Algebra II

Lesson \#4 Unit 10
Class Worksheet \#4
For Worksheets \#5 - \#7

We will now look at ways that exponential functions are applied.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of $\mathbf{5 \%}$ for $\mathbf{2}$ years.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\mathbf{\$ 1 , 0 0 0}$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=$ PRT. P, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=\mathbf{0 . 0 5}$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=\mathbf{0 . 0 5}$. T is the length of time, 2 years.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=\mathbf{0 . 0 5}$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . R$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100 .
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6 -month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years.
Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$. At the end of the second 6 -month period, the interest would be $I=P R T=(\$ 1025)(0.05)(1 / 2)=\$ 25.63$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years.
Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$. At the end of the second 6 -month period, the interest would be $I=P R T=(\$ 1025)(0.05)(1 / 2)=\$ 25.63$. That would make the new balance $\$ 1050.63$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years.
Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$. At the end of the second 6 -month period, the interest would be $I=P R T=(\$ 1025)(0.05)(1 / 2)=\$ 25.63$. That would make the new balance $\$ 1050.63$. At the end of the third 6 -month period the interest would be $I=P R T=(\$ 1050.63)(0.05)(1 / 2)=\$ 26.27$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years.
Simple interest is calculated using the formula $I=P R T . P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$. At the end of the second 6 -month period, the interest would be $I=P R T=(\$ 1025)(0.05)(1 / 2)=\$ 25.63$. That would make the new balance $\$ 1050.63$. At the end of the third 6 -month period the interest would be $I=P R T=(\$ 1050.63)(0.05)(1 / 2)=\$ 26.27$. That would make the new balance $\$ 1076.90$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years.
Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$. At the end of the second 6 -month period, the interest would be $I=P R T=(\$ 1025)(0.05)(1 / 2)=\$ 25.63$. That would make the new balance $\$ 1050.63$. At the end of the third 6 -month period the interest would be $I=P R T=(\$ 1050.63)(0.05)(1 / 2)=\$ 26.27$. That would make the new balance $\$ 1076.90$. At the end of the fourth six-month period the interest would be $I=P R T=(\$ 1076.90)(0.05)(1 / 2)=\$ 26.92$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years.
Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$. At the end of the second 6 -month period, the interest would be $I=P R T=(\$ 1025)(0.05)(1 / 2)=\$ 25.63$. That would make the new balance $\$ 1050.63$. At the end of the third 6 -month period the interest would be $I=P R T=(\$ 1050.63)(0.05)(1 / 2)=\$ 26.27$. That would make the new balance $\$ 1076.90$. At the end of the fourth six-month period the interest would be $I=P R T=(\$ 1076.90)(0.05)(1 / 2)=\$ 26.92$. That would make the final balance $\mathbf{\$ 1 1 0 3 . 8 2}$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$. At the end of the second 6 -month period, the interest would be $I=P R T=(\$ 1025)(0.05)(1 / 2)=\$ 25.63$. That would make the new balance $\$ 1050.63$. At the end of the third 6 -month period the interest would be $I=P R T=(\$ 1050.63)(0.05)(1 / 2)=\$ 26.27$. That would make the new balance $\$ 1076.90$. At the end of the fourth six-month period the interest would be $I=P R T=(\$ 1076.90)(0.05)(1 / 2)=\$ 26.92$. That would make the final balance $\mathbf{\$ 1 1 0 3 . 8 2}$. This represents a total increase of $\mathbf{\$ 1 0 3 . 8 2}$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100 .
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$. At the end of the second 6 -month period, the interest would be $I=P R T=(\$ 1025)(0.05)(1 / 2)=\$ 25.63$. That would make the new balance $\$ 1050.63$. At the end of the third 6 -month period the interest would be $I=P R T=(\$ 1050.63)(0.05)(1 / 2)=\$ 26.27$. That would make the new balance $\$ 1076.90$. At the end of the fourth six-month period the interest would be $I=P R T=(\$ 1076.90)(0.05)(1 / 2)=\$ 26.92$. That would make the final balance $\mathbf{\$ 1 1 0 3 . 8 2}$. This represents a total increase of $\$ 103.82$.

We will now look at ways that exponential functions are applied. One application deals with compound interest.

Suppose $\$ 1,000$ is invested at an annual rate of 5% for 2 years. Simple interest is calculated using the formula $I=P R T . ~ P$, the principal, is the amount invested, $\$ 1,000 . \mathrm{R}$ is the annual interest rate, $5 \%=0.05$. T is the length of time, 2 years. The simple interest is

$$
\mathrm{I}=\mathrm{PRT}=(\$ 1,000)(0.05)(2)=\$ 100
$$

The interest earned would be $\$ 100$ using the simple interest formula.
Now, suppose interest is paid at the same annual rate, but it is added every 6 months. At the end of the first 6-month ($1 / 2$ year) period, the interest would be $I=P R T=(\$ 1000)(0.05)(1 / 2)=\$ 25$. That would make the new balance $\$ 1025$. At the end of the second 6 -month period, the interest would be $I=P R T=(\$ 1025)(0.05)(1 / 2)=\$ 25.63$. That would make the new balance $\$ 1050.63$. At the end of the third 6 -month period the interest would be $I=P R T=(\$ 1050.63)(0.05)(1 / 2)=\$ 26.27$. That would make the new balance $\$ 1076.90$. At the end of the fourth six-month period the interest would be $I=P R T=(\$ 1076.90)(0.05)(1 / 2)=\$ 26.92$. That would make the final balance $\mathbf{\$ 1 1 0 3 . 8 2}$. This represents a total increase of $\$ 103.82$. The increase of $\$ 3.82$ is due to interest earned on interest - compound interest.

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, \mathbf{P} is the original amount invested,

Compound Interest Formula
 $$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate,

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid,

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after \mathbf{T} years.
First, we will explain the formula.

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after \mathbf{T} years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period.

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{R}{N}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$.

