Algebra II Lesson #2 Unit 10 Class Worksheet #2 For Worksheets #2 & #3

These are exponents that are rational numbers (<u>fractions</u>).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} =$

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8}$$

These are exponents that are rational numbers (fractions).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8}$$

Before we continue, it is important that this equation make sense.

These are exponents that are rational numbers (fractions).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8}$$

Before we continue, it is important that this equation make sense.

First, we know that the cube root of 8 is the number which, when cubed, is equal to 8.

These are exponents that are rational numbers (fractions).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8}$

Before we continue, it is important that this equation make sense.

First, we know that the cube root of 8 is the number which, when cubed, is equal to 8. Now, consider cubing this expression.

These are exponents that are rational numbers (fractions).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8}$

Before we continue, it is important that this equation make sense.

First, we know that the cube root of 8 is the number which, when cubed, is equal to 8. Now, consider cubing this expression.

 $[8^{(1/3)}]^3 =$

These are exponents that are rational numbers (fractions).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8}$

Before we continue, it is important that this equation make sense.

First, we know that the cube root of 8 is the number which, when cubed, is equal to 8. Now, consider cubing this expression. $[8^{(1/3)}]^3 =$

Multiply these exponents.

These are exponents that are rational numbers (fractions).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8}$

Before we continue, it is important that this equation make sense.

First, we know that the cube root of 8 is the number which, when cubed, is equal to 8. Now, consider cubing this expression. $[8^{(1/3)}]^3 = 8^1$

Multiply these exponents.

These are exponents that are rational numbers (fractions).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8}$

Before we continue, it is important that this equation make sense.

First, we know that the cube root of 8 is the number which, when cubed, is equal to 8. Now, consider cubing this expression.

 $[8^{(1/3)}]^3 = 8^1 =$

These are exponents that are rational numbers (fractions).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8}$

Before we continue, it is important that this equation make sense.

First, we know that the cube root of 8 is the number which, when cubed, is equal to 8. Now, consider cubing this expression.

 $[8^{(1/3)}]^3 = 8^1 = 8!!$

These are exponents that are rational numbers (fractions).

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8}$

Before we continue, it is important that this equation make sense.

First, we know that the cube root of 8 is the number which, when cubed, is equal to 8. Now, consider cubing this expression.

 $[8^{(1/3)}]^3 = 8^1 = 8!!$

Therefore, $8^{(1/3)}$ is equal to the cube root of 8.

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8}$$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8}$$

Therefore, $8^{(1/3)} =$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8}$$

Therefore, $8^{(1/3)} = 2$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8}$$

Therefore, $8^{(1/3)} = 2$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8} = 2$$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8} = 2$$

Now, we will evaluate $8^{(2/3)}$.

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

$$8^{(1/3)} = \sqrt[3]{8} = 2$$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} =$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

 $8^{(2/3)} =$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

 $8^{(2/3)} = [8^2]^{(1/3)}$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

$$8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2}$$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

$$8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2} = \sqrt[3]{64}$$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

$$8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

$$8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$

In general,

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate 8^(2/3). Using the properties of exponents,

$$\frac{8^{(2/3)}}{8^{(2/3)}} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$$

Another way to approach the same problem is

$$8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$

In general, B^(m/n) =

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate 8^(2/3). Using the properties of exponents,

$$8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$$

Another way to approach the same problem is

$$8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$

In general, $\mathbf{B}^{(m/n)} = [\sqrt[n]{\mathbf{B}}]^m$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

$$8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$

In general, $B^{(m/n)} = [\sqrt[n]{B}]^m$ or

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

$$8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$

In general, $B^{(m/n)} = [\sqrt[n]{B}]^m$ or $B^{(m/n)} =$

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

 $8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$

In general, $B^{(m/n)} = [\sqrt[n]{B}]^m$ or $B^{(m/n)} = \sqrt[n]{B^m}$.

Here is a definition. $B^{(1/n)} = \sqrt[n]{B}$

We will use this definition to evaluate 8^(1/3).

 $8^{(1/3)} = \sqrt[3]{8} = 2$

Now, we will evaluate $8^{(2/3)}$. Using the properties of exponents, $8^{(2/3)} = [8^{(1/3)}]^2 = [\sqrt[3]{8}]^2 = 2^2 = 4$

Another way to approach the same problem is

$$8^{(2/3)} = [8^2]^{(1/3)} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$

In general, $B^{(m/n)} = [\sqrt[n]{B}]^m$ or $B^{(m/n)} = \sqrt[n]{B^m}$.

1.
$$49^{(1/2)} =$$
 2. $49^{(-1/2)} =$ 3. $49^{(3/2)} =$

Evaluate each of the following.

1. $49^{(1/2)} =$ 2. $49^{(-1/2)} =$ 3. $49^{(3/2)} =$

1.
$$49^{(1/2)} =$$
 2. $49^{(-1/2)} =$ 3. $49^{(3/2)} =$

1.
$$49^{(1/2)} =$$

 $B^{(1/2)} =$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$

1.
$$49^{(1/2)} =$$

 $B^{(1/2)} = \sqrt{B}$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$

Evaluate each of the following.

