Algebra II Lesson \#1 Unit 1

Class Worksheet \#1

For Worksheets \#1 \& \#2

Algebra II Class Worksheet \#1 Unit 1

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } 3(5 x+2)+4(3 x-1)=
$$

2. $5(2 x-7)+6(x+2)=$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } 3(5 x+2)+4(3 x-1)=
$$

2. $5(2 x-7)+6(x+2)=$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } 3(5 x+2)+4(3 x-1)=
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } 3(5 x+2)+4(3 x-1)=
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } 3(5 x+2)+4(3 x-1)= \\
& = \\
& \text { 2. } 5(2 x-7)+6(x+2)=
\end{aligned}
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& \begin{array}{l}
3(5 x \\
= \\
= \\
(15 x
\end{array}
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& \underset{\hat{N}}{3(5 x+2)}+4(3 x-1)= \\
= & (15 x+6)
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)= \\
= & (15 x+6)+
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Algebra II Class Worksheet \#1 Unit 1
Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } 3(5 x+2)+4(3 x-1)= \\
& =(15 x+6)+
\end{aligned}
$$

2. $5(2 x-7)+6(x+2)=$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } 3(5 x+2)+4(3 x-1)= \\
& =(15 x+6)+
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Use the appropriate distributive law. $\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)= \\
= & (15 x+6)+(12 x
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)= \\
&=(15 x+6)+(12 x-4)
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
3(5 x+2)+4(3 x-1) & = \\
=(15 x+6)+(12 x-4) & =
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
3(5 x+2)+4(3 x-1)= \\
=(15 x+6)+(12 x-4)=
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& (5 x+2)+4(3 x-1)=27 x \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
$$

2. $5(2 x-7)+6(x+2)=$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
3(5 x+2)+4(3 x-1) & =27 x+2 \\
=(15 x+6)+(12 x-4) & =
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& 3(5 x(2)+4(3 x-1)=27 x+2 \\
&=(15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

=

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& 3(5 x(2)+4(3 x-1)=27 x+2 \\
&=(15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
3(5 x & (5)+4(3 x-1)=27 x+2 \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 5(2 x-7)+6(x+2)= \\
= & (10 x
\end{aligned}
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& (2(2 x-7) \\
= & (10 x-35)
\end{aligned}
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& 3(5 x(2)+4(3 x-1)=27 x+2 \\
&=(15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 5(2 x-7)+6(x+2)= \\
= & (10 x-35)+
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
&=(15 x+6)+(12 x-4)=
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=
$$

$$
=(10 x-35)+
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 5(2 x-7)+6(x+2)= \\
= & (10 x-35)+
\end{aligned}
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
3(5 x+2)+4(3 x-1)=27 x+2 \\
=(15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 5(2 x-7)+\underset{\text { (}}{6}(\underset{\sim}{x}+2)= \\
= & (10 x-35)+(6 x
\end{aligned}
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
3(5 x & (5)+4(3 x-1)=27 x+2 \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 5(2 x-7)+\underset{\sim}{6}(x+2) \\
= & (10 x-35)+(6 x+12)
\end{aligned}
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
3(5 x & (2)+4(3 x-1)=27 x+2 \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 5(2 x-7)+6(x+2)= \\
= & (10 x-35)+(6 x+12)=
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
&=(15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 5(2 x-7)+6(x+2)= \\
= & (10 x-35)+(6 x+12)=
\end{aligned}
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
&=(15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 5(2 x-7)+6(x+2)=16 x \\
= & (10 x-35)+(6 x+12)=
\end{aligned}
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
&=(15 x+6)+(12 x-4)=
\end{aligned}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 5(2 x-7)+6(x+2)=16 x-23 \\
= & (10 x-35)+(6 x+12)=
\end{aligned}
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 1. } \begin{aligned}
& 3(5 x+2)+4(3 x-1)=27 x+2 \\
= & (15 x+6)+(12 x-4)=
\end{aligned}
$$