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{R}{N}$ represents the interest rate per payment period. The interest earned during the first payment period is $\mathbf{P}\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{R}{N}$ represents the interest rate per payment period. The interest earned during the first payment period is $\mathbf{P}\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{R}{N}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
\mathbf{P}_{1}=\mathbf{P}+\mathbf{P}\left(\frac{\mathbf{R}}{\mathbf{N}}\right)
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{R}{N}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{\mathrm{NT}}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{\mathrm{NT}}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after \mathbf{T} years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
\mathbf{P}_{1}=\mathbf{P}+\mathbf{P}\left(\frac{\mathbf{R}}{\mathbf{N}}\right)=\mathbf{P}\left(\mathbf{1}+\frac{\mathbf{R}}{\mathbf{N}}\right)
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
\mathbf{P}_{2}=
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{\mathrm{NT}}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
\mathbf{P}_{1}=\mathbf{P}+\mathbf{P}\left(\frac{\mathbf{R}}{\mathbf{N}}\right)=\mathbf{P}\left(\mathbf{1}+\frac{\mathbf{R}}{\mathbf{N}}\right)
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
P_{2}=P_{1}+P_{1}\left(\frac{R}{N}\right)
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{\mathrm{NT}}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
P_{2}=P_{1}+P_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{\mathrm{NT}}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
\mathbf{P}_{1}=\mathbf{P}+\mathbf{P}\left(\frac{\mathbf{R}}{\mathbf{N}}\right)=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
P_{2}=P_{1}+P_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right)
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
\begin{gathered}
\mathbf{P}_{2}=\mathbf{P}_{1}+\mathbf{P}_{1}\left(\frac{\mathbf{R}}{\mathbf{N}}\right)=\mathbf{P}_{1}\left(1+\frac{\mathbf{R}}{\mathrm{N}}\right)=\left[\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathrm{N}}\right)\right]\left(1+\frac{\mathbf{R}}{\mathrm{N}}\right) \\
\mathbf{P}_{2}=
\end{gathered}
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
\begin{gathered}
P_{2}=P_{1}+P_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
\begin{gathered}
\mathbf{P}_{2}=\mathbf{P}_{1}+\mathbf{P}_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
\begin{gathered}
\mathbf{P}_{2}=\mathbf{P}_{1}+\mathbf{P}_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)^{1}
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
\begin{gathered}
\mathbf{P}_{2}=\mathbf{P}_{1}+\mathbf{P}_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)^{1}
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
\begin{gathered}
\mathbf{P}_{2}=\mathbf{P}_{1}+\mathbf{P}_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

In the same way, we can show that $P_{3}=$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)^{1}
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
\begin{gathered}
\mathbf{P}_{2}=\mathbf{P}_{1}+\mathbf{P}_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

In the same way, we can show that $P_{3}=P\left(1+\frac{R}{N}\right)^{3}$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)^{1}
$$

It follows that $\mathbf{P}_{\mathbf{2}}$, the balance after the second payment period, is

$$
\begin{gathered}
P_{2}=P_{1}+P_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

In the same way, we can show that $P_{3}=P\left(1+\frac{R}{N}\right)^{3}$ and $P_{4}=$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)^{1}
$$

It follows that P_{2}, the balance after the second payment period, is

$$
\begin{gathered}
\mathbf{P}_{2}=\mathbf{P}_{1}+\mathbf{P}_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

In the same way, we can show that $P_{3}=P\left(1+\frac{R}{N}\right)^{3}$ and $P_{4}=P\left(1+\frac{R}{N}\right)^{4}$.

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)^{1}
$$

It follows that P_{2}, the balance after the second payment period, is

$$
\begin{gathered}
\mathbf{P}_{2}=\mathbf{P}_{1}+\mathbf{P}_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

In the same way, we can show that $P_{3}=P\left(1+\frac{R}{N}\right)^{3}$ and $P_{4}=P\left(1+\frac{R}{N}\right)^{4}$.
In T years,

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, N is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
P_{1}=P+P\left(\frac{R}{N}\right)=P\left(1+\frac{R}{N}\right)^{1}
$$

It follows that P_{2}, the balance after the second payment period, is

$$
\begin{gathered}
\mathbf{P}_{2}=\mathbf{P}_{1}+\mathbf{P}_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

In the same way, we can show that $P_{3}=P\left(1+\frac{R}{N}\right)^{3}$ and $P_{4}=P\left(1+\frac{R}{N}\right)^{4}$.
In T years, there are NT payment periods,

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, R is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
\mathbf{P}_{1}=\mathbf{P}+\mathbf{P}\left(\frac{\mathbf{R}}{\mathrm{N}}\right)=\mathbf{P}\left(\mathbf{1}+\frac{\mathrm{R}}{\mathrm{~N}}\right)^{1}
$$

It follows that P_{2}, the balance after the second payment period, is

$$
\begin{gathered}
P_{2}=P_{1}+P_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

In the same way, we can show that $P_{3}=P\left(1+\frac{R}{N}\right)^{3}$ and $P_{4}=P\left(1+\frac{R}{N}\right)^{4}$.
In T years, there are NT payment periods, which is why the final balance is

$$
\mathbf{A}=
$$

Compound Interest Formula

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

In this formula, P is the original amount invested, \mathbf{R} is the annual interest rate, \mathbf{N} is the number of times per year the interest is paid, and A is the balance after T years.
First, we will explain the formula. Clearly, $\frac{\mathrm{R}}{\mathrm{N}}$ represents the interest rate per payment period. The interest earned during the first payment period is $P\left(\frac{R}{N}\right)$. If P_{1} represents the balance after the first payment period, then

$$
\mathbf{P}_{1}=\mathbf{P}+\mathbf{P}\left(\frac{\mathbf{R}}{\mathrm{N}}\right)=\mathbf{P}\left(\mathbf{1}+\frac{\mathrm{R}}{\mathrm{~N}}\right)^{1}
$$

It follows that P_{2}, the balance after the second payment period, is

$$
\begin{gathered}
P_{2}=P_{1}+P_{1}\left(\frac{R}{N}\right)=P_{1}\left(1+\frac{R}{N}\right)=\left[P\left(1+\frac{R}{N}\right)\right]\left(1+\frac{R}{N}\right) \\
P_{2}=P\left(1+\frac{R}{N}\right)^{2}
\end{gathered}
$$

In the same way, we can show that $P_{3}=P\left(1+\frac{R}{N}\right)^{3}$ and $P_{4}=P\left(1+\frac{R}{N}\right)^{4}$.
In T years, there are NT payment periods, which is why the final balance is

$$
A=P\left(1+\frac{R}{N}\right)^{N T}
$$

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

Write the compound interest formula.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
A=P\left(1+\frac{R}{N}\right)^{\mathbf{N t}}
$$

Write the compound interest formula.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}}
$$

$$
P=600
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}}
$$

$P=600$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}}
$$

$P=600$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{array}{r}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06
\end{array}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{array}{r}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06
\end{array}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A , as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
\mathbf{P}=\mathbf{6 0 0} ; \mathbf{R}=\mathbf{0 . 0 6}
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A , as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12
\end{gathered}
$$

$\mathbf{A}=$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600(
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t}
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t}
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N. Simplify.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=\mathbf{6 0 0} ; R=\mathbf{0 . 0 6} ; N=\mathbf{N} \\
A=\mathbf{6 0 0}\left(1+\frac{\mathbf{0 . 0 6}}{12}\right)^{12 t} \\
A=
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N. Simplify.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
\mathrm{P}=\mathbf{6 0 0} ; \mathrm{R}=\mathbf{0 . 0 6} ; \mathrm{N}=12 \\
A=\mathbf{6 0 0 (1 + \frac { 0 . 0 6 } { 1 2 }) ^ { 1 2 t }} \\
A=600(
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N. Simplify.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=600(1.005)^{12 t}
\end{gathered}
$$

Write the compound interest formula. Substitute in the values of P, R, and N. Simplify.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=600(1.005)^{12 t}
\end{gathered}
$$

