
# Algebra II Lesson #1 Unit 11 Class Worksheet #1 For Worksheet #1



This lesson will introduce and discuss <u>logarithms</u>.

Here is a definition.

Here is a definition.

$$\log_B N = k$$
 if and only if  $N = B^k$ .

Here is a definition.

$$\log_B N = k$$
 if and only if  $N = B^k$ .

Here is a definition.

 $\log_B N = k$  if and only if  $N = B^k$ .

**How is this notation read?** 

Here is a definition.

 $\log_B N = k$  if and only if  $N = B^k$ .

How is this notation read?

the logarithm of N base B

Here is a definition.

 $\log_B N = k$  if and only if  $N = B^k$ .

How is this notation read?

the logarithm of N base B

or (more commonly)

Here is a definition.

 $\log_B N = k$  if and only if  $N = B^k$ .

How is this notation read?

the logarithm of N base B

or (more commonly)

the log of N base B

Here is a definition.

$$\log_B N = k$$
 if and only if  $N = B^k$ .

Here is a definition.

 $\log_B N = k$  if and only if  $N = B^k$ .

This definition relates two types of equations.

Here is a definition.

$$log_B N = k$$
 if and only if  $N = B^k$ .

This definition relates two types of equations.

a logarithmic equation

Here is a definition.

$$\log_B N = k$$
 if and only if  $N = B^k$ .

This definition relates two types of equations.

a logarithmic equation and an exponential equation

Here is a definition.

$$\frac{1}{\log_B N = k} \text{ if and only if } N = B^k.$$

This definition relates two types of equations.

a logarithmic equation and an exponential equation

Understand that the 'answer' in the logarithmic equation

Here is a definition.

$$\log_{B} N = k \text{ if and only if } N = B^{k}.$$

This definition relates two types of equations.

a logarithmic equation and an exponential equation

Understand that the 'answer' in the logarithmic equation is the exponent in the exponential equation.

Here is a definition.

$$\log_B N = k$$
 if and only if  $N = B^k$ .

This definition relates two types of equations.

a logarithmic equation and an exponential equation

Understand that the 'answer' in the logarithmic equation is the exponent in the exponential equation.

Here is a definition.

$$\log_B N = k$$
 if and only if  $N = B^k$ .

This definition relates two types of equations.

a logarithmic equation and an exponential equation

Understand that the 'answer' in the logarithmic equation is the exponent in the exponential equation.

The number B, in both equations, is called the base.

1. 
$$\text{Log }_3 9 = 2$$

2. 
$$\text{Log}_{5} 125 = 3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

4. 
$$\text{Log }_2 0.25 = -2$$

1. 
$$\text{Log }_3 9 = 2$$

2. 
$$\log_{5} 125 = 3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

4. 
$$\text{Log}_2 0.25 = -2$$

1. 
$$\text{Log }_3 9 = 2$$

2. 
$$\log_{5} 125 = 3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

4. 
$$\text{Log}_2 0.25 = -2$$

1. 
$$\text{Log }_3 9 = 2$$

2. 
$$\text{Log}_{5} 125 = 3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

Write the exponential equation that corresponds to each logarithmic equation.

1. 
$$\text{Log }_3 9 = 2$$

9

2. 
$$\text{Log}_{5} 125 = 3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

4. 
$$\log_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^1$$

1. 
$$\text{Log }_3 9 = 2$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

2. 
$$\text{Log}_{5} 125 = 3$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log}_{3} 9 = 2$$

$$9 = 3^2$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

2. 
$$Log_5 125 = 3$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^1$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

3. 
$$\log_{9} 3 = 0.5$$

2. 
$$Log_5 125 = 3$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^1$$

1. 
$$\text{Log}_{3} 9 = 2$$

$$9 = 3^2$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

2. 
$$Log_5 125 = 3$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log}_{3} 9 = 2$$

$$9 = 3^2$$

2. 
$$Log_5 125 = 3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^1$$

1. 
$$\text{Log}_{3} 9 = 2$$

$$9 = 3^2$$

3. 
$$\log_{9} 3 = 0.5$$

2. 
$$\text{Log}_{5} 125 = 3$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^1$$