1. $49^{(1/2)} =$ $= \sqrt{49}$ $B^{(1/2)} = \sqrt{B}$ 2. $49^{(-1/2)} =$ 3. $49^{(3/2)} =$

1.
$$49^{(1/2)} =$$

= $\sqrt{49}$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$

1.
$$49^{(1/2)} = 7$$

= $\sqrt{49}$
2. $49^{(-1/2)} = 3$. $49^{(3/2)} =$

1.
$$49^{(1/2)} = 7$$

= $\sqrt{49}$
2. $49^{(-1/2)} = 3$. $49^{(3/2)} =$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
B^(-k) =

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
 $B^{(-k)} = \frac{1}{B^k}$
3. $49^{(3/2)} =$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
 $B^{(-k)} = \frac{1}{B^k}$
3. $49^{(3/2)} = 3$
 $B^{(-k)} = \frac{1}{B^k}$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$
 $= \frac{1}{49^{(1/2)}}$
 $B^{(-k)} = \frac{1}{B^k}$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$
 $= \frac{1}{49^{(1/2)}} =$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$
 $= \frac{1}{49^{(1/2)}} =$
 $B^{(1/2)} =$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$
 $= \frac{1}{49^{(1/2)}} =$
 $B^{(1/2)} = \sqrt{B}$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$
 $= \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$
 $B^{(1/2)} = \sqrt{B}$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} =$
3. $49^{(3/2)} =$
 $= \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$
 $B^{(m/n)} = 1/7$

Evaluate each of the following.

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$

 $\mathbf{B}^{(\mathbf{m/n})} = \left[\sqrt[n]{\mathbf{B}}\right]^{\mathbf{m}}$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} =$
 $= \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$
 $= B^{(m/n)} = [\sqrt[n]{B}]^m$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = 1/7$
 $= \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$
 $= [\sqrt{49}]^3$
 $B^{(m/n)} = [\sqrt[n]{B}]^m$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = 1/7$
 $= \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$
 $= [\sqrt{49}]^3 = 1/7$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = 1/7$
 $= \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$
 $= [\sqrt{49}]^3 = 7^3$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = 343$
 $= \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$
 $= [\sqrt{49}]^3 = 7^3$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = 343$
 $= \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$
 $= [\sqrt{49}]^3 = 7^3$

1.
$$49^{(1/2)} = 7$$

 $= \sqrt{49}$
2. $49^{(-1/2)} = 1/7$
3. $49^{(3/2)} = 343$
 $= \frac{1}{49^{(1/2)}} = \frac{1}{\sqrt{49}}$
 $= [\sqrt{49}]^3 = 7^3$

4.
$$27^{(1/3)} =$$
 5. $27^{(2/3)} =$ 6. $27^{(-2/3)} =$

Evaluate each of the following.

4. $27^{(1/3)} =$ 5. $27^{(2/3)} =$ 6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} =$$
 5. $27^{(2/3)} =$ 6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} =$$

 $B^{(1/n)} =$
5. $27^{(2/3)} =$
6. $27^{(-2/3)} =$

Evaluate each of the following.

4. $27^{(1/3)} =$ $B^{(1/n)} = \sqrt[n]{B}$ 5. $27^{(2/3)} =$ 6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} =$$

=
 $B^{(1/n)} = \sqrt[n]{B}$
5. $27^{(2/3)} =$
6. $27^{(-2/3)} =$

Evaluate each of the following.

4. $27^{(1/3)} =$ $= \sqrt[3]{27}$ $B^{(1/n)} = \sqrt[n]{B}$ 5. $27^{(2/3)} =$ 6. $27^{(-2/3)} =$

Evaluate each of the following.

4. $27^{(1/3)} =$ = $\sqrt[3]{27} =$ 5. $27^{(2/3)} =$ 6. $27^{(-2/3)} =$

Evaluate each of the following.

4. $27^{(1/3)} = 3$ = $\sqrt[3]{27} =$ 5. $27^{(2/3)} =$ 6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} = 3$$

= $\sqrt[3]{27} =$
5. $27^{(2/3)} =$
6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} = 3$$

 $= \sqrt[3]{27} =$
5. $27^{(2/3)} =$
6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} = 3$$

 $= \sqrt[3]{27} =$

 $B^{(m/n)} =$

6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} = 3$$

 $= \sqrt[3]{27} =$
 $B^{(m/n)} = [\sqrt[n]{B}]^m$
6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} = 3$$

 $= \sqrt[3]{27} = =$
 $B^{(m/n)} = [\sqrt[n]{B}]^m$
6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} = 3$$

 $= \sqrt[3]{27} =$
 $= [\sqrt[3]{27}]^2$
 $B^{(m/n)} = [\sqrt[n]{B}]^m$
6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} = 3$$

 $= \sqrt[3]{27} = 5$. $27^{(2/3)} = 6$. $27^{(-2/3)} = 10^{-2/3} = 10^{-$

4.
$$27^{(1/3)} = 3$$

 $= \sqrt[3]{27} = 5$. $27^{(2/3)} = 6$. $27^{(-2/3)} = 10^{-3}$
 $= [\sqrt[3]{27}]^2 = 3^2$

4.
$$27^{(1/3)} = 3$$

 $= \sqrt[3]{27} =$
5. $27^{(2/3)} = 9$
 $= [\sqrt[3]{27}]^2 = 3^2$
6. $27^{(-2/3)} =$

4.
$$27^{(1/3)} = 3$$

 $= \sqrt[3]{27} =$
5. $27^{(2/3)} = 9$
6. $27^{(-2/3)} =$
 $= [\sqrt[3]{27}]^2 = 3^2$

Evaluate each of the following.

$$=\sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$$

6.
$$27^{(-2/3)} =$$

Evaluate each of the following.