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=600(1.005)^{12 t}
\end{gathered}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=600(1.005)^{12 t}
\end{gathered}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=600(1.005)^{12 t}
\end{gathered}
$$

$$
\begin{array}{l|l}
\mathbf{t} & \mathbf{A} \\
\hline \mathbf{0} &
\end{array}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=600(1.005)^{12 t}
\end{gathered}
$$

$$
\begin{array}{c|c}
\mathbf{t} & \mathbf{A} \\
\hline \mathbf{0} & \mathbf{6 0 0}
\end{array}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=600 ; R=0.06 ; N=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=600(1.005)^{12 t}
\end{gathered}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
\mathrm{P}=\mathbf{6 0 0} ; \mathrm{R}=0.06 ; \mathrm{N}=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=600(1.005)^{12 t}
\end{gathered}
$$

$$
\begin{array}{c|c}
\mathbf{t} & \mathbf{A} \\
\hline \mathbf{0} & \mathbf{6 0 0} \\
\mathbf{5} & \mathbf{8 0 9}
\end{array}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{array}{c|r|r}
\text { from 0 to 20 years. } & \mathbf{t} & \mathrm{A} \\
\cline { 2 - 3 } & \mathrm{O}=\mathrm{P}\left(1+\frac{\mathrm{R}}{\mathrm{~N}}\right)^{\mathrm{Nt}} & 500 \\
\mathrm{P}=\mathbf{6 0 0} ; \mathrm{R}=\mathbf{0 . 0 6} ; \mathrm{N}=12 & 10 & 809 \\
\mathrm{~A}=\mathbf{6 0 0}\left(1+\frac{0.06}{12}\right)^{\mathbf{1 2 t}} & & \\
A=600(1.005)^{12 t}
\end{array}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{array}{cr|r}
A=P\left(1+\frac{R}{N}\right)^{N t} & 0 & 600 \\
& 5 & 809 \\
P=600 ; R=0.06 ; N=12 & 10 & 1092 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} & & \\
A=600(1.005)^{12 t}
\end{array}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& A=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}} \\
& P=600 ; R=0.06 ; N=12 \\
& 101092 \\
& 15 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& A=600(1.005)^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{array}{c|r|c}
A=P\left(1+\frac{R}{N}\right)^{N t} & \mathbf{t} & \mathbf{A 0 0} \\
\mathbf{P}=\mathbf{6 0 0} ; R=0.06 ; N=12 & 10 & 1092 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} & 15 & 1472 \\
A=600(1.005)^{12 t} & & \\
A
\end{array}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& A=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=\mathbf{6 0 0}\left(1+\frac{0.06}{12}\right)^{12 t} \\
& 101092 \\
& 151472 \\
& A=600(1.005)^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& \mathrm{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathrm{N}}\right)^{\mathrm{Nt}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& \mathrm{~A}=\mathbf{6 0 0 (1 . 0 0 5)}{ }^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& \mathrm{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathrm{N}}\right)^{\mathrm{Nt}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& A=\mathbf{6 0 0 (1 . 0 0 5)}{ }^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& A=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& A=600(1.005)^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& A=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& A=600(1.005)^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{array}{c|r|c}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} & \mathbf{t} & \mathbf{A} \\
\cline { 2 - 3 } & \mathbf{5} & \mathbf{6 0 0} \\
\mathbf{P}=\mathbf{6 0 0} ; \mathrm{R}=\mathbf{0 . 0 6} ; \mathrm{N}=12 & 10 & 109 \\
\mathrm{~A}=\mathbf{6 0 0}\left(1+\frac{0.06}{12}\right)^{12 t} & 15 & 1472 \\
\mathrm{~A}=\mathbf{6 0 0}(1.005)^{12 t} & 1986 \\
& &
\end{array}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{array}{c|r|c}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} & \mathbf{t} & \mathrm{~A} \\
\cline { 2 - 3 } & \mathbf{0} & \mathbf{6 0 0} \\
\mathrm{P}=\mathbf{6 0 0} ; \mathrm{R}=\mathbf{0 . 0 6} ; \mathrm{N}=12 & 10 & 109 \\
\mathrm{~A}=\mathbf{6 0 0}\left(1+\frac{0.06}{12}\right)^{12 t} & 15 & 1472 \\
\mathrm{~A}=\mathbf{6 0 0}(1.005)^{12 t} & 1986 \\
&
\end{array}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& \mathrm{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathrm{N}}\right)^{\mathrm{Nt}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& A=\mathbf{6 0 0 (1 . 0 0 5)}{ }^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& \mathrm{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathrm{N}}\right)^{\mathrm{Nt}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& A=\mathbf{6 0 0 (1 . 0 0 5)}{ }^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=\mathbf{6 0 0} ; \mathrm{R}=0.06 ; \mathrm{N}=12 \\
\left.A=\mathbf{6 0 0 (1 + \frac { 0 . 0 6 } { 1 2 }}\right)^{12 \mathrm{t}} \\
A=\mathbf{6 0 0 (1 . 0 0 5})^{12 t}
\end{gathered}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
P=\mathbf{6 0 0} ; \mathrm{R}=0.06 ; \mathrm{N}=12 \\
\left.A=\mathbf{6 0 0 (1 + \frac { 0 . 0 6 } { 1 2 }}\right)^{12 \mathrm{t}} \\
A=\mathbf{6 0 0 (1 . 0 0 5})^{12 t}
\end{gathered}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
\mathrm{P}=\mathbf{6 0 0} ; \mathrm{R}=0.06 ; \mathrm{N}=12 \\
\left.A=\mathbf{6 0 0 (1 + \frac { 0 . 0 6 } { 1 2 }}\right)^{12 \mathrm{t}} \\
A=\mathbf{6 0 0 (1 . 0 0 5})^{12 t}
\end{gathered}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
\mathrm{P}=\mathbf{6 0 0} ; \mathrm{R}=0.06 ; \mathrm{N}=12 \\
\left.A=\mathbf{6 0 0 (1 + \frac { 0 . 0 6 } { 1 2 }}\right)^{12 \mathrm{t}} \\
A=\mathbf{6 0 0 (1 . 0 0 5})^{12 t}
\end{gathered}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& \mathrm{A}=\mathbf{P}\left(1+\frac{\mathbf{R}}{\mathrm{N}}\right)^{\mathrm{Nt}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& \begin{array}{r|r}
\mathbf{t} & \mathrm{A} \\
\hline \mathbf{0} & \mathbf{6 0 0} \\
\mathbf{5} & \mathbf{8 0 9} \\
10 & 1092 \\
15 & 1472 \\
20 & 1986
\end{array} \\
& \mathrm{~A}=\mathbf{6 0 0 (1 . 0 0 5)}{ }^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& \mathrm{A}=\mathbf{P}\left(\mathbf{1}+\frac{\mathrm{R}}{\mathrm{~N}}\right)^{\mathrm{Nt}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& A=\mathbf{6 0 0 (1 . 0 0 5)}{ }^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points. Complete the graph.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& \mathrm{A}=\mathbf{P}\left(\mathbf{1}+\frac{\mathrm{R}}{\mathrm{~N}}\right)^{\mathrm{Nt}} \\
& P=600 ; R=0.06 ; N=12 \\
& \mathrm{~A}=\mathbf{6 0 0}\left(1+\frac{0.06}{12}\right)^{12 \mathrm{t}} \\
& \begin{array}{r|r}
\mathbf{t} & \mathbf{A} \\
\hline \mathbf{0} & \mathbf{6 0 0} \\
\mathbf{5} & 809 \\
10 & 1092 \\
15 & 1472 \\
20 & 1986
\end{array} \\
& \mathrm{~A}=\mathbf{6 0 0 (1 . 0 0 5)}{ }^{12 \mathrm{t}}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points. Complete the graph.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& \mathrm{A}=\mathbf{P}\left(\mathbf{1}+\frac{\mathrm{R}}{\mathrm{~N}}\right)^{\mathrm{Nt}} \\
& P=600 ; R=0.06 ; N=12 \\
& A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
& \begin{array}{r|r}
\mathbf{t} & \mathbf{A} \\
\hline \mathbf{0} & \mathbf{6 0 0} \\
\mathbf{5} & 809 \\
10 & 1092 \\
15 & 1472 \\
20 & 1986
\end{array} \\
& \mathrm{~A}=\mathbf{6 0 0 (1 . 0 0 5)}{ }^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points. Complete the graph. Label the graph.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& \mathrm{A}=\mathbf{P}\left(\mathbf{1}+\frac{\mathbf{R}}{\mathrm{N}}\right)^{\mathrm{Nt}} \\
& P=600 ; R=0.06 ; N=12 \\
& \mathrm{~A}=\mathbf{6 0 0}\left(1+\frac{0.06}{12}\right)^{12 \mathrm{t}} \\
& \begin{array}{r|r}
\mathbf{t} & \mathbf{A} \\
\hline \mathbf{0} & \mathbf{6 0 0} \\
\mathbf{5} & 809 \\
10 & 1092 \\
15 & 1472 \\
20 & 1986
\end{array} \\
& \mathrm{~A}=\mathbf{6 0 0 (1 . 0 0 5)}{ }^{12 t}
\end{aligned}
$$

