 3= \\
& =2 \log _{N} 2+\log _{N} 3=
\end{aligned}
$$

8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a}$

$$
\begin{aligned}
& =\log _{\mathrm{N}}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{\mathrm{N}}\left(2^{2}\right)+\log _{\mathrm{N}} 3= \\
& =2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=
\end{aligned}
$$

8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+}$

$$
=\log _{N}\left[\left(2^{2}\right)(3)\right]=
$$

$$
=\log _{N}\left(2^{2}\right)+\log _{N} 3=
$$

$$
=2 \log _{N} 2+\log _{N} 3=
$$

8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$

$$
\begin{aligned}
& =\log _{N}\left[\left(2^{2}\right)(3)\right]= \\
& =\log _{N}\left(2^{2}\right)+\log _{N} 3= \\
& =2 \log _{N} 2+\log _{N} 3=
\end{aligned}
$$

8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} 3=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} 3=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} 3=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$ \qquad
$=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$ \qquad
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$
$=\log _{\mathrm{N}}\left[(3) /\left(2^{2}\right)\right]=$
$=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} 3=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]=$
$=\log _{\mathrm{N}} \mathbf{3}$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]=$
$=\log _{\mathrm{N}} \mathbf{3}-$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$
$=\log _{\mathrm{N}}\left[(3) /\left(2^{2}\right)\right]=$
$=\log _{\mathrm{N}} \mathbf{3}-\log _{\mathrm{N}}\left(\mathbf{2}^{\mathbf{2}}\right)$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
7. $\log _{\mathrm{N}} 15=\underline{b+c}$
$=\log _{\mathrm{N}}[(3)(5)]=$
$=\log _{\mathrm{N}} 3+\log _{\mathrm{N}} 5=$
9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} 3=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
8. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
10. $\log _{\mathrm{N}} 0.75=$
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]=$
$=\log _{\mathrm{N}} \mathbf{3}-\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)=$
$=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]=$
$=\log _{\mathrm{N}} 3-\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]=$
$=\log _{\mathrm{N}} 3-\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)=$
$=\log _{\mathrm{N}} 3-$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]=$
$=\log _{\mathrm{N}} 3-\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)=$
$=\log _{\mathrm{N}} 3-2 \log _{\mathrm{N}} 2$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=$
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]=$
$=\log _{\mathrm{N}} 3-\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)=$
$=\log _{\mathrm{N}} 3-2 \log _{\mathrm{N}} 2=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$

$$
\text { 8. } \begin{aligned}
& \log _{N} 125=\ldots 3 c \\
= & \log _{N}\left(5^{3}\right)= \\
= & 3 \log _{N} 5=
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& \log _{N} 0.75=b \\
= & \log _{N}\left[(3) /\left(2^{2}\right)\right]= \\
= & \log _{N} 3-\log _{N}\left(2^{2}\right)= \\
= & \log _{N} 3-2 \log _{N} 2=
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(\mathbf{5}^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=\underline{b}-$
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]=$
$=\log _{\mathrm{N}} 3-\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)=$
$=\log _{\mathrm{N}} 3-2 \log _{\mathrm{N}} 2=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$
10. $\log _{\mathrm{N}} 125=\underline{3 c}$
$=\log _{\mathrm{N}}\left(5^{3}\right)=$
$=3 \log _{\mathrm{N}} 5=$
11. $\log _{\mathrm{N}} 0.75=\underline{b-2 a}$
$=\log _{\mathrm{N}}\left[(3) /\left(\mathbf{2}^{2}\right)\right]=$
$=\log _{\mathrm{N}} 3-\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)=$
$=\log _{\mathrm{N}} 3-2 \log _{\mathrm{N}} 2=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+\mathbf{c} \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$

$$
\text { 8. } \begin{aligned}
& \log _{\mathrm{N}} 125=1 \mathbf{C} \\
= & \log _{\mathrm{N}}\left(5^{3}\right)= \\
= & 3 \log _{\mathrm{N}} 5=
\end{aligned}
$$

10. $\log _{\mathrm{N}} 0.75=b-2 a$
$=\log _{\mathrm{N}}\left[(3) /\left(2^{2}\right)\right]=$
$=\log _{\mathrm{N}} 3-\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)=$
$=\log _{\mathrm{N}} 3-2 \log _{\mathrm{N}} 2=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 7. } \begin{aligned}
& \log _{N} 15=b+c \\
= & \log _{N}[(3)(5)]= \\
= & \log _{N} 3+\log _{N} 5=
\end{aligned}
$$