4. $27^{(1/3)} = 3$ 5. $27^{(2/3)} = 9$

$$=\sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$$

6.
$$27^{(-2/3)} =$$

B^{-k} =

27(-2/3) —

Evaluate each of the following.

4. $27^{(1/3)} = 3$ 5. $27^{(2/3)} = 9$

$$=\sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$$

6.
$$27^{(-2/3)} =$$

 $B^{-k} = 1/B^{k}$

Evaluate each of the following.

$$=\sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$$

6.
$$27^{(-2/3)} =$$

=
 $B^{-k} = 1/B^{k}$

Evaluate each of the following.

$$=\sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$$

6.
$$27^{(-2/3)} =$$

= $\frac{1}{27^{(2/3)}}$
B^{-k} = 1/B^k

Evaluate each of the following.

$$=\sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$$

5.
$$27^{(-2/3)} =$$

= $\frac{1}{27^{(2/3)}} =$

Evaluate each of the following.

$$=\sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$$

$$5. \quad 27^{(-2/3)} = \frac{1}{27^{(2/3)}} = \frac{1}{27^{(2$$

Evaluate each of the following.

$$=\sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$$

6.
$$27^{(-2/3)} = 1/9$$

= $\frac{1}{27^{(2/3)}} =$

Evaluate each of the following.

$$=\sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$$

$$5. \quad 27^{(-2/3)} = \frac{1/9}{27^{(2/3)}} =$$

Evaluate each of the following.

4. $27^{(1/3)} = 3$ $= \sqrt[3]{27} =$ 5. $27^{(2/3)} = 9$ 6. $27^{(-2/3)} = 1/9$ $= [\sqrt[3]{27}]^2 = 3^2$ $= \frac{1}{27^{(2/3)}} =$

4.
$$27^{(1/3)} = 3$$
 5. $27^{(2/3)} = 9$ 6. $27^{(-2/3)} = 1/9$
 $= \sqrt[3]{27} = [\sqrt[3]{27}]^2 = 3^2$ $= \frac{1}{27^{(2/3)}} =$

7.
$$(4/25)^{(1/2)} =$$
 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

Evaluate each of the following.

7. $(4/25)^{(1/2)} =$ 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

Evaluate each of the following.

7. $(4/25)^{(1/2)} =$ 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

Evaluate each of the following.

7. $(4/25)^{(1/2)} =$ $B^{(1/2)} =$ 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

Evaluate each of the following.

7. $(4/25)^{(1/2)} =$ 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

$$\mathbf{B}^{(1/2)} = \sqrt{\mathbf{B}}$$

Evaluate each of the following.

7. $(4/25)^{(1/2)} =$ 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

$$\mathbf{B}^{(1/2)} = \sqrt{\mathbf{B}}$$

_

Evaluate each of the following.

7. $(4/25)^{(1/2)} =$ 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

$$=\sqrt{4/25}$$

$$\mathbf{B}^{(1/2)} = \sqrt{\mathbf{B}}$$

Evaluate each of the following.

7. $(4/25)^{(1/2)} =$ 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

$$=\sqrt{4/25}$$
 =

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

$$=\sqrt{4/25}$$
 =

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ 8. $(4/25)^{(-3/2)} =$ 9. $(27/64)^{(-2/3)} =$

$$=\sqrt{4/25} =$$

7.
$$(4/25)^{(1/2)} = 2/5$$

= $\sqrt{4/25} =$
8. $(4/25)^{(-3/2)} =$
9. $(27/64)^{(-2/3)} =$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} =$
(A/B)-k =
9. $(27/64)^{(-2/3)} =$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} =$
(A/B)^{-k} = (B/A)^k

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} = =$
 $(A/B)^{-k} = (B/A)^{k}$
9. $(27/64)^{(-2/3)} =$

 $(27/64)^{(-2/3)} =$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} = (25/4)^{(3/2)}$
 $(A/B)^{-k} = (B/A)^{k}$

Evaluate each of the following.

 $=\sqrt{4/25} =$

7.
$$(4/25)^{(1/2)} = 2/5$$
 8. $(4/25)^{(-3/2)} =$

9.
$$(27/64)^{(-2/3)} =$$

$$= (25/4)^{(3/2)} =$$

Evaluate each of the following.

......

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} =$
8. $(4/25)^{(-3/2)} =$
9. $(27/64)^{(-2/3)} =$
 $B^{(m/n)} =$

 $(27/64)^{(-2/3)} =$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} = = (25/4)^{(3/2)} = 9.$
 $B^{(m/n)} = [\sqrt[n]{B}]^m$

 $(27/64)^{(-2/3)} =$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} = 2/5$
 $= (25/4)^{(3/2)} = -2$
 $= B^{(m/n)} = [\sqrt[n]{B}]^m$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} = 2/5$
 $= (25/4)^{(3/2)} = 2/5$
 $= [\sqrt{25/4}]^3$
 $B^{(m/n)} = [\sqrt[n]{B}]^m$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} =$
 $= (25/4)^{(3/2)} =$
 $= [\sqrt{25/4}]^3 =$
 $=$