1. 
$$\text{Log}_{3} 9 = 2$$

$$9 = 3^2$$

3. 
$$\log_{9} 3 = 0.5$$

2. 
$$Log_5 125 = 3$$

$$125 = 5^3$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^1$$

1. 
$$\text{Log}_{3} 9 = 2$$

$$9 = 3^2$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^1$$

1. 
$$\text{Log}_{3} 9 = 2$$

$$9 = 3^2$$

2. 
$$Log_5 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\text{Log}_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^{k}$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\text{Log}_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\text{Log}_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\text{Log}_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\text{Log}_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3 = \sqrt{9}$$
$$3 = 9^{0.5}$$

$$3 = 9^{0.5}$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\log_2 0.25 = -2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\log_2 0.25 = -2$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\log_2 0.25 = -2$$

$$0.25 =$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\log_2 0.25 = -2$$

$$0.25 = 1/4$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\text{Log }_2 0.25 = -2$$

$$0.25 = 1/4 =$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\text{Log }_2 0.25 = -2$$

$$0.25 = 1/4 = 1/2^2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\log_2 0.25 = -2$$

$$0.25 = 1/4 = 1/2^2$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\log_2 0.25 = -2$$

$$0.25 = 1/4 = 1/2^2$$

$$0.25 =$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^{k}$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\log_2 0.25 = -2$$

$$0.25 = 1/4 = 1/2^2$$

$$0.25 = 2^{-2}$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^{k}$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\log_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\text{Log }_2 0.25 = -2$$

$$0.25 = 1/4 = 1/2^2$$

$$0.25 = 2^{-2}$$

$$\log_{B} N = k \qquad \longrightarrow \qquad N = B^{k}$$



$$N = B^k$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\text{Log}_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\text{Log}_2 0.25 = -2$$

$$0.25 = 1/4 = 1/2^2$$

$$0.25 = 2^{-2}$$

1. 
$$\text{Log }_3 9 = 2$$

$$9 = 3^2$$

2. 
$$\text{Log }_{5} 125 = 3$$

$$125 = 5^3$$

3. 
$$\text{Log }_{9} 3 = 0.5$$

$$3=\sqrt{9}$$

$$3 = 9^{0.5}$$

4. 
$$\text{Log }_2 0.25 = -2$$

$$0.25 = 1/4 = 1/2^2$$

$$0.25 = 2^{-2}$$

5. 
$$3^4 = 81$$

6. 
$$2^5 = 32$$

7. 
$$16^{1.5} = 64$$

8. 
$$9^{(-1/2)} = 1/3$$

5. 
$$3^4 = 81$$

6. 
$$2^5 = 32$$

7. 
$$16^{1.5} = 64$$

8. 
$$9^{(-1/2)} = 1/3$$

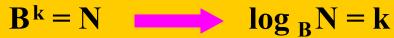
5. 
$$3^4 = 81$$

6. 
$$2^5 = 32$$

7. 
$$16^{1.5} = 64$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$


5. 
$$3^4 = 81$$

6. 
$$2^5 = 32$$

7. 
$$16^{1.5} = 64$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$



5. 
$$3^4 = 81$$

6. 
$$2^5 = 32$$

7. 
$$16^{1.5} = 64$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$



5. 
$$3^4 = 81$$

$$Log_{3}81 =$$

7. 
$$16^{1.5} = 64$$

6. 
$$2^5 = 32$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

6. 
$$2^5 = 32$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

6. 
$$2^5 = 32$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

6. 
$$2^5 = 32$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

6. 
$$2^5 = 32$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 =$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

$$\log_{B} N = k$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

7. 
$$16^{1.5} = 64$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 =$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$



$$\log_{B} N = k$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 = 1.5$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

$$\log_{B} N = k$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 = 1.5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$



$$\log_{B} N = k$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 = 1.5$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

$$\log_{B} N = k$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 = 1.5$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$Log_{9}(1/3)$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

$$\log_{B} N = k$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 = 1.5$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$Log_{9}(1/3) =$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

$$\log_{B} N = k$$

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 = 1.5$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$Log_{9}(1/3) = -1/2$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

$$\log_{B} N = k$$

Write the logarithmic equation that corresponds to each exponential equation.