9. $\log _{\mathrm{N}} 12=\underline{2 a+b}$
$=\log _{\mathrm{N}}\left[\left(\mathbf{2}^{2}\right)(3)\right]=$
$=\log _{\mathrm{N}}\left(\mathbf{2}^{2}\right)+\log _{\mathrm{N}} \mathbf{3}=$
$=2 \log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3=$

$$
\text { 8. } \begin{aligned}
& \log _{N} 125=\ldots \mathbf{3 C} \\
= & \log _{N}\left(5^{3}\right)= \\
= & 3 \log _{N} 5=
\end{aligned}
$$

10. $\log _{\mathrm{N}} 0.75=-\quad b-2 a$

$$
=\log _{\mathrm{N}}\left[(3) /\left(2^{2}\right)\right]=
$$

$$
=\log _{N} 3-\log _{N}\left(2^{2}\right)=
$$

$$
=\log _{N} 3-2 \log _{N} 2=
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$ \qquad -
12. $\log _{\mathrm{N}} 0.125=$ \qquad
13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$ \qquad -
12. $\log _{\mathrm{N}} 0.125=$ \qquad
13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$ \qquad -
13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$ \qquad $=$
13. $\log _{\mathrm{N}} 0.6=$ \qquad
12. $\log _{\mathrm{N}} 0.125=$ \qquad
14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}$
13. $\log _{\mathrm{N}} 0.6=$ \qquad
\qquad

12. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$ \qquad

12. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$
13. $\log _{\mathrm{N}} 0.6=$ \qquad
\qquad

$$
=\log _{\mathrm{N}} \mathbf{3}+
$$,

12. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$ \qquad

13. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{\mathrm{N}}\left(3 \mathrm{~N}^{3}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}}\left(\mathrm{N}^{3}\right)$
12. $\log _{\mathrm{N}} 0.125=$ \qquad
14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$
$=\log _{\mathbf{N}} \mathbf{3}+\log _{\mathrm{N}}\left(\mathbf{N}^{\mathbf{3}}\right)=$

$$
=\log _{\mathrm{N}} 3+\log _{\mathrm{N}}\left(\mathbf{N}^{3}\right)=
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad
\qquad

$$
=
$$

12. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$ \qquad

$$
52+2
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}}\left(\mathbf{N}^{\mathbf{3}}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}$
13. $\log _{\mathrm{N}} 0.6=$ \qquad
12. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$ \qquad
14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$

$$
\begin{aligned}
& =\log _{\mathrm{N}} 3+\log _{\mathrm{N}}\left(\mathrm{~N}^{3}\right)= \\
& =\log _{\mathrm{N}} 3+
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad
14. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$ \qquad
15. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$

$$
\begin{aligned}
& =\log _{N} 3+\log _{N}\left(N^{3}\right)= \\
& =\log _{N} 3+3 \log _{N} N
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad
14. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$ \qquad
15. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}}\left(\mathbf{N}^{\mathbf{3}}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+3 \log _{\mathrm{N}} \mathbf{N}=$
$=$
13. $\log _{\mathrm{N}} 0.6=$ \qquad
12. $\log _{\mathrm{N}} 0.125=$ \qquad
14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}}\left(\mathbf{N}^{\mathbf{3}}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+3 \log _{\mathrm{N}} \mathbf{N}=$
$=\log _{\mathrm{N}} 3$
13. $\log _{\mathrm{N}} 0.6=$ \qquad
12. $\log _{\mathrm{N}} 0.125=$ \qquad
14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}}\left(\mathbf{N}^{\mathbf{3}}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+3 \log _{\mathrm{N}} \mathbf{N}=$
$=\log _{\mathrm{N}} \mathbf{3}+$
13. $\log _{\mathrm{N}} 0.6=$ \qquad
12. $\log _{\mathrm{N}} 0.125=$ \qquad
14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}}\left(\mathbf{N}^{\mathbf{3}}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+3 \log _{\mathrm{N}} \mathbf{N}=$
$=\log _{\mathrm{N}} 3+3(1)$
13. $\log _{\mathrm{N}} 0.6=$ \qquad
12. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$ \qquad
14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+\log _{\mathrm{N}}\left(\mathbf{N}^{\mathbf{3}}\right)=$
$=\log _{\mathrm{N}} \mathbf{3}+3 \log _{\mathrm{N}} \mathbf{N}=$
$=\log _{\mathrm{N}} 3+3(1)=$
13. $\log _{\mathrm{N}} 0.6=$ \qquad
12. $\log _{\mathrm{N}} 0.125=$ \qquad
14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{N} \sqrt{6}=$
\qquad
14. $\log _{\mathrm{N}} 0.125=$
\qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.
11. $\log _{N}\left(3 N^{3}\right)=\underline{b+}$