9.
$$(27/64)^{(-2/3)} =$$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} =$
8. $(4/25)^{(-3/2)} =$
9. $(27/64)^{(-2/3)} =$
 $= [\sqrt{25/4}]^3 =$
 $= (5/2)^3$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} =$
8. $(4/25)^{(-3/2)} =$
9. $(27/64)^{(-2/3)} =$
 $= [\sqrt{25/4}]^3 =$
 $= (5/2)^3 =$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} = 2/5$
 $= (25/4)^{(3/2)} = 2/5$
 $= (\sqrt{25/4})^{(3/2)} = 2/5$
 $= (\sqrt{25/4})^{(3/2)} = 2/5$
 $= (5/2)^3 = 2/5$

7.
$$(4/25)^{(1/2)} = 2/5$$

 $= \sqrt{4/25} =$
8. $(4/25)^{(-3/2)} = 125/8$
9. $(27/64)^{(-2/3)} =$
 $= (\sqrt{25/4})^{(3/2)} =$
 $= (\sqrt{25/4})^3 =$
 $= (5/2)^3 =$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = 2/5$ $= (\sqrt{25/4})^{(3/2)} = 2/5$ $= (\sqrt{25/4})^{(3/2)} = 2/5$ $= (5/2)^3 = 2/5$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = 2/5$ $= [\sqrt{25/4}]^3 = 2/5/4$ $= (5/2)^3 = 2/5/4$ 9. $(27/64)^{(-2/3)} = 2/5/4$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = (25/4)^{(3/2)} = (125/4)^{(-2/3)} = (125/4)^{(-2/4)} = (125/4)^{(-2/3)} = (125/4)^{(-2$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = (25/4)^{(3/2)} = (125/8)^{(-2/3)} = (125/4)^{(-2/4)} = (125/4)^{(-2/3)} = (125/4)^{(-2$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = (25/4)^{(3/2)} = (64/27)^{(2/3)}$ $= [\sqrt{25/4}]^3 = (5/2)^3 = (A/B)^{-k} = (B/A)^k$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = (25/4)^{(3/2)} = (64/27)^{(2/3)}$ $= [\sqrt{25/4}]^3 = (5/2)^3$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = (25/4)^{(3/2)} = (64/27)^{(2/3)}$ $= (\sqrt{25/4})^3 = (5/2)^3 = B^{(m/n)} = 0$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = (64/27)^{(2/3)}$ $= (5/2)^3 = B^{(m/n)} = [\sqrt[n]{B}]^m$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = 2/5$ $= (5/2)^3 = 2/5/4$ 9. $(27/64)^{(-2/3)} = 2/5/4$ $= (64/27)^{(2/3)} = 2/5/4$ $= (64/27)^{(2/3)} = 2/5/4$ $= (5/2)^3 = 2/5/4$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = 2/5$ $= (5/2)^3 = 2/5/8$ 9. $(27/64)^{(-2/3)} = 2/5/8$ $= (64/27)^{(2/3)} = 2/5/8$ $= [\sqrt{25/4}]^3 = 2/5/8$ $= [\sqrt[3]{64/27}]^2$ $= [\sqrt[3]{64/27}]^2$ $= (5/2)^3 = 2/5/8$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = 2/5$ $= (5/2)^3 = 2/5$ 8. $(4/25)^{(-3/2)} = 125/8$ $= (25/4)^{(-2/3)} = 2/5/8$ $= (64/27)^{(2/3)} = 2/5/8$ $= (64/27)^{(2/3)} = 2/5/8$ $= (3\sqrt{64/27})^2 = 2/5/8$ $= (5/2)^3 = 2/5/8$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = 2/5$ $= (5/2)^3 = 2/5$ 8. $(4/25)^{(-3/2)} = 125/8$ $= (64/27)^{(2/3)} = 2/5/4$ $= (64/27)^{(2/3)} = 2/5/4$ $= (1/3)^2$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ $= (25/4)^{(3/2)} = 2/5$ $= (5/2)^3 = 2/5$ 8. $(4/25)^{(-3/2)} = 125/8$ $= (25/4)^{(-2/3)} = 2/5/8$ $= (64/27)^{(2/3)} = 2/5/8$ $= (64/27)^{(2/3)} = 2/5/8$ $= (1/3)^2 = 2/5/8$

7. $(4/25)^{(1/2)} = 2/5$	8. $(4/25)^{(-3/2)} = 125/8$	9. $(27/64)^{(-2/3)} = 16/9$
$=\sqrt{4/25} =$	$=(25/4)^{(3/2)}=$	$=(64/27)^{(2/3)}=$
	$= [\sqrt{25/4}]^3 =$	$= [\sqrt[3]{64/27}]^2 =$
	$=(5/2)^3=$	$=(4/3)^2=$

7. $(4/25)^{(1/2)} = 2/5$	8. $(4/25)^{(-3/2)} = 125/8$	9. $(27/64)^{(-2/3)} = 16/9$
$=\sqrt{4/25} =$	$=(25/4)^{(3/2)}=$	$=(64/27)^{(2/3)}=$
	$= [\sqrt{25/4}]^3 =$	$= [\sqrt[3]{64/27}]^2 =$
	$=(5/2)^3=$	$=(4/3)^2=$

Evaluate each of the following.