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 = 1.5$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$\text{Log }_{9}(1/3) = -1/2$$

$$\mathbf{B}^{\mathbf{k}} = \mathbf{N}$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

Write the logarithmic equation that corresponds to each exponential equation.

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 = 1.5$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$Log_{9}(1/3) = -1/2$$

Write the logarithmic equation that corresponds to each exponential equation.

5. 
$$3^4 = 81$$

$$Log_3 81 = 4$$

7. 
$$16^{1.5} = 64$$

$$Log_{16} 64 = 1.5$$

6. 
$$2^5 = 32$$

$$Log_{2} 32 = 5$$

8. 
$$9^{(-1/2)} = 1/3$$

$$Log_{9}(1/3) = -1/2$$

9. 
$$Log_5 25 =$$

10. 
$$Log_{10} 1000 =$$

11. 
$$Log_2 0.125 =$$
\_\_\_\_

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_

9. 
$$Log_5 25 =$$
\_\_\_\_

10. 
$$Log_{10} 1000 =$$
\_\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

9. 
$$Log_5 25 =$$

10. 
$$Log_{10} 1000 =$$
\_\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

9. 
$$Log_5 25 =$$

10. 
$$Log_{10} 1000 =$$
\_\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

12. 
$$\text{Log}_{10} 0.01 =$$

$$N = B^k$$

10. 
$$Log_{10} 1000 =$$

11. 
$$\text{Log}_2 0.125 =$$

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

9. 
$$Log_5 25 =$$

10. 
$$Log_{10} 1000 =$$
\_\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

9. 
$$Log_5 25 =$$

$$25 = 5^2$$

10. 
$$Log_{10} 1000 =$$
\_\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$
\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

9. 
$$Log_5 25 = 2$$

$$25 = 5^2$$

10. 
$$Log_{10} 1000 =$$
\_\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$
\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

9. 
$$Log_5 25 = 2$$

$$25 = 5^2$$

10. 
$$Log_{10} 1000 =$$
\_\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$
\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$Log_{10} 1000 =$$

11. 
$$\text{Log}_2 0.125 =$$

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 =$$
\_\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 =$$
\_\_\_\_\_

11. 
$$\text{Log}_2 0.125 = \underline{\hspace{1cm}}$$

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$
  $\log_B N = k$ 

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 =$$
\_\_\_\_\_\_
$$1000 = 10^3$$

11. 
$$\text{Log}_2 0.125 = \underline{\hspace{1cm}}$$

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$
  $\log_B N = k$ 

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
  
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 0.125 =$$

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$
  $\log_B N = k$ 

$$\log_B N = k$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
  
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 0.125 =$$
\_\_\_\_

11. 
$$\text{Log}_2 0.125 =$$
 12.  $\text{Log}_{10} 0.01 =$ 

$$N = B^k$$
  $\log_B N = k$ 

$$\log_B N = k$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$Log_2 0.125 =$$
\_\_\_\_

