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1.   $600 is invested in an account 
paying interest at an annual rate 
of 6 percent compounded monthly.  
Express the balance of the account, A, 
as a function of the time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.
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of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

When t = 8 (years), 

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

When t = 8 (years), half of the remaining radioactive 
substance has decayed.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

When t = 8 (years), half of the remaining radioactive 
substance has decayed.  There are now 400 grams of 
the radioactive substance present.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

When t = 8 (years), half of the remaining radioactive 
substance has decayed.  There are now 400 grams of 
the radioactive substance present.  Once again, the 
400 grams which have ‘decayed’ have not 
disappeared.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

When t = 8 (years), half of the remaining radioactive 
substance has decayed.  There are now 400 grams of 
the radioactive substance present.  Once again, the 
400 grams which have ‘decayed’ have not 
disappeared.  They have simply change into a more 
stable substance.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

When t = 8 (years), half of the remaining radioactive 
substance has decayed.  There are now 400 grams of 
the radioactive substance present.  Once again, the 
400 grams which have ‘decayed’ have not 
disappeared.  They have simply change into a more 
stable substance.  (This may help to explain why the 
apparent rate of decay has decreased.) 

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

This will continue.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

This will continue.  With each additional four year 
time period, 

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

This will continue.  With each additional four year 
time period, one-half of the remaining radioactive 
substance will ‘decay’.

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12

This will continue.  With each additional four year 
time period, one-half of the remaining radioactive 
substance will ‘decay’.

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200

This will continue.  With each additional four year 
time period, one-half of the remaining radioactive 
substance will ‘decay’.

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200
16

This will continue.  With each additional four year 
time period, one-half of the remaining radioactive 
substance will ‘decay’.

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200
16 100

This will continue.  With each additional four year 
time period, one-half of the remaining radioactive 
substance will ‘decay’.

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200
16 100
20

This will continue.  With each additional four year 
time period, one-half of the remaining radioactive 
substance will ‘decay’.

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200
16 100
20 50

This will continue.  With each additional four year 
time period, one-half of the remaining radioactive 
substance will ‘decay’.

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200
16 100
20 50

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200
16 100
20 50

Next, we will develop a function that will 
produce the same result.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200
16 100
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200
16 100
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4 800
8 400

12 200
16 100
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400

12 200
16 100
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400

12 200
16 100
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200
16 100
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200
16 100
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50 = 100(1/2)

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50 = 100(1/2)

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  

800 = 1600(1/2)

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50 = 100(1/2)

800 = 1600(1/2)

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50 = 100(1/2)

800 = 1600(1/2) 

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50 = 100(1/2)

800 = 1600(1/2)1

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 800(1/2)

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50 = 100(1/2)

800 = 1600(1/2)1

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 =

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50 = 100(1/2)

800 = 1600(1/2)1

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12 200 = 400(1/2)
16 100 = 200(1/2)
20 50 = 100(1/2)

800 = 1600(1/2)1

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16 100 = 200(1/2)
20 50 = 100(1/2)

800 = 1600(1/2)1

200 = 400(1/2)

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16 100 = 200(1/2)
20 50 = 100(1/2)

800 = 1600(1/2)1

200 =

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16 100 = 200(1/2)
20 50 = 100(1/2)

800 = 1600(1/2)1

200 = 1600(1/2)3

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16
20 50 = 100(1/2)

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 200(1/2) 

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16
20 50 = 100(1/2)

800 = 1600(1/2)1

200 = 1600(1/2)3

100 =

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16
20 50 = 100(1/2)

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 100(1/2) 

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 =

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0 1600 = 1600(1/2)0

4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

1600 = 1600(1/2)0

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

1600 = 1600(1/2)0

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example. 

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0

8 400 = 1600(1/2)2

12
16
20

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

800 = 1600(1/2)14

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

400 = 1600(1/2)28

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

16
20

800 = 1600(1/2)1

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

200 = 1600(1/2)312

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12

20

800 = 1600(1/2)1

200 = 1600(1/2)3

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

100 = 1600(1/2)416

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

50 = 1600(1/2)520

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

Q =

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

Next, we will develop a function that will 
produce the same result.  Notice that as you 
move down through the table, the previous 
value of Q is multiplied by one-half.  Now, 
notice that every value of Q can be 
expressed in the form 1600(1/2)K for some 
exponent K.  Next, notice that in every 
row, the exponent is the value of t divided by 
the half life, 4 years in this example.  K = t/4 

1600 = 1600(1/2)0

Q = 1600(1/2)t/4

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

1600 = 1600(1/2)0

Q = 1600(1/2)t/4

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

1600 = 1600(1/2)0

Q = 1600(1/2)t/4

We will make one more change in our function.

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

1600 = 1600(1/2)0

Q = 1600(1/2)t/4

We will make one more change in our function.
Using properties of exponents, we can replace 
(1/2)t/4 with the equivalent expression 2 -t/4.

A certain radioactive substance with a mass of 1600 grams has a half-life 
of 4 years. Express its mass, Q, as a function of time, t, in years. 



Another application of exponential functions deals with radioactive decay. 
The nucleus of a radioactive substance is unstable.  This causes it to 

‘emit particles’ and change into a more stable substance.  The time it takes 
for half of the mass of a radioactive substance to ‘decay’ is called its half-life.
Here is an example.  