$$
\text { 2. } 5(2 x-7)+6(x+2)=16 x-23
$$

$$
=(10 x-35)+(6 x+12)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } 4(x+6)-3(2 x+5)=
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } 4(x+6)-3(2 x+5)=
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } 4(x+6)-3(2 x+5)=
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Change the subtraction to addition. $\mathbf{A}-\mathbf{B}=\mathbf{A}+-\mathbf{B}$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Change the subtraction to addition. $A-B=A+-B$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Change the subtraction to addition. $A-B=A+-B$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Change the subtraction to addition. $A-B=A+-B$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)=
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
&= 4(x+6)+-3(2 x+5)= \\
&= \\
& \text { 4. } 2(5 x-3)-5(4 x-7)=
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
&= 4(x+6)+-3(2 x+5)= \\
&= \\
& \text { 4. } 2(5 x-3)-5(4 x-7)=
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
&= 4(x+6)+-3(2 x+5)= \\
&= \\
& \text { 4. } 2(5 x-3)-5(4 x-7)=
\end{aligned}
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\begin{aligned}
& \text { 3. } \begin{array}{l}
4(x+6)-3(2 x+5)= \\
=4(x+6)+-3(2 x+5)= \\
=(4 x
\end{array} \\
& \text { 4. } 2(5 x-3)-5(4 x-7)= \\
& \text { Use the appropriate distributive law. } A(B+C)=A B+A C
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Use the appropriate distributive law. $A(B+C)=A B+A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)= \\
& \text { 4. } 2(5 x-3)-5(4 x-7)=
\end{aligned}
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)= \\
\text { 4. } & 2(5 x-3)-5(4 x-7)=
\end{aligned}
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)= \\
& \text { 4. } 2(5 x-3)-5(4 x-7)=
\end{aligned}
$$

Change the subtraction to addition. $A-B=A+-B$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)= \\
& \text { 4. } 2(5 x-3)-5(4 x-7)= \\
&= 2(5 x-3)
\end{aligned}
$$

Change the subtraction to addition. $A-B=A+-B$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)= \\
\text { 4. } & 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+
\end{aligned}
$$

Change the subtraction to addition. $A-B=A+-B$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)= \\
\text { 4. } & 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)
\end{aligned}
$$

Change the subtraction to addition. $A-B=A+-B$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
&= 2(5 x-3)+-5(4 x-7)=
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

$$
=2(5 x-3)+-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=
$$

$$
=2(5 x-3)+-5(4 x-7)=
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)=
\end{aligned}
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x
\end{aligned}
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)
\end{aligned}
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)+
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)+
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)+
\end{aligned}
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)= \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)+(-20 x
\end{aligned}
$$

Use the appropriate distributive law. $\mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
= & 4(x+6)+-3(2 x+5)= \\
= & (4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)+(-20 x--35)
\end{aligned}
$$

Use the appropriate distributive law. $A(B-C)=A B-A C$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)+(-20 x--35)
\end{aligned}
$$

No double signs

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)+(-20 x+35)=
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)= \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)+(-20 x+35)=
\end{aligned}
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2(5 x-3)-5(4 x-7)=-10 x \\
= & 2(5 x-3)+-5(4 x-7)= \\
= & (10 x-6)+(-20 x+35)=
\end{aligned}
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=-2 x+9 \\
&= 4(x+6)+-3(2 x+5)= \\
&=(4 x+24)+(-6 x+-15)=
\end{aligned}
$$

$$
\text { 4. } 2(5 x-3)-5(4 x-7)=-10 x+29
$$

$$
=2(5 x-3)+-5(4 x-7)=
$$

$$
=(10 x-6)+(-20 x+35)=
$$

Combine like terms.

Algebra II Class Worksheet \#1 Unit 1 Simplify each of the following expressions.

$$
\text { 3. } \begin{aligned}
& 4(x+6)-3(2 x+5)=- \\
&= 4(x+6)+-3(2 x+5)=- \\
&=(4 x+24)+(-6 x+-15)= \\
& \text { 4. } \quad 2(5 x-3)-5(4 x-7)=-10 x+29 \\
&= 2(5 x-3)+-5(4 x-7)= \\
&=(10 x-6)+(-20 x+35)=
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $\mathbf{6 x}+7=27$
6. $3 x-8=9$
7. $7 x+3=x+7$

$$
\text { 8. } 3 x-2=7 x-8
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $\mathbf{6 x}+7=27$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $\mathbf{6 x}+7=27$

Subtract 7 from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $\mathbf{6 x}+7=27$

6x

Subtract 7 from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$
$6 x=$
Subtract 7 from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
6 x=20
$$

Subtract 7 from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
6 x=20
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
6 x=20
$$