12. 
$$Log_{10} 0.01 =$$

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

**Evaluate each of the following logarithms.** 

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$Log_2 0.125 =$$
\_\_\_\_\_

0.125

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

9. 
$$Log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$Log_2 0.125 =$$
\_\_\_\_

$$0.125 =$$

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_\_

$$N = B_{k}$$



9. 
$$Log_5 25 = 2$$
  
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$Log_2 0.125 =$$
\_\_\_\_

$$0.125 = 1/8$$

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_

$$N = B^k$$



9. 
$$Log_5 25 = 2$$
  
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$Log_2 0.125 =$$
\_\_\_\_

$$0.125 = 1/8 =$$

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_\_

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

9. 
$$Log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$Log_2 0.125 =$$
\_\_\_\_

$$0.125 = 1/8 = 1/2^3$$

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_\_

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

9. 
$$Log_5 25 = 2$$
  
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\log_2 0.125 =$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125$$

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$Log_5 25 = 2$$
  
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{\phantom{0}}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = \underline{\phantom{0}}$$

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$Log_5 25 = 2$$
  
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$Log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 0.125 = \underline{-3}$$
  
 $0.125 = 1/8 = 1/2^3$   
 $0.125 = 2^{-3}$ 

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{\hspace{0.5cm}} -3$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{\hspace{0.5cm}} -3$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$Log_{10} 0.01 =$$
\_\_\_\_\_

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 =$$
\_\_\_\_\_

$$N = B^k$$
  $\log_B N = k$ 

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 =$$
\_\_\_\_\_

$$N = B^k \qquad \qquad \log_B N = k$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 =$$
\_\_\_\_\_

0.01 = 1/100

$$N = B^k$$
  $\log_B N = k$ 

9. 
$$Log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 =$$
\_\_\_\_\_

0.01 = 1/100 =

$$N = B^k \qquad \qquad \log_B N = k$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

$$N = B^k$$
  $\log_B N = k$ 

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 = \underline{\hspace{1cm}}$$
 $0.01 = 1/100 = 1/10^2$ 
 $0.01$ 

$$N = B^k$$
  $\log_B N = k$ 

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\log_2 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 = \underline{\phantom{0}}$$
 $0.01 = 1/100 = 1/10^2$ 
 $0.01 = \underline{\phantom{0}}$ 

$$N = B^k$$
  $\log_B N = k$ 

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\log_2 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 =$$
\_\_\_\_\_\_

 $0.01 = 1/100 = 1/10^2$ 
 $0.01 = 10^{-2}$ 

$$N = B^k$$
  $\log_B N = k$ 

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\log_2 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 = \underline{-2}$$
 $0.01 = 1/100 = 1/10^2$ 
 $0.01 = 10^{-2}$ 

$$N = B^k$$
  $\log_B N = k$ 

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 = \underline{-2}$$
 $0.01 = 1/100 = 1/10^2$ 
 $0.01 = 10^{-2}$ 

$$N = B^k$$
  $\log_B N = k$ 

9. 
$$Log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
 $1000 = 10^3$ 

11. 
$$\text{Log}_2 \ 0.125 = \underline{\hspace{0.2cm}} -3$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

11. 
$$\text{Log}_2 \ 0.125 = \underline{\hspace{0.3cm}} -3$$

$$0.125 = 1/8 = 1/2^3$$

$$0.01 = 1/100 = 1/10^2$$

$$0.125 = 2^{-3}$$

$$0.01 = 10^{-2}$$

9. 
$$\log_5 25 = 2$$
 $25 = 5^2$ 

10. 
$$\log_{10} 1000 = 3$$
  
 $1000 = 10^3$ 

11. 
$$\log_2 0.125 = \underline{-3}$$

$$0.125 = 1/8 = 1/2^3$$

$$0.125 = 2^{-3}$$

12. 
$$\log_{10} 0.01 = \underline{-2}$$
 $0.01 = 1/100 = 1/10^2$ 
 $0.01 = 10^{-2}$ 

13. 
$$\text{Log}_2 1/32 = \underline{\hspace{1cm}}$$

14. 
$$\text{Log}_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25} 125 =$$

16. 
$$Log_3 243 =$$

13. 
$$\text{Log}_2 1/32 =$$
\_\_\_\_

14. 
$$Log_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25}$$
 125 = \_\_\_\_