Use the function to fill out a table of values. Plot the points. Complete the graph. Label the graph.

Algebra II Class Worksheet \#4 Unit 10

1. $\$ 600$ is invested in an account paying interest at an annual rate of 6 percent compounded monthly. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{\mathrm{Nt}} \\
\mathrm{P}=600 ; \mathrm{R}=0.06 ; \mathrm{N}=12 \\
A=600\left(1+\frac{0.06}{12}\right)^{12 t} \\
A=600(1.005)^{12 t}
\end{gathered}
$$

Another application of exponential functions deals with radioactive decay.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of 1600 grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of 1600 grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of 1600 grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$

$$
\text { When } \mathrm{t}=\mathbf{0} \text {, }
$$

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	\mathbf{Q}
$\mathbf{0}$	1600

[^0]Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$
4	

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$
4	800

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$

$$
\text { When } \mathrm{t}=4 \text { (years), }
$$

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$

When $t=4$ (years), half of the radioactive substance has decayed.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$

> When $t=4$ (years), half of the radioactive substance has decayed. There are now 800 grams of the radioactive substance present.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, \mathbf{Q}, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$

> When $t=4$ (years), half of the radioactive substance has decayed. There are now 800 grams of the radioactive substance present. Please realize that the 800 grams which have 'decayed' have not disappeared.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$
4	800

> When $t=4$ (years), half of the radioactive substance has decayed. There are now 800 grams of the radioactive substance present. Please realize that the 800 grams which have 'decayed' have not disappeared. They have simply change into a more stable substance.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$
4	800

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$
$\mathbf{8}$	

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$
$\mathbf{4}$	$\mathbf{8 0 0}$
8	$\mathbf{4 0 0}$

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$
$\mathbf{8}$	$\mathbf{4 0 0}$

$$
\text { When t = } 8 \text { (years), }
$$

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$
$\mathbf{8}$	$\mathbf{4 0 0}$

[^1]Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, \mathbf{Q}, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$
$\mathbf{8}$	$\mathbf{4 0 0}$

> When $t=8$ (years), half of the remaining radioactive substance has decayed. There are now 400 grams of the radioactive substance present.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, \mathbf{Q}, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$
$\mathbf{8}$	$\mathbf{4 0 0}$

> When $t=8$ (years), half of the remaining radioactive substance has decayed. There are now 400 grams of the radioactive substance present. Once again, the 400 grams which have 'decayed' have not disappeared.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$
$\mathbf{4}$	$\mathbf{8 0 0}$
8	$\mathbf{4 0 0}$

> When $t=8$ (years), half of the remaining radioactive substance has decayed. There are now 400 grams of the radioactive substance present. Once again, the 400 grams which have 'decayed' have not disappeared. They have simply change into a more stable substance.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$
$\mathbf{4}$	$\mathbf{8 0 0}$
$\mathbf{8}$	$\mathbf{4 0 0}$

> When $t=8$ (years), half of the remaining radioactive substance has decayed. There are now 400 grams of the radioactive substance present. Once again, the 400 grams which have 'decayed' have not disappeared. They have simply change into a more stable substance. (This may help to explain why the apparent rate of decay has decreased.)

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	$\mathbf{1 6 0 0}$
$\mathbf{4}$	$\mathbf{8 0 0}$
8	$\mathbf{4 0 0}$

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$
$\mathbf{8}$	$\mathbf{4 0 0}$

This will continue.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$
$\mathbf{8}$	$\mathbf{4 0 0}$

This will continue. With each additional four year time period,

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	$\mathbf{1 6 0 0}$
4	$\mathbf{8 0 0}$
$\mathbf{8}$	$\mathbf{4 0 0}$

This will continue. With each additional four year time period, one-half of the remaining radioactive substance will 'decay'.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	1600
4	$\mathbf{8 0 0}$
8	400
12	

This will continue. With each additional four year time period, one-half of the remaining radioactive substance will 'decay'.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	1600
4	$\mathbf{8 0 0}$
8	400
12	200

This will continue. With each additional four year time period, one-half of the remaining radioactive substance will 'decay'.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	1600
4	800
8	400
12	200
16	

This will continue. With each additional four year time period, one-half of the remaining radioactive substance will 'decay'.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
0	1600
4	800
8	400
12	200
16	100

This will continue. With each additional four year time period, one-half of the remaining radioactive substance will 'decay'.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	800
8	400
12	200
16	100
20	

This will continue. With each additional four year time period, one-half of the remaining radioactive substance will 'decay'.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	1600
4	$\mathbf{8 0 0}$
$\mathbf{8}$	400
12	200
16	100
20	50

This will continue. With each additional four year time period, one-half of the remaining radioactive substance will 'decay'.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	800
8	400
12	200
16	100
20	50

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	800
8	400
12	200
16	100
20	50