Divide both sides by 6 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $\mathbf{6 x}+7=27$

$$
6 x=20
$$

$$
\mathbf{x}
$$

Divide both sides by 6 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $\mathbf{6 x}+7=27$

$$
\begin{gathered}
6 x=20 \\
x=
\end{gathered}
$$

Divide both sides by 6.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $\mathbf{6 x}+7=27$

$$
\begin{aligned}
6 x & =20 \\
x & =\frac{10}{3}
\end{aligned}
$$

Divide both sides by 6 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
\begin{aligned}
6 x & =20 \\
x & =\frac{10}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{gathered}
6 x+7=27 \\
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{gathered}
6 x+7=27 \\
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

6. $3 x-8=9$

Add 8 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{gathered}
6 x+7=27 \\
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

6. $3 x-8=9$
3x
Add 8 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{gathered}
6 x+7=27 \\
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

6. $3 x-8=9$
$3 \mathrm{x}=$
Add 8 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{gathered}
6 x+7=27 \\
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

6. $3 x-8=9$
$3 x=17$
Add 8 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{aligned}
6 x+7 & =27 \\
6 x & =20 \\
x & =\frac{10}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{gathered}
6 x+7=27 \\
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

6. $3 x-8=9$

$$
\mathbf{3 x}=17
$$

Divide both sides by 3 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{gathered}
6 x+7=27 \\
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

$$
\text { 6. } \begin{gathered}
3 x-8=9 \\
3 x=17 \\
x
\end{gathered}
$$

Divide both sides by 3 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{gathered}
6 x+7=27 \\
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

$$
\text { 6. } \begin{gathered}
3 x-8=9 \\
3 x=17 \\
x=
\end{gathered}
$$

Divide both sides by 3 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 5. } \begin{gathered}
6 x+7=27 \\
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

6. $3 x-8=9$

$$
\begin{gathered}
3 x=17 \\
x=\frac{17}{3}
\end{gathered}
$$

Divide both sides by 3 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$
6. $3 x-8=9$
$6 x=20$
$x=\frac{10}{3}$

$$
\begin{aligned}
\mathbf{3 x} & =17 \\
x & =\frac{17}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & \\
x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } 7 x+3=x+7
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } 7 x+3=x+7
$$

Subtract x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$

6x

Subtract x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & \\
x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$
$6 x+$

Subtract x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$
$6 x+3$

Subtract \mathbf{x} from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$

$$
6 x+3=
$$

Subtract \mathbf{x} from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{aligned}
7 x+3 & =x+7 \\
6 x+3 & =7
\end{aligned}
$$

Subtract x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{aligned}
7 x+3 & =x+7 \\
6 x+3 & =7
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{aligned}
7 x+3 & =x+7 \\
6 x+3 & =7
\end{aligned}
$$

Subtract 3 from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$
$6 x+3=7$
6x

Subtract 3 from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & \\
x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$

$$
\begin{gathered}
6 x+3=7 \\
6 x=
\end{gathered}
$$

Subtract 3 from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{aligned}
7 x+3 & =x+7 \\
6 x+3 & =7 \\
6 x & =4
\end{aligned}
$$

Subtract 3 from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{aligned}
7 x+3 & =x+7 \\
6 x+3 & =7 \\
6 x & =4
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & \\
x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$

$$
\begin{array}{r}
6 x+3=7 \\
6 x=4
\end{array}
$$

Divide both sides by 6 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & \\
x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$

$$
\begin{gathered}
6 x+3=7 \\
6 x=4 \\
x
\end{gathered}
$$

Divide both sides by 6 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$

$$
\begin{gathered}
6 x+3=7 \\
6 x=4 \\
x=
\end{gathered}
$$

Divide both sides by 6 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & \\
x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$

$$
\begin{array}{r}
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{array}
$$

Divide both sides by 6 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $\mathbf{6 x}+7=27$
6. $3 x-8=9$
$6 x=20$
$x=\frac{10}{3}$

$$
\begin{aligned}
3 x & =17 \\
x & =\frac{17}{3}
\end{aligned}
$$

$$
\text { 7. } \begin{aligned}
7 x+3 & =x+7 \\
6 x+3 & =7 \\
6 x & =4 \\
x & =\frac{2}{3}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
\begin{aligned}
6 x & =20 \\
x & =\frac{10}{3}
\end{aligned}
$$

$$
\text { 6. } \begin{array}{r}
3 x-8=9 \\
3 x=17 \\
x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } 7 x+3=x+7
$$

$$
\text { 8. } 3 x-2=7 x-8
$$

$$
6 x+3=7
$$

$$
6 x=4
$$

$$
x=\frac{2}{3}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 5. } 6 x+7=27 \\
& \begin{array}{c}
6 x=20 \\
x=\frac{10}{3}
\end{array} \\
& \text { 6. } 3 x-8=9 \\
& 3 x=17 \\
& x=\frac{17}{3} \\
& \text { 7. } 7 x+3=x+7 \\
& 6 x+3=7 \\
& 6 x=4 \\
& x=\frac{2}{3} \\
& \text { 8. } 3 x-2=7 x-8
\end{aligned}
$$