16. 
$$Log_3 243 =$$
\_\_\_\_\_

13. 
$$\text{Log}_2 1/32 =$$
\_\_\_\_

14. 
$$Log_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25} 125 =$$

16. 
$$Log_3 243 =$$
\_\_\_\_\_

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\text{Log}_2 1/32 = \underline{\hspace{1cm}}$$

14. 
$$\text{Log}_9 3 =$$
\_\_\_\_

15. 
$$Log_{25} 125 =$$
 16.  $Log_3 243 =$ 

16. 
$$\text{Log}_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$Log_2 1/32 =$$
\_\_\_\_\_

14. 
$$Log_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25} 125 =$$
 16.  $Log_3 243 =$ 

16. 
$$\text{Log}_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$Log_2 1/32 =$$
\_\_\_\_\_

14. 
$$Log_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25} 125 =$$
 16.  $Log_3 243 =$ 

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\text{Log}_2 1/32 = \underline{\hspace{1cm}}$$
  
 $1/32 = 1/2^5$ 

14. 
$$\text{Log}_9 3 =$$
\_\_\_\_

15. 
$$Log_{25} 125 =$$
 16.  $Log_3 243 =$ 

16. 
$$\text{Log}_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\log_2 1/32 = \underline{\hspace{1cm}}$$
 $1/32 = 1/2^5$ 
 $1/32$ 

14. 
$$Log_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25} 125 =$$
 16.  $Log_3 243 =$ 

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

14. 
$$\text{Log}_9 3 =$$
\_\_\_\_

15. 
$$Log_{25} 125 =$$
 16.  $Log_3 243 =$ 

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\log_2 1/32 = \underline{\hspace{1cm}}$$
 $1/32 = 1/2^5$ 
 $1/32 = 2^{-5}$ 

14. 
$$\text{Log}_9 3 =$$
\_\_\_\_

15. 
$$Log_{25} 125 =$$
 16.  $Log_3 243 =$ 

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\log_2 1/32 = \underline{-5}$$
  
 $1/32 = 1/2^5$   
 $1/32 = 2^{-5}$ 

14. 
$$Log_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25} 125 =$$
 16.  $Log_3 243 =$ 

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\log_2 1/32 = -5$$
  
 $1/32 = 1/2^5$   
 $1/32 = 2^{-5}$ 

14. 
$$Log_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25}$$
 125 = \_\_\_\_

16. 
$$Log_3 243 =$$
\_\_\_\_\_

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\text{Log}_2 1/32 = \underline{-5}$$
 $1/32 = 1/2^5$ 
 $1/32 = 2^{-5}$ 

14. 
$$\text{Log}_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25} 125 =$$
\_\_\_\_\_

16. 
$$\text{Log}_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\text{Log}_2 1/32 = \boxed{-5}$$
 $1/32 = 1/2^5$ 
 $1/32 = 2^{-5}$ 

14. 
$$Log_9 3 =$$
\_\_\_\_\_

15. 
$$Log_{25} 125 =$$
\_\_\_\_\_

16. 
$$\text{Log}_3 243 = \underline{\hspace{1cm}}$$

$$N = B^k$$
  $\log_B N = k$ 

$$\log_{B} N = k$$

13. 
$$\log_2 1/32 = -5$$
 $1/32 = 1/2^5$ 
 $1/32 = 2^{-5}$ 

14. 
$$\text{Log}_9 3 = \underline{\phantom{a}}$$

15. 
$$Log_{25} 125 =$$

16. 
$$\text{Log}_3 243 = \underline{\hspace{1cm}}$$

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\log_2 1/32 = -5$$
 $1/32 = 1/2^5$ 
 $1/32 = 2^{-5}$ 