$$
\begin{aligned}
& =\log _{\mathrm{N}} 3+\log _{\mathrm{N}}\left(\mathrm{~N}^{3}\right)= \\
& =\log _{\mathrm{N}} 3+3 \log _{\mathrm{N}} \mathrm{~N}= \\
& =\log _{\mathrm{N}} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad
14. $\log _{\mathrm{N}} 0.125=$ \qquad
15. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{N} \sqrt{6}=$
\qquad
14. $\log _{\mathrm{N}} 0.125=$
\qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{\mathrm{N}} \sqrt{6}=$
\qquad
14. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{N} \sqrt{6}=$
\qquad
14. $\log _{\mathrm{N}} 0.125=$
\qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{N} \sqrt{6}=$
\qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

$$
=\log _{\mathrm{N}}(1 / 8)
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{\mathrm{N}} \sqrt{6}=$
\qquad
14. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$
\qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{\mathrm{N}} \sqrt{6}=$
\qquad

$$
=\log _{\mathrm{N}}(1 / 8)=
$$

12. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$
\qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad 14. $\log _{\mathrm{N}} \sqrt{6}=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

$$
=\log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)=
$$

$$
=
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad
14. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$ \qquad
15. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+3 \\
= & \log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
& 3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad
14. $\log _{\mathrm{N}} 0.125=$ \qquad

$$
=\log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)=
$$

$$
=\log _{\mathrm{N}} 1
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+3 \\
= & \log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
& 3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad
14. $\log _{\mathrm{N}} 0.125=$ \qquad

$$
=\log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)=
$$

$$
=\log _{\mathrm{N}} 1-
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad
14. $\log _{\mathrm{N}} \mathbf{0 . 1 2 5}=$ \qquad

$$
=\log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)=
$$

$$
=\log _{N} 1-\log _{N}\left(2^{3}\right)
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad
14. $\log _{\mathrm{N}} 0.125=$ \qquad

$$
\begin{aligned}
& =\log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
& =\log _{N} 1-\log _{N}\left(2^{3}\right)= \\
& =
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125= \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125= \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125= \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125= \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125= \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125= \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125= \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125= \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad $=$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-\frac{-3 a}{} \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
=\log _{N}(3 / 5)
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
=\log _{N}(3 / 5)=
$$

$$
=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-\frac{-3 a}{} \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\begin{aligned}
& =\log _{N}(3 / 5)= \\
& =\log _{N} 3
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-\frac{-3 a}{} \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\begin{aligned}
& =\log _{N}(3 / 5)= \\
& =\log _{N} 3-
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-\frac{-3 a}{} \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\begin{aligned}
& =\log _{N}(3 / 5)= \\
& =\log _{N} 3-\log _{N} 5
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-\frac{-3 a}{} \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=$ \qquad

$$
\begin{aligned}
& =\log _{N}(3 / 5)= \\
& =\log _{N} 3-\log _{N} 5=
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-\frac{-3 a}{} \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-\frac{-3 a}{} \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-\frac{-3 a}{} \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=b-c$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b-c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{\mathrm{N}} 3-\log _{\mathrm{N}} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b-c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad $=$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

$$
=\log _{\mathrm{N}}\left[6^{0.5}\right]
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

$$
=\log _{N}\left[6^{0.5}\right]=
$$

$$
=
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

$$
\begin{aligned}
& =\log _{N}\left[6^{0.5}\right]= \\
& =0.5
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

$$
\begin{aligned}
& =\log _{N}\left[6^{0.5}\right]= \\
& =0.5 \log _{N}[
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

$$
\begin{aligned}
& =\log _{\mathrm{N}}\left[6^{0.5}\right]= \\
& =0.5 \log _{\mathrm{N}}[(2)(3)]
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