Next, we will develop a function that will produce the same result.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	800
8	400
12	200
16	100
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	800
$\mathbf{8}$	400
12	200
16	100
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	800
8	400
12	200
16	100
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	400
12	200
16	100
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	400
12	200
16	100
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$\mathbf{8 0 0}=\mathbf{1 6 0 0 (1 / 2)}$
8	$400=\mathbf{8 0 0 (1 / 2)}$
12	200
16	100
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	$400=800(1 / 2)$
12	200
16	100
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	$400=\mathbf{8 0 0 (1 / 2)}$
12	$200=400(1 / 2)$
16	100
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	$400=\mathbf{8 0 0 (1 / 2)}$
12	$200=400(1 / 2)$
16	100
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	$400=800(1 / 2)$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	$400=\mathbf{8 0 0 (1 / 2)}$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	50

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	$400=800(1 / 2)$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$\mathbf{8 0 0}=1600(1 / 2)$
8	$400=\mathbf{8 0 0 (1 / 2)}$
12	$200=\mathbf{4 0 0 (1 / 2)}$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	$400=800(1 / 2)$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)$
8	$400=800(1 / 2)$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=800(1 / 2)$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=800(1 / 2)$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=400(1 / 2)$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=200(1 / 2)$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
$\mathbf{0}$	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=100(1 / 2)$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	1600
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{\mathrm{K}}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
$\mathbf{2 0}$	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

$$
\mathbf{Q}=
$$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of 1600 grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

$$
Q=1600(1 / 2)^{t / 4}
$$

Next, we will develop a function that will produce the same result. Notice that as you move down through the table, the previous value of Q is multiplied by one-half. Now, notice that every value of Q can be expressed in the form $1600(1 / 2)^{K}$ for some exponent K. Next, notice that in every row, the exponent is the value of t divided by the half life, 4 years in this example. $K=t / 4$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, \mathbf{Q}, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

$$
Q=1600(1 / 2)^{t / 4}
$$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of 1600 grams has a half-life of 4 years. Express its mass, \mathbf{Q}, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$
$Q=1600(1 / 2)^{t / 4}$	

We will make one more change in our function.

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

We will make one more change in our function. Using properties of exponents, we can replace $(1 / 2)^{t / 4}$ with the equivalent expression $2^{-t / 4}$.

$$
Q=1600(1 / 2)^{t / 4}
$$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

We will make one more change in our function. Using properties of exponents, we can replace $(1 / 2)^{t / 4}$ with the equivalent expression $2^{-t / 4}$.
So, our final function is

$$
Q=1600(1 / 2)^{t / 4}
$$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

We will make one more change in our function. Using properties of exponents, we can replace $(1 / 2)^{t / 4}$ with the equivalent expression $2^{-t / 4}$.
So, our final function is

$$
\mathbf{Q}=
$$

$$
Q=1600(1 / 2)^{t / 4}
$$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

First we will create a table showing how the mass changes over time.

t	Q
0	$1600=1600(1 / 2)^{0}$
4	$800=1600(1 / 2)^{1}$
8	$400=1600(1 / 2)^{2}$
12	$200=1600(1 / 2)^{3}$
16	$100=1600(1 / 2)^{4}$
20	$50=1600(1 / 2)^{5}$

We will make one more change in our function. Using properties of exponents, we can replace $(1 / 2)^{t / 4}$ with the equivalent expression $2^{-t / 4}$.
So, our final function is

$$
Q=1600(2)^{-t / 4}
$$

$$
Q=1600(1 / 2)^{t / 4}
$$

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of 1600 grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.
$Q=1600(2)^{-1 / 4}$

t	Q
$\mathbf{0}$	1600
4	800
8	400
12	200
16	100
20	50

Another application of exponential functions deals with radioactive decay. The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

$Q=1600(2)^{-t / 4}$	
\mathbf{t}	\mathbf{Q}
0	1600
4	800
8	400
12	200
16	100
20	50

In general, if M represents the original mass (in grams) of a radioactive substance with a half-life of H years,

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

$Q=1600(2)^{-t / 4}$	
\mathbf{t}	\mathbf{Q}
0	1600
4	800
8	400
12	200
16	100
20	50

In general, if M represents the original mass (in grams) of a radioactive substance with a half-life of H years, then the quantity remaining, Q, (in grams) after \mathbf{t} years is given by the function

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

$Q=1600(2)^{-t / 4}$	
\mathbf{t}	Q
0	1600
4	800
8	400
12	200
16	100
20	50

In general, if M represents the original mass (in grams) of a radioactive substance with a half-life of H years, then the quantity remaining, Q, (in grams) after \mathbf{t} years is given by the function

$$
\mathbf{Q}=
$$

Another application of exponential functions deals with radioactive decay.
The nucleus of a radioactive substance is unstable. This causes it to 'emit particles' and change into a more stable substance. The time it takes for half of the mass of a radioactive substance to 'decay' is called its half-life. Here is an example.

A certain radioactive substance with a mass of $\mathbf{1 6 0 0}$ grams has a half-life of 4 years. Express its mass, Q, as a function of time, t, in years.

$Q=1600(2)^{-t / 4}$	
\mathbf{t}	\mathbf{Q}
0	1600
4	800
$\mathbf{8}$	400
12	200
16	100
20	50

In general, if M represents the original mass (in grams) of a radioactive substance with a half-life of H years, then the quantity remaining, Q, (in grams) after \mathbf{t} years is given by the function

$$
\mathbf{Q}=\mathbf{M}(2)^{-t / H}
$$

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

Write the radioactive decay function.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{Q}=\mathbf{M}(\mathbf{2})^{-t / \mathbf{H}}
$$

Write the radioactive decay function.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{Q}=\mathbf{M}(\mathbf{2})^{-t / H}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{Q}=\mathbf{M}(\mathbf{2})^{-t / \mathbf{H}}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000 \text { (grams) }
\end{aligned}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000 \text { (grams) }
\end{aligned}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of 2000 grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000 \text { (grams) }
\end{aligned}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of 2000 grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000(\text { grams }) \\
& H=6(\text { years })
\end{aligned}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, \mathbf{Q}, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) }
\end{aligned}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000 \text { (grams) } \\
& H=6 \text { (years) } \\
& Q=
\end{aligned}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, \mathbf{Q}, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(
\end{aligned}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, \mathbf{Q}, as a function of time, \mathbf{t}, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000(\text { grams }) \\
& H=6(\text { years }) \\
& Q=2000(2)^{-t / 6}
\end{aligned}
$$

Write the radioactive decay function. Substitute in the values of M and H.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000(\text { grams }) \\
& H=6(\text { years }) \\
& Q=2000(2)^{-t / 6}
\end{aligned}
$$

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0}(\text { grams }) \\
H & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
$\mathbf{5}$	

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	$\mathbf{2 0 0 0}$
$\mathbf{5}$	$\mathbf{1 1 2 2}$

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

t	Q
0	2000
5	1122
10	

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	$\mathbf{6 3 0}$

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

t	Q
0	2000
5	1122
10	630
15	

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

Use the function to fill out a table of values.