7. $(4/25)^{(1/2)} = 2/5$ $= \sqrt{4/25} = 2/5$ 8. $(4/25)^{(-3/2)} = 125/8$ $= (25/4)^{(3/2)} = (64/27)^{(2/3)} = (64/27)^{(2/3)} = (\sqrt{25/4})^3 = (\sqrt{25/4})^3 = (\sqrt{25/4})^3 = (\sqrt{25/4})^2 = (\sqrt{25/4})^3 = (\sqrt{25/4})^2 = (\sqrt{25/4})^3 = (\sqrt{25/4})^2 = (\sqrt{25/4})$

Express each of the following using standard radical form.

10. $5^{(1/2)} = 11. 5^{(-1/2)} = 12. 5^{(3/2)} =$

Express each of the following using standard radical form.

10. $5^{(1/2)} = 11. 5^{(-1/2)} = 12. 5^{(3/2)} =$

Express each of the following using standard radical form.

10. $5^{(1/2)} =$ 11. $5^{(-1/2)} =$ 12. $5^{(3/2)} =$

Express each of the following using standard radical form.

10. $5^{(1/2)} =$ $B^{(1/2)} =$ 11. $5^{(-1/2)} =$ 12. $5^{(3/2)} =$

Express each of the following using standard radical form.

10. $5^{(1/2)} =$ 11. $5^{(-1/2)} =$ 12. $5^{(3/2)} =$ $B^{(1/2)} = \sqrt{B}$

Express each of the following using standard radical form.

10. $5^{(1/2)} = \sqrt{5}$ $B^{(1/2)} = \sqrt{B}$ 11. $5^{(-1/2)} =$ 12. $5^{(3/2)} =$

Express each of the following using standard radical form.

10. $5^{(1/2)} = \sqrt{5}$ 11. $5^{(-1/2)} =$ 12. $5^{(3/2)} =$

Express each of the following using standard radical form.

10. $5^{(1/2)} = \sqrt{5}$ 11. $5^{(-1/2)} =$ 12. $5^{(3/2)} =$

10.
$$5^{(1/2)} = \sqrt{5}$$

11. $5^{(-1/2)} =$
12. $5^{(3/2)} =$
 $B^{(-k)} =$

10.
$$5^{(1/2)} = \sqrt{5}$$
 11. $5^{(-1/2)} =$ 12. $5^{(3/2)} =$
 $B^{(-k)} = \frac{1}{B^k}$

10.
$$5^{(1/2)} = \sqrt{5}$$

=
 $B^{(-k)} = \frac{1}{B^k}$
11. $5^{(-1/2)} =$
 $B^{(-k)} = \frac{1}{B^k}$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}}$
 $B^{(-k)} = \frac{1}{B^k}$
11. $5^{(-1/2)} =$
 $B^{(-k)} = \frac{1}{B^k}$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}}$
11. $5^{(-1/2)} =$
12. $5^{(3/2)} =$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = 12. 5^{(3/2)} =$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}}$
11. $5^{(-1/2)} = 12. 5^{(3/2)} = 12$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$
11. $5^{(-1/2)} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{25}}$
 $= \frac{\sqrt{5}}{\sqrt{25}}$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{5}} =$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{25}} = B^{(m/n)} = B^{(m/n$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{12.5^{(3/2)}}{8} = \frac{12.5^{(3/2)}}{8$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{5}$
 $= \frac{\sqrt{5}}{\sqrt{25}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt$

$$\mathbf{B}^{(\mathbf{m}/\mathbf{n})} = \sqrt[\mathbf{n}]{\mathbf{B}^{\mathbf{m}}}$$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5^3}}{\sqrt{5^5}} = \sqrt{5^3}$
 $= \frac{\sqrt{5}}{\sqrt{25}} = B^{(m/n)} = \sqrt[n]{B^m}$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = -\sqrt{5^3} = -\sqrt{5^3} = -\frac{\sqrt{5}}{\sqrt{25}} = -\sqrt{5^3} =$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5^3}}{\sqrt{5^5}} = \sqrt{5^3} = \sqrt{125}$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5^3}}{\sqrt{5^5}} = \sqrt{125} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{\sqrt{5}} \cdot \sqrt{5} = \frac{\sqrt{5^3}}{\sqrt{5}} = \sqrt{5^3} = \sqrt{125} = \sqrt{5^3} = \sqrt{125} = \sqrt{5^3} = \sqrt{$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{\sqrt{5}} \cdot \sqrt{5} = \frac{\sqrt{5}}{\sqrt{25}} = \sqrt{5^3} = \sqrt{125} = \sqrt{5^3} = \sqrt{125} = \sqrt{5^3} = \sqrt{5$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5^3}}{\sqrt{5}} = \sqrt{5^3} = \sqrt{125} = \frac{\sqrt{5}}{\sqrt{25}} = \sqrt{5} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} = \sqrt{5} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} + \sqrt{5} + \sqrt{5} \cdot \sqrt{5} + \sqrt$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5^3}}{\sqrt{5}} = \sqrt{125} = \frac{\sqrt{5}}{\sqrt{25}} = \sqrt{5} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} = \sqrt{5} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} + \sqrt{5} + \sqrt{5} \cdot \sqrt{5} + \sqrt{5$