$$
=\log _{N}\left[6^{0.5}\right]=
$$

$$
=0.5 \log _{N}[(2)(3)]=
$$

$$
=
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

$$
\begin{aligned}
& =\log _{N}\left[6^{0.5}\right]= \\
& =0.5 \log _{N}[(2)(3)]= \\
& =0.5(
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

$$
=\log _{N}\left[6^{0.5}\right]=
$$

$$
=0.5 \log _{N}[(2)(3)]=
$$

$$
=0.5\left(\log _{N} 2\right.
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

$$
=\log _{N}\left[6^{0.5}\right]=
$$

$$
=0.5 \log _{N}[(2)(3)]=
$$

$$
=0.5\left(\log _{N} 2+\right.
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{\mathrm{N}} \sqrt{6}=$ \qquad

$$
=\log _{N}\left[6^{0.5}\right]=
$$

$$
=0.5 \log _{\mathrm{N}}[(2)(3)]=
$$

$$
=0.5\left(\log _{N} 2+\log _{N} 3\right)
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

14. $\log _{N} \sqrt{6}=$ \qquad

$$
=\log _{N}\left[6^{0.5}\right]=
$$

$$
=0.5 \log _{N}[(2)(3)]=
$$

$$
=0.5\left(\log _{N} 2+\log _{N} 3\right)=
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\underline{b}-\mathbf{c}$

$$
\begin{aligned}
& =\log _{N}(3 / 5)= \\
& =\log _{N} 3-\log _{N} 5=
\end{aligned}
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
&= \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
&= \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
&= 0-3 \log _{N} 2=0-3 a= \\
& \text { 14. } \log _{N} \sqrt{6}=\frac{\frac{a+b}{2}}{=} \\
& \log _{N}\left[6^{0.5}\right]= \\
&= 0.5 \log _{N}[(2)(3)]= \\
&= 0.5\left(\log _{N} 2+\log _{N} 3\right)=
\end{aligned}
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\quad b-c$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

$$
\text { 14. } \log _{N} \sqrt{6}=\frac{\frac{a+b}{2}}{2}
$$

$$
=\log _{N}\left[6^{0.5}\right]=
$$

$$
=0.5 \log _{N}[(2)(3)]=
$$

$$
=0.5\left(\log _{N} 2+\log _{N} 3\right)=
$$

Algebra II Class Worksheet \#2 Unit 11

Given: $\log _{\mathrm{N}} 2=\mathrm{a} ; \log _{\mathrm{N}} 3=\mathrm{b} ; \log _{\mathrm{N}} 5=\mathrm{c}$. Express each of the following using an algebraic expression in terms of a, b, and/or c.

$$
\text { 11. } \begin{aligned}
& \log _{N}\left(3 N^{3}\right)= \\
= & \log _{N} 3+\log _{N}\left(N^{3}\right)= \\
= & \log _{N} 3+3 \log _{N} N= \\
= & \log _{N} 3+3(1)=
\end{aligned}
$$

13. $\log _{\mathrm{N}} 0.6=\quad b-c$

$$
=\log _{N}(3 / 5)=
$$

$$
=\log _{N} 3-\log _{N} 5=
$$

$$
\text { 12. } \begin{aligned}
& \log _{N} 0.125=-3 a \\
= & \log _{N}(1 / 8)=\log _{N}\left(1 / 2^{3}\right)= \\
= & \log _{N} 1-\log _{N}\left(2^{3}\right)= \\
= & 0-3 \log _{N} 2=0-3 a=
\end{aligned}
$$

$$
\text { 14. } \log _{N} \sqrt{6}=\frac{\frac{a+b}{2}}{2}
$$

$$
=\log _{N}\left[6^{0.5}\right]=
$$

$$
=0.5 \log _{N}[(2)(3)]=
$$

$$
=0.5\left(\log _{\mathrm{N}} 2+\log _{\mathrm{N}} 3\right)=
$$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=$ \qquad
17. $\log _{9} 3=$ \qquad
19. $\log _{2}(1 / 16)=$ \qquad
16. $\log _{3}(1 / 9)=$ \qquad
18. $\log _{8} 0.125=$ \qquad
20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=$ \qquad 16. $\log _{3}(1 / 9)=$ \qquad
17. $\log _{9} 3=$ \qquad 18. $\log _{8} 0.125=$ \qquad
19. $\log _{2}(1 / 16)=$ \qquad 20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=$ \qquad
17. $\log _{9} 3=$ \qquad
19. $\log _{2}(1 / 16)=$ \qquad
16. $\log _{3}(1 / 9)=$ \qquad
18. $\log _{8} 0.125=$ \qquad
20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=$ 32
17. $\log _{9} 3=$ \qquad
19. $\log _{2}(1 / 16)=$ \qquad
\qquad -