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
$\mathbf{5}$	1122
10	$\mathbf{6 3 0}$
15	354
20	

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000 \text { (grams) } \\
& H=6 \text { (years) } \\
& Q=2000(2)^{-1 / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0}(\text { grams }) \\
H & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
$\mathbf{5}$	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
H & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
H & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

t	Q
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	Q
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0}(\text { grams }) \\
H & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
H & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points. Draw the graph.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
H & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points. Draw the graph.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
H & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

t	Q
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points. Draw the graph. Label the graph.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Use the function to fill out a table of values. Plot the points. Draw the graph. Label the graph.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =\mathbf{M}(2)^{-t / H} \\
M & =\mathbf{2 0 0 0} \text { (grams) } \\
\mathbf{H} & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

We could also have used the half-life to graph this function.

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =\mathbf{2 0 0 0}(\text { grams }) \\
H & =\mathbf{6}(\text { years }) \\
Q & =\mathbf{2 0 0 0}(2)^{-t / 6}
\end{aligned}
$$

t	Q
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

We could also have used the half-life to graph this function. After every 6 year period, the mass is divided by 2 .

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000 \text { (grams) } \\
& H=6(\text { years }) \\
& Q=2000(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

We could also have used the half-life to graph this function. After every 6 year period, the mass is divided by 2 .

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000(\text { grams }) \\
& H=6(\text { years }) \\
& Q=2000(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

We could also have used the half-life to graph this function. After every 6 year period, the mass is divided by 2 .

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of 2000 grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000(\text { grams }) \\
& H=6(\text { years }) \\
& Q=2000(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

We could also have used the half-life to graph this function. After every 6 year period, the mass is divided by 2 .

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

We could also have used the half-life to graph this function. After every 6 year period, the mass is divided by 2 .

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of t from 0 to $\mathbf{2 0}$ years.

$$
\begin{aligned}
Q & =M(2)^{-t / H} \\
M & =2000 \text { (grams) } \\
H & =6 \text { (years) } \\
Q & =2000(2)^{-t / 6}
\end{aligned}
$$

t	Q
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Algebra II Class Worksheet \#4 Unit 10

2. A certain radioactive substance with a mass of $\mathbf{2 0 0 0}$ grams has a half-life of 6 years. Express its mass, Q, as a function of time, t, in years. Graph this function for values of \mathbf{t} from 0 to 20 years.

$$
\begin{aligned}
& Q=M(2)^{-t / H} \\
& M=2000 \text { (grams) } \\
& H=6(\text { years }) \\
& Q=2000(2)^{-t / 6}
\end{aligned}
$$

\mathbf{t}	\mathbf{Q}
$\mathbf{0}$	2000
5	1122
10	630
15	354
20	198

Another application of exponential functions involves the real number e.

Another application of exponential functions involves the real number e. First, consider the real number π.

Another application of exponential functions involves the real number e. First, consider the real number π. It is defined to be the ratio of the circumference of a circle to its diameter.

Another application of exponential functions involves the real number e. First, consider the real number π. It is defined to be the ratio of the circumference of a circle to its diameter. It turns out that π, as a decimal, is non-terminating and non-repeating, which makes it an irrational number.

Another application of exponential functions involves the real number e. First, consider the real number π. It is defined to be the ratio of the circumference of a circle to its diameter. It turns out that π, as a decimal, is non-terminating and non-repeating, which makes it an irrational number. We commonly use 3.14 as a rational approximation for π.

Another application of exponential functions involves the real number e. First, consider the real number π. It is defined to be the ratio of the circumference of a circle to its diameter. It turns out that π, as a decimal, is non-terminating and non-repeating, which makes it an irrational number. We commonly use 3.14 as a rational approximation for π. Like π, the real number e, as a decimal, is non-terminating and non-repeating.

Another application of exponential functions involves the real number e. First, consider the real number π. It is defined to be the ratio of the circumference of a circle to its diameter. It turns out that π, as a decimal, is non-terminating and non-repeating, which makes it an irrational number. We commonly use 3.14 as a rational approximation for π. Like π, the real number e, as a decimal, is non-terminating and non-repeating. Its 'commonly used' rational approximation is $\mathbf{2 . 7 1 8}$.

Another application of exponential functions involves the real number e.
$e \approx 2.718$

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$.

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k

$\left[1+\frac{1}{k}\right]^{k}$

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

\mathbf{k}
$\left[1+\frac{1}{k}\right]^{\mathbf{k}}$

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

\mathbf{k}
$\left[1+\frac{1}{\mathbf{k}}\right]^{\mathbf{k}}$

$$
\left[1+\frac{1}{\mathbf{k}}\right]^{\mathbf{k}}=
$$

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

\mathbf{k}
$\left[1+\frac{1}{\mathbf{k}}\right]^{\mathbf{k}}$

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{1}\right]^{1}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

\mathbf{k}	1
$\left[1+\frac{1}{\mathbf{k}}\right]^{\mathbf{k}}$	

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{1}\right]^{1}=2^{1}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1
$\left.1+\frac{1}{k}\right]^{k}$	2

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{1}\right]^{1}=2^{1}
$$

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1
$\left[1+\frac{1}{k}\right]^{k}$	2

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2
$\left[1+\frac{1}{k}\right]^{k}$	2	

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2
$\left[1+\frac{1}{k}\right]^{k}$	2	

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2
$\left[1+\frac{1}{k}\right]^{k}$	2	

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{2}\right]^{2}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2
$\left[1+\frac{1}{k}\right]^{k}$	2	

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{2}\right]^{2}=1.5^{2}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{2}\right]^{2}=1.5^{2}
$$

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{3}\right]^{3}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{3}\right]^{3}=(4 / 3)^{3}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	$64 / 27$

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{3}\right]^{3}=(4 / 3)^{3}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	$64 / 27 \approx 2.378$

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{3}\right]^{3}=(4 / 3)^{3}
$$

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378

Another application of exponential functions involves the real number e. $e \approx 2.718$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{4}\right]^{4}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{4}\right]^{4}=(5 / 4)^{4}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	$625 / 256$

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{4}\right]^{4}=(5 / 4)^{4}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	$625 / 256 \approx 2.441$

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{4}\right]^{4}=(5 / 4)^{4}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	

$$
\left[1+\frac{1}{1}\right]=\left[1+\frac{1}{5}\right]^{5}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{5}\right]^{5}=(6 / 5)^{5}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	≈ 2.488

$$
\left[1+\frac{1}{k}\right]^{k}=\left[1+\frac{1}{5}\right]^{5}=(6 / 5)^{5}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	

$$
\left[1+\frac{1}{k}\right]^{k}=(1.1)^{10}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	≈ 2.594

$$
\left[1+\frac{1}{k}\right]^{k}=(1.1)^{10}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	

$$
\left[1+\frac{1}{k}\right]^{k}=(1.02)^{50}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	≈ 2.692

$$
\left[1+\frac{1}{k}\right]^{k}=(1.02)^{50}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	

$$
\left[1+\frac{1}{k}\right]^{k}=(1.01)^{100}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	≈ 2.705

$$
\left[1+\frac{1}{k}\right]^{k}=(1.01)^{100}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	

$$
\left[1+\frac{1}{k}\right]^{k}=(1.001)^{1000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	≈ 2.717

$$
\left[1+\frac{1}{k}\right]^{k}=(1.001)^{1000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717

k

$$
\left[1+\frac{1}{k}\right]^{\mathbf{k}}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000								
$\left[1+\frac{1}{k}\right]^{k}$									