10.
$$5^{(1/2)} = \sqrt{5}$$

 $= \frac{1}{5^{(1/2)}} = \frac{\sqrt{5}}{5}$
 $= \frac{1}{5^{(1/2)}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5^3}}{\sqrt{5}} = \sqrt{125} = \frac{\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{5}}{\sqrt{25}} = \sqrt{25} \cdot \sqrt{5} = \frac{\sqrt{5}}{\sqrt{25}} = \sqrt{5} \cdot \sqrt{5} = \sqrt{5} = \sqrt{5} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} = \sqrt{5} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} + \sqrt{5$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$

Algebra II Class Worksheet #2 Unit 10 **Express each of the following using standard radical form.** 13. $5^{(-3/2)} =$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$ $B^{(-k)} =$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$ $B^{(-k)} = \frac{1}{B^k}$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$ _ $\mathbf{B}^{(-\mathbf{k})} = \frac{1}{\mathbf{B}^{\mathbf{k}}}$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ 15. $18^{(-1/2)} =$ 14. $18^{(1/2)} =$ $=\frac{1}{5^{(3/2)}}$ $\mathbf{B}^{(-\mathbf{k})} = \frac{1}{\mathbf{B}^{\mathbf{k}}}$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ 15. $18^{(-1/2)} =$ 14. $18^{(1/2)} =$ $= \frac{1}{5^{(3/2)}} =$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ 15. $18^{(-1/2)} =$ 14. $18^{(1/2)} =$ $=\frac{1}{5^{(3/2)}}=$ $B^{(m/n)} =$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$ $= \frac{1}{5^{(3/2)}} =$ $\mathbf{B}^{(\mathbf{m/n})} = \sqrt[n]{\mathbf{B}^{\mathbf{m}}}$

Express each of the following using standard radical form.

$$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}}$$

$$\mathbf{B}^{(\mathbf{m}/\mathbf{n})} = \sqrt[n]{\mathbf{B}^{\mathbf{m}}}$$

Express each of the following using standard radical form.

13. $5^{(-3/2)} =$ $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$

Express each of the following using standard radical form.

$$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$$
$$= \frac{1}{\sqrt{125}}$$

Express each of the following using standard radical form.

$$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$$
$$= \frac{1}{\sqrt{125}} \cdot \sqrt{5}$$

Express each of the following using standard radical form.

$$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$$
$$= \frac{1}{\sqrt{125}} \cdot \sqrt{\frac{5}{5}} =$$
$$=$$

Express each of the following using standard radical form.

$$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$$
$$= \frac{1}{\sqrt{125}} \cdot \sqrt{5} =$$
$$= \frac{\sqrt{5}}{\sqrt{625}}$$

Express each of the following using standard radical form.

$$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$$
$$= \frac{1}{\sqrt{125}} \cdot \sqrt{5} =$$
$$= \frac{\sqrt{5}}{\sqrt{625}} =$$

Express each of the following using standard radical form.

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$ $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \frac{1}{\sqrt{5^3}} = \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5$

Express each of the following using standard radical form.

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$ $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$ $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$ $= \frac{\sqrt{5}}{\sqrt{625}} =$

Express each of the following using standard radical form.

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$ $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$ $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$ $= \frac{\sqrt{5}}{\sqrt{625}} =$

Express each of the following using standard radical form.

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$ $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$ $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$ $= \frac{\sqrt{5}}{\sqrt{625}} =$ $B^{(1/2)} =$

Express each of the following using standard radical form.

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$ $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$ $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$ $= \frac{\sqrt{5}}{\sqrt{625}} =$ $B^{(1/2)} = \sqrt{B}$

Express each of the following using standard radical form.

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$ 14. $18^{(1/2)} =$ 15. $18^{(-1/2)} =$ $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$ = $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$ $= \frac{\sqrt{5}}{\sqrt{625}} =$ $B^{(1/2)} = \sqrt{B}$

$13. 5^{(-3/2)} = \frac{\sqrt{5}}{25}$	14. $18^{(1/2)} =$	15. $18^{(-1/2)} =$
$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$	$=\sqrt{18}$	
$=\frac{1}{\sqrt{125}}\cdot\frac{\sqrt{5}}{\sqrt{5}}=$		
$=\frac{\sqrt{5}}{\sqrt{625}} =$	$\mathbf{B}^{(1/2)} = \sqrt{\mathbf{B}}$	

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$	14. $18^{(1/2)} =$	15. $18^{(-1/2)} =$
$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$	$=\sqrt{18}$ =	
$=\frac{1}{\sqrt{125}}\cdot\sqrt{\frac{5}{5}}=$	=	
$=\frac{\sqrt{5}}{\sqrt{625}} =$		

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$	14. $18^{(1/2)} =$	15. $18^{(-1/2)} =$
$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$	$=\sqrt{18}$ =	
$=\frac{1}{\sqrt{125}}\cdot\sqrt{\frac{5}{5}}=$	$=\sqrt{9}\cdot\sqrt{2}$	
$=\frac{\sqrt{5}}{\sqrt{625}} =$		

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$	14. $18^{(1/2)} =$	15. $18^{(-1/2)} =$
$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$	$=\sqrt{18}$ =	
$=\frac{1}{\sqrt{125}}\cdot\sqrt{\frac{5}{5}}=$	$=\sqrt{9}\cdot\sqrt{2} =$	
$=\frac{\sqrt{5}}{\sqrt{625}} =$		