16. $\log _{3}(1 / 9)=$ \qquad
17. $\log _{8} 0.125=$ \qquad
18. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=$

$$
32=
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad
19. $\log _{3}(1 / 9)=$ \qquad
20. $\log _{8} \mathbf{0 . 1 2 5}=$ \qquad
21. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad
19. $\log _{3}(1 / 9)=$ \qquad
20. $\log _{8} \mathbf{0 . 1 2 5}=$ \qquad
21. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=\underline{5}$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad
19. $\log _{9} 3=$
20. $\log _{3}(1 / 9)=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad
19. $\log _{3}(1 / 9)=$ \qquad
20. $\log _{8} 0.125=$ \qquad
21. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad
19. $\log _{3}(1 / 9)=$ \qquad
20. $\log _{8} 0.125=$ \qquad
21. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad
19. $\log _{3}(1 / 9)=$ 1/9
20. $\log _{8} 0.125=$ \qquad
21. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)= \\
& 1 / 9=
\end{aligned}
$$

18. $\log _{8} 0.125=$ \qquad
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
\text { 16. } \log _{3}(1 / 9)=
$$

$$
32=2^{5}
$$

$$
1 / 9=1 / 3^{2}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad 20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad
19. $\log _{3}(1 / 9)=$ \qquad

$$
1 / 9=1 / 3^{2}=
$$

18. $\log _{8} \mathbf{0 . 1 2 5}=$ \qquad
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad
19. $\log _{3}(1 / 9)=$
$1 / 9=1 / 3^{2}=3^{-2}$
20. $\log _{8} 0.125=$ \qquad
21. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} 0.125=$ \qquad
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} 0.125=$ \qquad
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad
18. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} 0.125=$ \qquad
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=$ \qquad 3
18. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} 0.125=$ \qquad
19. $\log _{5} \sqrt{5}=$ \qquad ,

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
\text { 16. } \log _{3}(1 / 9)=-2
$$

$$
32=2^{5}
$$

$$
1 / 9=1 / 3^{2}=3^{-2}
$$

17. $\log _{9} 3=$ \qquad $3=$
18. $\log _{2}(1 / 16)=$ \qquad 20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
\text { 16. } \log _{3}(1 / 9)=-2
$$

$$
32=2^{5}
$$

$$
1 / 9=1 / 3^{2}=3^{-2}
$$

17. $\log _{9} 3=$ \qquad

$$
3=\sqrt{9}
$$

19. $\log _{2}(1 / 16)=$ \qquad 20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=\underline{5}$

$$
32=2^{5}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{9} 3=$ \qquad 18. $\log _{8} \mathbf{0 . 1 2 5}=$ \qquad

$$
3=\sqrt{9}=
$$

19. $\log _{2}(1 / 16)=$ \qquad 20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{9} 3=$ \qquad 18. $\log _{8} 0.125=$ \qquad

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad 20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{9} 3=\underline{1 / 2}$

$$
3=\sqrt{9}=9(1 / 2)
$$

19. $\log _{2}(1 / 16)=$ \qquad 20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad -

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} \mathbf{0 . 1 2 5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} 0.125=$ \qquad
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad

> 16. $\log _{3}(1 / 9)=-2$ $1 / 9=1 / 3^{2}=3^{-2}$
18. $\log _{8} 0.125=$ \qquad 0.125
20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} 0.125=$ \qquad
$0.125=$
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} 0.125=$ \qquad
$0.125=1 / 8$
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} \mathbf{0 . 1 2 5}=$ \qquad $0.125=1 / 8=$ 20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} 0.125=$ \qquad $0.125=1 / 8=8^{-1}$
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad
20. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
21. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
22. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

18. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
19. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad

$$
\begin{aligned}
& \text { 16. } \log _{3}(1 / 9)=-2 \\
& 1 / 9=1 / 3^{2}=3^{-2}
\end{aligned}
$$

$$
\text { 18. } \log _{8} 0.125=-1
$$

$$
0.125=1 / 8=8^{-1}
$$

20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad
1/16

> 16. $\log _{3}(1 / 9)=-2$ $1 / 9=1 / 3^{2}=3^{-2}$
18. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad

$$
1 / 16=
$$

> 16. $\log _{3}(1 / 9)=-2$ $1 / 9=1 / 3^{2}=3^{-2}$
18. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
20. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$

$$
1 / 16=1 / 2^{4}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
18. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$ \qquad
$1 / 16=1 / 2^{4}=$
20. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
21. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
22. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=$

$$
1 / 16=1 / 2^{4}=2^{-4}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
18. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=-4$

$$
1 / 16=1 / 2^{4}=2^{-4}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
18. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=-4$

$$
1 / 16=1 / 2^{4}=2^{-4}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
18. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=\underline{1 / 2}$
$3=\sqrt{9}=9(1 / 2)$
18. $\log _{2}(1 / 16)=-4$

$$
1 / 16=1 / 2^{4}=2^{-4}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=\mathbf{8}^{-1}$
18. $\log _{5} \sqrt{5}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=-4$

$$
1 / 16=1 / 2^{4}=2^{-4}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
18. $\log _{5} \sqrt{5}=$
$\sqrt{5}$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=\underline{1 / 2}$
$3=\sqrt{9}=9(1 / 2)$
18. $\log _{2}(1 / 16)=-4$

$$
1 / 16=1 / 2^{4}=2^{-4}
$$

16. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=\mathbf{8}^{-1}$
18. $\log _{5} \sqrt{5}=$ \qquad
$\sqrt{5}=$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=\underline{1 / 2}$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=-4$

$$
1 / 16=1 / 2^{4}=2^{-4}
$$

16. $\log _{3}(1 / 9)=-2$ $1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=\mathbf{8}^{-1}$
18. $\begin{aligned} & \log _{5} \sqrt{5}= \\ & \sqrt{5}=5^{(1 / 2)}\end{aligned}$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=\underline{1 / 2}$

$$
3=\sqrt{9}=9^{(1 / 2)}
$$

19. $\log _{2}(1 / 16)=-4$

$$
1 / 16=1 / 2^{4}=2^{-4}
$$

16. $\log _{3}(1 / 9)=-2$ $1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=\mathbf{8}^{-1}$
18. $\log _{5} \sqrt{5}=\underline{1 / 2}$
$\sqrt{5}=5^{(1 / 2)}$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=\underline{1 / 2}$
$3=\sqrt{9}=9(1 / 2)$
18. $\log _{2}(1 / 16)=-4$

$$
1 / 16=1 / 2^{4}=2^{-4}
$$

16. $\log _{3}(1 / 9)=-2$ $1 / 9=1 / 3^{2}=3^{-2}$
17. $\log _{8} 0.125=-1$
$0.125=1 / 8=\mathbf{8}^{-1}$
18. $\log _{5} \sqrt{5}=1 / 2$
$\sqrt{5}=5^{(1 / 2)}$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following.
15. $\log _{2} 32=5$

$$
32=2^{5}
$$

17. $\log _{9} 3=1 / 2$
$3=\sqrt{9}=9^{(1 / 2)}$
18. $\log _{2}(1 / 16)=-4$
$1 / 16=1 / 2^{4}=2^{-4}$
19. $\log _{3}(1 / 9)=-2$
$1 / 9=1 / 3^{2}=3^{-2}$
20. $\log _{8} 0.125=-1$
$0.125=1 / 8=8^{-1}$
21. $\log _{5} \sqrt{5}=1 / 2$
$\sqrt{5}=5^{(1 / 2)}$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=$ \qquad
23. $\log 60=$ \qquad
25. $\quad \ln \mathrm{e}^{3}=$ \qquad
27. $\ln 60=$ \qquad
22. $\log \mathbf{0 . 0 0 1}=$ \qquad
24. $\log 0.3=$ \qquad
26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
28. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=$ \qquad
23. $\log 60=$ \qquad
25. $\quad \ln \mathrm{e}^{3}=$ \qquad
27. $\ln 60=$ \qquad
22. $\log \mathbf{0 . 0 0 1}=$ \qquad
24. $\log 0.3=$ \qquad
26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
28. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=$ \qquad 1000
23. $\log 60=$ \qquad
25. $\quad \ln \mathrm{e}^{3}=$ \qquad
27. $\ln 60=$ \qquad
\qquad