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000								
$\left[1+\frac{1}{k}\right]^{k}$									

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000								
$\left[1+\frac{1}{k}\right]^{k}$									

$$
\left[1+\frac{1}{k}\right]^{k}=(1.0001)^{10,000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000								
$\left[1+\frac{1}{k}\right]^{k}$	≈ 2.718146								

$$
\left[1+\frac{1}{k}\right]^{k}=(1.0001)^{10,000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k									
$\left[1+\frac{1}{k}\right]^{k}$	2.718146								

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000							
$\left[1+\frac{1}{k}\right]^{k}$	2.718146								

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000							
$\left[1+\frac{1}{k}\right]^{k}$	2.718146								

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000							
$\left[1+\frac{1}{k}\right]^{k}$	2.718146								

$$
\left[1+\frac{1}{k}\right]^{k}=(1.00001)^{100,000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000							
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	≈ 2.718268							

$$
\left[1+\frac{1}{k}\right]^{k}=(1.00001)^{100,000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000							
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268							

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$						
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268							

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$						
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268							

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$						
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268							

$$
\left[1+\frac{1}{k}\right]^{k}=(1.000001)^{1,000,000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$						
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	≈ 2.718280						

$$
\left[1+\frac{1}{k}\right]^{k}=(1.000001)^{1,000,000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$						
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280						

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$	$10,000,000$					
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280						

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$	$10,000,000$					
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280						

$$
\left[1+\frac{1}{k}\right]^{k}=
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$	$10,000,000$					
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280						

$$
\left[1+\frac{1}{k}\right]^{k}=(1.0000001)^{10,000,000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$	$10,000,000$					
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280	≈ 2.71828169					

$$
\left[1+\frac{1}{k}\right]^{k}=(1.0000001)^{10,000,000}
$$

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$	$10,000,000$					
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280	2.71828169					

Another application of exponential functions involves the real number e.

$$
e \approx 2.718
$$

Here is a 'definition' for the real number e.
Consider the expression $\left[1+\frac{1}{k}\right]^{k}$. We will examine how the value of this expression changes as k increases.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$	$10,000,000$					
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280	2.71828169					

e is defined to be the 'limiting value' of $\left[1+\frac{1}{k}\right]^{k}$ as k 'goes to infinity'.

Another application of exponential functions involves the real number e.

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$	$10,000,000$					
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280	2.71828169					

e is defined to be the 'limiting value' of $\left[1+\frac{1}{k}\right]^{k}$ as k 'goes to infinity'.

Another application of exponential functions involves the real number e.

$$
\mathbf{e}=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k}
$$

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$	$10,000,000$					
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280	2.71828169					

e is defined to be the 'limiting value' of $\left[1+\frac{1}{k}\right]^{k}$ as k 'goes to infinity'.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

k	1	2	3	4	5	10	50	100	1000
$\left[1+\frac{1}{k}\right]^{k}$	2	2.25	2.378	2.441	2.488	2.594	2.692	2.705	2.717
k	10,000	100,000	$1,000,000$	$10,000,000$					
$\left[1+\frac{1}{k}\right]^{k}$	2.718146	2.718268	2.718280	2.71828169					

e is defined to be the 'limiting value' of $\left[1+\frac{1}{k}\right]^{k}$ as k 'goes to infinity'.

Another application of exponential functions involves the real number e.

$$
\mathrm{e}=\underset{\mathrm{k} \Rightarrow \infty}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
A=\mathbf{P}\left(1+\frac{R}{N}\right)^{\mathbf{N t}}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
A=\mathbf{P}\left(\mathbf{1}+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}}
$$

Let $k=\frac{N}{R}$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{aligned}
& A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} & \square \frac{R}{N}=\frac{1}{k}
\end{aligned}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \longmapsto \frac{R}{N}=\frac{1}{k} \text { and } N=k R
\end{gathered}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{aligned}
& \mathbf{A}=\mathbf{P}\left(\mathbf{1}+\frac{\mathbf{R}}{\mathbf{N}}\right)^{\mathbf{N t}} \\
& \text { Let } k=\frac{N}{R} \square \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
& \Rightarrow \mathbf{A}=
\end{aligned}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\longmapsto A=P(1+
\end{gathered}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\longmapsto A=P\left(1+\frac{1}{k}\right)
\end{gathered}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\longmapsto A=P\left(1+\frac{1}{k}\right)^{(k R) t}
\end{gathered}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\longmapsto A=P\left(1+\frac{1}{k}\right)^{(k R) t}=
\end{gathered}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\square A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P
\end{gathered}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\square A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]
\end{gathered}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\longmapsto A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t}
\end{gathered}
$$

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\square A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t}
\end{gathered}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\longmapsto A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t}
\end{gathered}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\longmapsto A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t}
\end{gathered}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{aligned}
& A=P\left(1+\frac{R}{N}\right)^{N t} \\
& \text { Let } k=\frac{N}{R} \square \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
& \Rightarrow A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t}
\end{aligned}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as N increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity. This expression approaches e as its limiting value.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \Longleftrightarrow \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
\longmapsto A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t}
\end{gathered}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity. This expression approaches e as its limiting value.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{aligned}
& A=P\left(1+\frac{R}{N}\right)^{N t} \\
& \text { Let } k=\frac{N}{R} \square \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
& \Rightarrow A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t} \\
& \Rightarrow \mathbf{A}=
\end{aligned}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity. This expression approaches e as its limiting value.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{aligned}
& A=P\left(1+\frac{R}{N}\right)^{N t} \\
& \text { Let } k=\frac{N}{R} \square \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
& \Rightarrow A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t} \\
& \Rightarrow \mathbf{A}=\mathbf{P}
\end{aligned}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity. This expression approaches e as its limiting value.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{aligned}
& A=P\left(1+\frac{R}{N}\right)^{N t} \\
& \text { Let } k=\frac{N}{R} \square \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
& \Rightarrow A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t} \\
& \Rightarrow \mathbf{A}=\mathbf{P e}
\end{aligned}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity. This expression approaches e as its limiting value.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{aligned}
& A=P\left(1+\frac{R}{N}\right)^{N t} \\
& \text { Let } k=\frac{N}{R} \square \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
& \Rightarrow A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t} \\
& \Rightarrow \mathbf{A}=\mathbf{P e}^{R t}
\end{aligned}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity. This expression approaches e as its limiting value.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{gathered}
\begin{array}{c}
A=P\left(1+\frac{R}{N}\right)^{N t} \\
\text { Let } k=\frac{N}{R} \\
\longmapsto \\
\\
\square \\
\\
\\
A=P\left(1+\frac{R}{N}=\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t} \\
\\
\square A=P^{R t}
\end{array}
\end{gathered}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity. This expression approaches e as its limiting value.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{aligned}
& A=P\left(1+\frac{R}{N}\right)^{N t} \\
& \text { Let } k=\frac{N}{R} \square \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
& \Rightarrow A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t} \\
& \Rightarrow A=\mathbf{P e}^{\mathbf{R t}}
\end{aligned}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity. This expression approaches e as its limiting value.