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$	14. $18^{(1/2)} = 3\sqrt{2}$	15. $18^{(-1/2)} =$
$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$	$=\sqrt{18}$ =	
$=\frac{1}{\sqrt{125}}\cdot\frac{\sqrt{5}}{\sqrt{5}}=$	$=\sqrt{9}\cdot\sqrt{2} =$	
$=\frac{\sqrt{5}}{\sqrt{625}} =$		

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} = \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} = \sqrt{18} = \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{9}}{\sqrt{2}} \cdot \sqrt{2} = \frac{\sqrt{5}}{\sqrt{625}} = \sqrt{9} \cdot \sqrt{2}$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} =$
 $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{9} \cdot \sqrt{2} =$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} =$
 $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{9} \cdot \sqrt{2} =$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$ $B^{(-k)} =$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} =$
 $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{9} \cdot \sqrt{2} =$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$
 $B^{(-k)} = \frac{1}{B^k}$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} =$ =
 $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{9} \cdot \sqrt{2} =$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$ $B^{(-k)} = \frac{1}{B^k}$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} =$
 $= \sqrt{18} =$
 $= \sqrt{9} \cdot \sqrt{2} =$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$
 $B^{(-k)} = \frac{1}{B^k}$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} =$
 $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$
 $= \sqrt{9} \cdot \sqrt{2} =$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} = \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} = \frac{1}{18^{(1/2)}} = \frac{1}{18^{(1/2)}} = \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{9}}{\sqrt{2}} \cdot \sqrt{2} = \frac{\sqrt{5}}{\sqrt{625}} = B^{(1/2)} = B^{(1/2$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} =$
 $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$
 $= \sqrt{9} \cdot \sqrt{2} =$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$
 $B^{(1/2)} = \sqrt{B}$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} = \frac{1}{18^{(1/2)}} =$
 $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{9}}{\sqrt{2}} \cdot \sqrt{2} = =$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$
 $B^{(1/2)} = \sqrt{B}$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} =$
 $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$
 $= \sqrt{9} \cdot \sqrt{2} =$
 $= \frac{1}{\sqrt{18}}$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$
 $B^{(1/2)} = \sqrt{B}$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} =$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} =$
 $= \sqrt{18} =$
 $= \frac{1}{18^{(1/2)}} =$
 $= \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$
 $= \sqrt{9} \cdot \sqrt{2} =$
 $= \frac{1}{\sqrt{18}}$
 $= \frac{\sqrt{5}}{\sqrt{625}} =$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} = \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} = \frac{1}{18^{(1/2)}} = \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{9} \cdot \sqrt{2} = \frac{1}{\sqrt{18}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac$

14. $18^{(1/2)} = 3\sqrt{2}$	15. $18^{(-1/2)} =$
$=\sqrt{18}$ =	$=\frac{1}{18^{(1/2)}}=$
$=\sqrt{9}\cdot\sqrt{2} =$	$=\frac{1}{\sqrt{18}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=$
	=
	$=\sqrt{18}$ =

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$	$14. 18^{(1/2)} = 3\sqrt{2}$	15. $18^{(-1/2)} =$
$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$	$=\sqrt{18}$ =	$=\frac{1}{18^{(1/2)}}=$
$=\frac{1}{\sqrt{125}}\cdot\sqrt{\frac{5}{5}}=$	$=\sqrt{9}\cdot\sqrt{2} =$	$=\frac{1}{\sqrt{18}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=$
$=\frac{\sqrt{5}}{\sqrt{625}} =$		$=\frac{\sqrt{2}}{\sqrt{36}}$

13. $5^{(-3/2)} = \frac{\sqrt{5}}{25}$	$14. 18^{(1/2)} = 3\sqrt{2}$	15. $18^{(-1/2)} =$
$= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} =$	$=\sqrt{18}$ =	$=\frac{1}{18^{(1/2)}}=$
$=\frac{1}{\sqrt{125}}\cdot\sqrt{\frac{5}{5}}=$	$=\sqrt{9}\cdot\sqrt{2} =$	$=\frac{1}{\sqrt{18}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=$
$=\frac{\sqrt{5}}{\sqrt{625}} =$		$=\frac{\sqrt{2}}{\sqrt{36}} =$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} = \frac{\sqrt{2}}{6}$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} = \frac{1}{18^{(1/2)}} = \frac{1}{18^{(1/2)}} = \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{9} \cdot \sqrt{2} = \frac{1}{\sqrt{18}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{\sqrt{18}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} = \frac{\sqrt{2}}{6}$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} = = \sqrt{18} = \frac{1}{18^{(1/2)}} = \frac{1}{18^{(1/2)}} = \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{9} \cdot \sqrt{2} = \frac{1}{\sqrt{18}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{36}} = \frac{\sqrt{2}}{\sqrt{36}} = \frac{$

13.
$$5^{(-3/2)} = \frac{\sqrt{5}}{25}$$
 14. $18^{(1/2)} = 3\sqrt{2}$ 15. $18^{(-1/2)} = \frac{\sqrt{2}}{6}$
 $= \frac{1}{5^{(3/2)}} = \frac{1}{\sqrt{5^3}} = \sqrt{18} = \frac{1}{18^{(1/2)}} = \frac{1}{18^{(1/2)}} = \frac{1}{\sqrt{125}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{9} \cdot \sqrt{2} = \frac{1}{\sqrt{18}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{5}}{\sqrt{625}} = \frac{\sqrt{2}}{\sqrt{36}} = \frac{\sqrt{2}}{\sqrt{36}$

Express each of the following using standard radical form.