First we will create a table showing how the mass changes over time.

t Q

0
4
8 400 = 1600(1/2)2

12
16
20

800 = 1600(1/2)1

200 = 1600(1/2)3

100 = 1600(1/2)4

50 = 1600(1/2)5

1600 = 1600(1/2)0

Q = 1600(1/2)t/4

We will make one more change in our function.
Using properties of exponents, we can replace 
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Write the radioactive decay function.
Substitute in the values of M and H.

Q = M(2)-t/H
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 

Use the function to fill out a table of 
values.
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with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6
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Q = M(2)-t/H
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 
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values.

0

t Q



Algebra II    Class Worksheet #4   Unit 10 

t

2015105

200

Q

2000

1800

1600

1400

1200

1000

600

400

800

0

2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 

Use the function to fill out a table of 
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 

Use the function to fill out a table of 
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.
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Q = M(2)-t/H

H = 6 (years) 
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 

Use the function to fill out a table of 
values.
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.
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Q = M(2)-t/H

H = 6 (years) 
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.
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Q = M(2)-t/H
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 
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Use the function to fill out a table of 
values.  Plot the points.
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2.  A certain radioactive substance 
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with a mass of 2000 grams has a 
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Q, as a function of time, t, in years.  
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values.  Plot the points.
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with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 

Use the function to fill out a table of 
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half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6
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with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 
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Q = 2000(2)-t/6

We could also have used the half-life 
to graph this function.  
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 
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Q = 2000(2)-t/6

We could also have used the half-life 
to graph this function.  After every 6
year period, the mass is divided by 2.
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 
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Q = 2000(2)-t/6

We could also have used the half-life 
to graph this function.  After every 6
year period, the mass is divided by 2.
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 

5
10
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1122
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Q = 2000(2)-t/6

We could also have used the half-life 
to graph this function.  After every 6
year period, the mass is divided by 2.
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 

5
10
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1122
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t Q
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Q = 2000(2)-t/6

We could also have used the half-life 
to graph this function.  After every 6
year period, the mass is divided by 2.
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6

M = 2000 (grams) 

Q = M(2)-t/H

H = 6 (years) 
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Q = 2000(2)-t/6

We could also have used the half-life 
to graph this function.  After every 6
year period, the mass is divided by 2.
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.

Q = 2000(2)-t/6
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H = 6 (years) 
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2.  A certain radioactive substance 
with a mass of 2000 grams has a 
half-life of 6 years.  Express its mass, 
Q, as a function of time, t, in years.  
Graph this function for values of t 
from 0 to 20 years.
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Another application of exponential functions involves the real number e.
First, consider the real number .  It is defined to be the ratio of the 
circumference of a circle to its diameter.  It turns out that , as a decimal, is 
non-terminating and non-repeating, which makes it an irrational number.  
We commonly use 3.14 as a rational approximation for .  Like , the real 
number e, as a decimal, is non-terminating and non-repeating.  Its ‘commonly 
used’ rational approximation is 2.718.  
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Another application of exponential functions involves the real number e.
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Another application of exponential functions involves the real number e.
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of this expression changes as k increases.
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Another application of exponential functions involves the real number e.
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of this expression changes as k increases.
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Another application of exponential functions involves the real number e.
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Consider the expression                    .   We will examine how the value1
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Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
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Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.
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Consider the expression                    .   We will examine how the value1
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Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.
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Consider the expression                    .   We will examine how the value1
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Here is a ‘definition’ for the real number e.   
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
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Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.

k 1 2 3

2 2.25 64/27  2.3781
k1 +[ ]k

1
31 +[ ]3

= (4/3)31
k1 +[ ]k

= 
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Another application of exponential functions involves the real number e.
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Another application of exponential functions involves the real number e.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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2 2.25 2.378 2.441 2.488

10

1
k1 +[ ]k

1
k1 +[ ]k

= (1.1)10



Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
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Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Consider the expression                    .   We will examine how the value1
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Another application of exponential functions involves the real number e.
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Another application of exponential functions involves the real number e.
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Consider the expression                    .   We will examine how the value1
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
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Another application of exponential functions involves the real number e.
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Consider the expression                    .   We will examine how the value1
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Another application of exponential functions involves the real number e.
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Another application of exponential functions involves the real number e.
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Consider the expression                    .   We will examine how the value1
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of this expression changes as k increases.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.
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Another application of exponential functions involves the real number e.
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k1 +[ ]k

Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.

k 1 2 3 4 5

2 2.25 2.378 2.441 2.488

10

2.594

50

2.692

100

2.705

1000

2.7171
k1 +[ ]k

k

1
k1 +[ ]k

10,000



Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k
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of this expression changes as k increases.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   

of this expression changes as k increases.
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
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Another application of exponential functions involves the real number e.

e  2.718
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k
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Another application of exponential functions involves the real number e.

e  2.718

Consider the expression                    .   We will examine how the value1
k1 +[ ]k

Here is a ‘definition’ for the real number e.   
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Another application of exponential functions involves the real number e.
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Consider the expression                    .   We will examine how the value1
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Another application of exponential functions involves the real number e.
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Another application of exponential functions involves the real number e.
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Another application of exponential functions involves the real number e.
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