14. 
$$\text{Log}_9 3 = \underline{\phantom{0}}$$
 $3 = \sqrt{9}$ 

15. 
$$Log_{25}$$
 125 = \_\_\_\_

16. 
$$\text{Log}_3 243 =$$

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

13. 
$$\text{Log}_2 1/32 = \boxed{-5}$$
 $1/32 = 1/2^5$ 
 $1/32 = 2^{-5}$ 

14. 
$$\log_9 3 =$$
\_\_\_\_\_\_
 $3 = \sqrt{9}$ 
3

15. 
$$Log_{25}$$
 125 = \_\_\_\_

16. 
$$Log_3 243 =$$

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

13. 
$$\text{Log}_2 1/32 = \underline{-5}$$

$$1/32 = 1/2^5$$

$$1/32 = 2^{-5}$$

14. 
$$\log_9 3 =$$
\_\_\_\_\_
$$3 = \sqrt{9}$$

$$3 =$$

15. 
$$Log_{25} 125 =$$
\_\_\_\_\_

16. 
$$Log_3 243 =$$

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

13. 
$$\text{Log}_2 1/32 = \underline{-5}$$
 $1/32 = 1/2^5$ 
 $1/32 = 2^{-5}$ 

14. 
$$\log_9 3 =$$
\_\_\_\_\_\_
$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$Log_{25}$$
 125 = \_\_\_\_

16. 
$$Log_3 243 =$$

$$N = B^k \qquad \log_B N = k$$

$$\log_B N = k$$

13. 
$$\text{Log}_2 1/32 = \boxed{-5}$$
 $1/32 = 1/2^5$ 
 $1/32 = 2^{-5}$ 

14. 
$$\log_9 3 = 1/2$$
  
 $3 = \sqrt{9}$   
 $3 = 9^{1/2}$ 

15. 
$$Log_{25}$$
 125 = \_\_\_\_

16. 
$$\text{Log}_3 243 =$$

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

13. 
$$\text{Log}_2 1/32 = \underline{-5}$$

$$1/32 = 1/2^5$$

$$1/32 = 2^{-5}$$

14. 
$$\log_9 3 = 1/2$$
  
 $3 = \sqrt{9}$   
 $3 = 9^{1/2}$ 

15. 
$$Log_{25}$$
 125 = \_\_\_\_

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$   $3 = \sqrt{9}$ 

$$1/32 = 2^{-5}$$

15. 
$$Log_{25}$$
 125 = \_\_\_\_

14. 
$$Log_9 3 = 1/2$$

$$3=\sqrt{9}$$

$$3 = 9^{1/2}$$

16. 
$$\text{Log}_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

16. 
$$\text{Log}_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$

14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 
 $1/32 = 1/2^5$ 
 $3 = \sqrt{9}$ 
 $1/32 = 2^{-5}$ 
 $3 = 9^{1/2}$ 

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

16. 
$$\text{Log}_3 243 =$$

$$N = B^k$$

$$N = B^k \qquad \log_B N = k$$

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

16. 
$$\text{Log}_3 243 =$$

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

14. 
$$\text{Log}_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

16. 
$$\text{Log}_3 243 =$$

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\log_{25} 125 =$$

$$125 = 5^3 = [25^{1/2}]^3$$

$$125 =$$

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\log_{25} 125 = \underline{\hspace{1cm}}$$

$$125 = 5^3 = [25^{1/2}]^3$$

$$125 = 25^{3/2}$$

16. 
$$Log_3 243 =$$

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

15. 
$$Log_{25} 125 = 3/2$$
  
 $125 = 5^3 = [25^{1/2}]^3$   
 $125 = 25^{3/2}$ 

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

16. 
$$\log_3 243 =$$
\_\_\_\_\_

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\log_{25} 125 = 3/2$$
  
 $125 = 5^3 = [25^{1/2}]^3$   
 $125 = 25^{3/2}$ 

16. 
$$\log_3 243 =$$

$$N = B^k$$

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\text{Log}_2 1/32 = \underline{-5}$$

$$1/32 = 1/2^5$$

$$1/32 = 2^{-5}$$

14. 
$$\text{Log}_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\log_{25} 125 = 3/2$$
  