Another application of exponential functions involves the real number e.

$$
e=\underset{k}{\operatorname{Limit}}\left[1+\frac{1}{k}\right]^{k} \approx 2.718
$$

Now, we will turn our attention to the compound interest formula.

$$
\begin{aligned}
& A=P\left(1+\frac{R}{N}\right)^{\mathbf{N t}} \\
& \text { Let } k=\frac{N}{R} \square \frac{R}{N}=\frac{1}{k} \text { and } N=k R \\
& \Rightarrow A=P\left(1+\frac{1}{k}\right)^{(k R) t}=P\left[\left(1+\frac{1}{k}\right)^{k}\right]^{R t} \\
& \Rightarrow A=\mathbf{P e}^{\mathbf{R t}}
\end{aligned}
$$

Recall that \mathbf{N} represents the number of times per year that the interest is compounded. Clearly, as \mathbf{N} increases, k increases as well. Consider what 'happens' as \mathbf{N} (and k) approach infinity. This expression approaches e as its limiting value. This is called the 'continuously compounded interest' formula.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

Write the continuously compounded interest formula.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{A}=\mathbf{P e}^{\mathrm{Rt}}
$$

Write the continuously compounded interest formula.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{A}=\mathbf{P e}^{\mathrm{Rt}}
$$

Write the continuously compounded interest formula. Substitute in the values of P and R.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\mathbf{A}=\mathbf{P e}^{\mathrm{Rt}}
$$

Write the continuously compounded interest formula. Substitute in the values of P and R.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
\mathrm{A}=\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P}=\mathbf{6 0 0} \text { (dollars) }
\end{gathered}
$$

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{\mathrm{Rt}} \\
\mathbf{P}=\mathbf{6 0 0} \text { (dollars) }
\end{gathered}
$$

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{\mathrm{Rt}} \\
\mathbf{P}=\mathbf{6 0 0} \text { (dollars) }
\end{gathered}
$$

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P^{R t} \\
P=600 \text { (dollars) } \\
R=0.06
\end{gathered}
$$

Write the continuously compounded interest formula. Substitute in the values of P and R.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P^{R t} \\
P=600 \text { (dollars) } \\
R=0.06
\end{gathered}
$$

Write the continuously compounded interest formula. Substitute in the values of P and R.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=P^{R t} \\
P=600 \text { (dollars) } \\
R=0.06 \\
A=
\end{gathered}
$$

Write the continuously compounded interest formula. Substitute in the values of P and R.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
A & =\mathbf{P e}^{\mathrm{Rt}} \\
\mathbf{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
A & =\mathbf{6 0 0}
\end{aligned}
$$

Write the continuously compounded interest formula. Substitute in the values of P and R.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=0.06 \\
A=600 e^{\mathbf{0 . 0 6 t}}
\end{gathered}
$$

Write the continuously compounded interest formula. Substitute in the values of P and R.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=0.06 \\
A=600 e^{\mathbf{0} .06 t}
\end{gathered}
$$

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=0.06 \\
A=600 e^{\mathbf{0 . 0 6 t}}
\end{gathered}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=0.06 \\
A=\mathbf{6 0 0} \mathrm{e}^{\mathbf{0 . 0 6 t}}
\end{gathered}
$$

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=0.06 \\
A=\mathbf{6 0 0} \mathrm{e}^{\mathbf{0 . 0 6 t}}
\end{gathered}
$$

Use the function to fill out a table of values.

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=0.06 \\
A=600 e^{\mathbf{0} .06 t}
\end{gathered}
$$

Use the function to fill out a table of values.

\mathbf{t}	A
0	600

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=0.06 \\
A=\mathbf{6 0 0} \mathrm{e}^{\mathbf{0 . 0 6 t}}
\end{gathered}
$$

Use the function to fill out a table of values.

\mathbf{t}	A
$\mathbf{0}$	600
5	

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=600 \text { (dollars) } \\
R=0.06 \\
A=600 e^{0.06 t}
\end{gathered}
$$

Use the function to fill out a table of values.

\mathbf{t}	A
$\mathbf{0}$	600
5	810

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=600 \text { (dollars) } \\
R=0.06 \\
A=600 e^{\mathbf{0 . 0 6 t}}
\end{gathered}
$$

Use the function to fill out a table of values.

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	$\mathbf{8 1 0}$
10	

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=600 \text { (dollars) } \\
R=0.06 \\
A=600 e^{0.06 t}
\end{gathered}
$$

Use the function to fill out a table of values.

\mathbf{t}	\mathbf{A}
0	600
5	810
10	1093

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=600 \text { (dollars) } \\
R=0.06 \\
A=600 e^{0.06 t}
\end{gathered}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093

15

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=0.06 \\
A=\mathbf{6 0 0} \mathrm{e}^{\mathbf{0 . 0 6 t}}
\end{gathered}
$$

\mathbf{t}	\mathbf{A}
0	600
5	810
10	1093
15	1476

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=0.06 \\
A=\mathbf{6 0 0} \mathrm{e}^{\mathbf{0 . 0 6 t}}
\end{gathered}
$$

\mathbf{t}	\mathbf{A}
0	600
5	810
10	1093
15	1476
20	

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
0	600
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
$\mathbf{5}$	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
$\mathbf{5}$	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
$\mathbf{5}$	$\mathbf{8 1 0}$
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	A
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	A
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
0	600
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points. Draw the graph.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	600
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points. Draw the graph.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
0	600
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points. Draw the graph. Label the graph.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of t from 0 to 20 years.

$$
\begin{aligned}
\mathrm{A} & =\mathrm{Pe}^{\mathrm{Rt}} \\
\mathrm{P} & =\mathbf{6 0 0} \text { (dollars) } \\
\mathrm{R} & =\mathbf{0 . 0 6} \\
\mathrm{A} & =\mathbf{6 0 0} \mathrm{e}^{0.06 t}
\end{aligned}
$$

\mathbf{t}	\mathbf{A}
0	600
5	810
10	1093
15	1476
20	1992

Use the function to fill out a table of values. Plot the points. Draw the graph. Label the graph.

Algebra II Class Worksheet \#4 Unit 10

3. $\$ 600$ is invested in an account paying interest at an annual rate of 6\% compounded continuously. Express the balance of the account, A, as a function of the time, t, in years. Graph this function for values of \mathbf{t} from 0 to 20 years.

$$
\begin{gathered}
A=\mathbf{P e}^{R t} \\
P=\mathbf{6 0 0} \text { (dollars) } \\
R=\mathbf{0 . 0 6} \\
A=\mathbf{6 0 0} \mathbf{e}^{\mathbf{0 . 0 6 t}}
\end{gathered}
$$

\mathbf{t}	\mathbf{A}
$\mathbf{0}$	$\mathbf{6 0 0}$
5	810
10	1093
15	1476
20	1992

[^0]: When $t=0$, there are 1600 grams of the radioactive substance present.

[^1]: When $t=8$ (years), half of the remaining radioactive substance has decayed.