22. $\log 0.001=$ \qquad
24. $\log 0.3=$ \qquad
26. $\quad \ln \mathrm{e}^{-3}=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=$ \qquad

$$
1000=
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
\qquad

26. $\log 0.001=$ \qquad
27. $\log 0.3=$ \qquad
28. $\quad \ln \mathrm{e}^{-3}=$ \qquad
29. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=$ \qquad

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log 0.001=$ \qquad
27. $\log 0.3=$ \qquad
28. $\quad \ln \mathrm{e}^{-3}=$ \qquad
29. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=\mathbf{1 0}^{\mathbf{3}}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log 0.001=$ \qquad
27. $\log 0.3=$ \qquad
28. $\quad \ln \mathrm{e}^{-3}=$ \qquad
29. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log 0.001=$ \qquad
27. $\log 0.3=$ \qquad
28. $\quad \ln \mathrm{e}^{-3}=$ \qquad
29. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log 0.001=$ \qquad
27. $\log 0.3=$ \qquad
28. $\ln \mathrm{e}^{-3}=$ \qquad
29. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log \mathbf{0 . 0 0 1}=$ \qquad

$$
0.001
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log \mathbf{0 . 0 0 1}=$ \qquad

$$
0.001=
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log \mathbf{0 . 0 0 1}=$ \qquad

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log 0.001=\underline{-3}$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log 0.001=\underline{-3}$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad

$$
\begin{aligned}
& \text { 22. } \log 0.001=-3 \\
& 0.001=10^{-3}
\end{aligned}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60=$ \qquad
Use a calculator.
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$ Use a calculator.
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad
26. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$
24. $\quad \ln \mathrm{e}^{3}=$ \qquad
25. $\ln 60=$ \qquad

$$
\begin{aligned}
& \text { 22. } \log 0.001=-3 \\
& 0.001=10^{-3}
\end{aligned}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

60
25. $\quad \ln \mathrm{e}^{3}=$ \qquad
27. $\ln 60=$ \qquad
22. $\log 0.001=-\mathbf{3}$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-\mathbf{3}$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=\underline{-3}$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=\underline{-3}$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-\mathbf{3}$

$$
0.001=10^{-3}
$$

24. $\log 0.3=$ \qquad
Use a calculator.
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-0.5$

Use a calculator.
26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
28. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$
25. $\quad \ln \mathrm{e}^{-3}=$ \qquad
26. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3
$$

26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx
$$

26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=\underline{3}$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=$ \qquad
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln \mathbf{6 0}=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=$ \qquad
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln e^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln \mathbf{6 0}=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln e^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln e^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60=$ \qquad
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60=$ \qquad
Use a calculator.
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

Use a calculator.
22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$ 60
27. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3=$ \qquad
Use a calculator.

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3 \approx-1.2$

Use a calculator.

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3 \approx-1.2$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\quad \ln 0.3 \approx-1.2$
0.3

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\quad \ln 0.3 \approx-1.2$
$0.3 \approx$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\quad \ln 0.3 \approx-1.2$

$$
0.3 \approx \mathrm{e}^{-1.2}
$$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{3}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. $\quad \ln \mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx \underline{-0.5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln \mathrm{e}^{-3}=-3$
27. $\ln 0.3 \approx \underline{-1.2}$

$$
0.3 \approx \mathrm{e}^{-1.2}
$$

Algebra II Class Worksheet \#2 Unit 11

Evaluate each of the following. Express irrational answers rounded to the nearest tenth.
21. $\log 1000=3$

$$
1000=10^{\mathbf{3}}
$$

23. $\log 60 \approx 1.8$

$$
60 \approx 10^{1.8}
$$

25. \quad In $\mathrm{e}^{3}=3$
26. $\ln 60 \approx 4.1$

$$
60 \approx \mathrm{e}^{4.1}
$$

22. $\log 0.001=-3$

$$
0.001=10^{-3}
$$

24. $\log 0.3 \approx-\mathbf{0 . 5}$

$$
0.3 \approx 10^{-0.5}
$$

26. $\quad \ln e^{-3}=-3$
27. $\ln 0.3 \approx \underline{-1.2}$

$$
0.3 \approx \mathrm{e}^{-1.2}
$$