 $125 = 5^3 = [25^{1/2}]^3$   
 $125 = 25^{3/2}$ 

16. 
$$Log_3 243 =$$

$$N = B^k \qquad \log_B N = k$$

$$\log_{\mathbf{R}} \mathbf{N} = \mathbf{k}$$

13. 
$$\log_2 1/32 = -5$$

14.  $\log_9 3 = 1/2$ 
 $1/32 = 1/2^5$ 
 $3 = \sqrt{9}$ 
 $1/32 = 2^{-5}$ 
 $3 = 9^{1/2}$ 

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\log_{25} 125 = 3/2$$

$$125 = 5^3 = [25^{1/2}]^3$$

$$125 = 25^{3/2}$$

16. 
$$\log_3 243 =$$
\_\_\_\_\_

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\log_2 1/32 = -5$$

14.  $\log_9 3 = 1/2$ 
 $1/32 = 1/2^5$ 
 $3 = \sqrt{9}$ 
 $1/32 = 2^{-5}$ 
 $3 = 9^{1/2}$ 

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\log_{25} 125 = 3/2$$
  
 $125 = 5^3 = [25^{1/2}]^3$   
 $125 = 25^{3/2}$ 

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\log_2 1/32 = -5$$

14.  $\log_9 3 = 1/2$ 
 $1/32 = 1/2^5$ 
 $3 = \sqrt{9}$ 
 $1/32 = 2^{-5}$ 
 $3 = 9^{1/2}$ 

14. 
$$\text{Log}_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\log_{25} 125 = 3/2$$

$$125 = 5^3 = [25^{1/2}]^3$$

$$125 = 25^{3/2}$$

16. 
$$\text{Log}_3 243 = \underline{\phantom{0}}$$
 $243 = 3^5$ 

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\log_2 1/32 = -5$$

14.  $\log_9 3 = 1/2$ 
 $1/32 = 1/2^5$ 
 $3 = \sqrt{9}$ 
 $1/32 = 2^{-5}$ 
 $3 = 9^{1/2}$ 

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\log_{25} 125 = 3/2$$

$$125 = 5^3 = [25^{1/2}]^3$$

$$125 = 25^{3/2}$$

16. 
$$Log_3 243 = 5$$
  
 $243 = 3^5$ 

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\text{Log}_2 1/32 = \underline{-5}$$

$$1/32 = 1/2^5$$

$$1/32 = 2^{-5}$$

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\log_{25} 125 = 3/2$$

$$125 = 5^3 = [25^{1/2}]^3$$

$$125 = 25^{3/2}$$

16. 
$$\log_3 243 = 5$$
 $243 = 3^5$ 

$$N = B^k$$
  $\log_B N = k$ 

13. 
$$\text{Log}_2 \ 1/32 = \underline{-5}$$
 14.  $\text{Log}_9 \ 3 = \underline{1/2}$ 

$$1/32 = 1/2^5$$

$$3 = \sqrt{9}$$

$$1/32 = 2^{-5}$$

$$3 = 9^{1/2}$$

14. 
$$\log_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$Log_{25} 125 = 3/2$$
  
 $125 = 5^3 = [25^{1/2}]^3$   
 $125 = 25^{3/2}$ 

16. 
$$\log_3 243 = 5$$
 $243 = 3^5$ 

13. 
$$\log_2 1/32 = \underline{-5}$$

$$1/32 = 1/2^5$$

$$1/32 = 2^{-5}$$

14. 
$$\text{Log}_9 3 = 1/2$$

$$3 = \sqrt{9}$$

$$3 = 9^{1/2}$$

15. 
$$\text{Log}_{25} 125 = 3/2$$
  
 $125 = 5^3 = [25^{1/2}]^3$   
 $125 = 25^{3/2}$ 

16. 
$$\log_3 243 = 5$$
 $243 = 35$