Express each of the following using standard radical form.

Express each of the following using standard radical form.

Express each of the following using standard radical form.

$$B^{(1/2)} =$$

Express each of the following using standard radical form.

$$\mathbf{B}^{(1/2)} = \sqrt{\mathbf{B}}$$

Express each of the following using standard radical form.

16. $(5/9)^{(1/2)} =$ 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$

$$\mathbf{B}^{(1/2)} = \sqrt{\mathbf{B}}$$

=

Express each of the following using standard radical form.

$$=\sqrt{5/9}$$

$$\mathbf{B}^{(1/2)} = \sqrt{\mathbf{B}}$$

Express each of the following using standard radical form.

$$=\sqrt{5/9} =$$

Express each of the following using standard radical form.

$$=\sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}}$$

Express each of the following using standard radical form.

$$=\sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$

= $\sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$
17. $(5/9)^{(-1/2)} =$
18. $(3/8)^{(-1/2)} =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$

= $\sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$
17. $(5/9)^{(-1/2)} =$
18. $(3/8)^{(-1/2)} =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ (A/B)^{-k} =

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $(A/B)^{-k} = (B/A)^{k}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
= $\sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ = (A/B)^{-k} = (B/A)^k

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)}$
 $(A/B)^{-k} = (B/A)^{k}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)} =$
 $B^{(1/2)} =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)} =$
 $B^{(1/2)} = \sqrt{B}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)} = \sqrt{9/5}$
 $B^{(1/2)} = \sqrt{B}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)} = \sqrt{9/5} =$ $=$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)} = \sqrt{9/5} =$
 $= \frac{\sqrt{9}}{\sqrt{5}}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)} = \sqrt{9/5} =$
 $= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)} = \sqrt{9/5} =$
 $= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)} = \sqrt{9/5} =$
 $= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} =$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} =$ $= (9/5)^{(1/2)} = \sqrt{9/5} =$
 $= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$

 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (9/5)^{(1/2)} = \sqrt{9/5} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{9}}{\sqrt{5}} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{9}}{\sqrt$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{9}}{\sqrt{5}} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{9}}{\sqrt{5}}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{3\sqrt{5}}{\sqrt{5}} =$

Express each of the following using standard radical form.

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{3\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}$

 $(A/B)^{-k} =$

Express each of the following using standard radical form.

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{3\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt$

 $(\mathbf{A}/\mathbf{B})^{-\mathbf{k}} = (\mathbf{B}/\mathbf{A})^{\mathbf{k}}$

Express each of the following using standard radical form.

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{3\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt$

 $(\mathbf{A}/\mathbf{B})^{-\mathbf{k}} = (\mathbf{B}/\mathbf{A})^{\mathbf{k}}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)}$
$$= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = (8/3)^{(1/2)}$$

$$(\mathbf{A}/\mathbf{B})^{-\mathbf{k}} = (\mathbf{B}/\mathbf{A})^{\mathbf{k}}$$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = (8/3)^{(1/2)} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{3\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{5}}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = B^{(1/2)} =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = B^{(1/2)} = \sqrt{B}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3}$
$$= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = B^{(1/2)} = \sqrt{B}$$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{8}}{\sqrt{3}}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \sqrt{5/9} = \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} =$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} =$
$$= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} =$$
$$= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24}}{\sqrt{9}}$$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} =$
 $= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24}}{\sqrt{9}} =$

Express each of the following using standard radical form.

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} =$
 $= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = = \frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24}}{\sqrt{9}} =$

 $=\frac{\sqrt{4}\cdot\sqrt{6}}{3}$

Express each of the following using standard radical form.

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} =$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} =$
 $= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = = \frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24}}{\sqrt{9}} =$

 $=\frac{\sqrt{4}\cdot\sqrt{6}}{3}=$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \frac{2\sqrt{6}}{3}$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24}}{\sqrt{9}} = \frac{\sqrt{4} \cdot \sqrt{6}}{3} = \frac{\sqrt{6} \cdot \sqrt{6}}{3} = \frac{\sqrt{$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \frac{2\sqrt{6}}{3}$
 $= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} = \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24}}{\sqrt{9}} = \frac{\sqrt{4} \cdot \sqrt{6}}{3} = \frac{\sqrt{6}}{3} = \frac{\sqrt{6} \cdot \sqrt{6}}{3} = \frac{\sqrt{6} \cdot \sqrt{$

16.
$$(5/9)^{(1/2)} = \frac{\sqrt{5}}{3}$$
 17. $(5/9)^{(-1/2)} = \frac{3\sqrt{5}}{5}$ 18. $(3/8)^{(-1/2)} = \frac{2\sqrt{6}}{3}$
$$= \sqrt{5/9} = \frac{\sqrt{5}}{\sqrt{9}} = (9/5)^{(1/2)} = \sqrt{9/5} = (8/3)^{(1/2)} = \sqrt{8/3} =$$
$$= \frac{\sqrt{9}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{25}} = \frac{\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24}}{\sqrt{9}} =$$
$$= \frac{\sqrt{4} \cdot \sqrt{6}}{3} =$$