Subtract 7x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 5. } \mathbf{6 x}+7=27 \\
& \begin{array}{c}
6 x=20 \\
x=\frac{10}{3}
\end{array} \\
& \text { 7. } 7 x+3=x+7 \\
& 6 x+3=7 \\
& 6 x=4 \\
& x=\frac{2}{3} \\
& \text { 6. } 3 x-8=9 \\
& 3 x=17 \\
& x=\frac{17}{3} \\
& \text { 8. } 3 x-2=7 x-8 \\
& -4 x
\end{aligned}
$$

Subtract 7x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 5. } \mathbf{6 x}+7=27 \\
& \begin{array}{c}
6 x=20 \\
x=\frac{10}{3}
\end{array} \\
& \text { 7. } 7 x+3=x+7 \\
& 6 x+3=7 \\
& 6 x=4 \\
& x=\frac{2}{3} \\
& \text { 6. } 3 x-8=9 \\
& 3 x=17 \\
& x=\frac{17}{3} \\
& \text { 8. } 3 x-2=7 x-8 \\
& -4 x-
\end{aligned}
$$

Subtract 7x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 5. } \mathbf{6 x}+7=27 \\
& \begin{array}{c}
6 x=20 \\
x=\frac{10}{3}
\end{array} \\
& \text { 7. } 7 x+3=x+7 \\
& 6 x+3=7 \\
& 6 x=4 \\
& x=\frac{2}{3} \\
& \text { 6. } 3 x-8=9 \\
& 3 x=17 \\
& x=\frac{17}{3} \\
& \text { 8. } 3 x-2=7 x-8 \\
& -4 x-2
\end{aligned}
$$

Subtract 7x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cc}
\text { 5. } \begin{array}{cc}
6 x+7 & =27 \\
6 x=20 & \text { 6. } 3 x-8=9 \\
x=\frac{10}{3} & \\
& \\
& \\
& \\
\text { 7. } & \\
7 x=\frac{17}{3}
\end{array} \\
6 x+3=x+7 & \text { 8. } 3 x-2=7 x-8 \\
6 x=4 & -4 x-2= \\
x=\frac{2}{3} &
\end{array}
$$

Subtract 7x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 5. } \mathbf{6 x}+7=27 \\
& \begin{array}{c}
6 x=20 \\
x=\frac{10}{3}
\end{array} \\
& \text { 7. } 7 x+3=x+7 \\
& 6 x+3=7 \\
& 6 x=4 \\
& x=\frac{2}{3} \\
& \text { 6. } 3 x-8=9 \\
& 3 x=17 \\
& x=\frac{17}{3} \\
& \text { 8. } 3 x-2=7 x-8 \\
& -4 x-2=-8
\end{aligned}
$$

Subtract 7x from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 5. } \mathbf{6 x}+7=27 \\
& 6 x=20 \\
& x=\frac{10}{3} \\
& \text { 6. } 3 x-8=9 \\
& 3 x=17 \\
& x=\frac{17}{3} \\
& \text { 7. } 7 x+3=x+7 \\
& 6 x+3=7 \\
& 6 x=4 \\
& x=\frac{2}{3} \\
& \text { 8. } 3 x-2=7 x-8 \\
& -4 x-2=-8
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
\begin{aligned}
6 x & =20 \\
x & =\frac{10}{3}
\end{aligned}
$$

$$
\text { 6. } \begin{array}{r}
3 x-8=9 \\
3 x=17 \\
x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{gathered}
7 x+3=x+7 \\
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{gathered}
$$

$$
\text { 8. } 3 x-2=7 x-8
$$

$$
-4 x-2=-8
$$

Add 2 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
\begin{aligned}
6 x & =20 \\
x & =\frac{10}{3}
\end{aligned}
$$

$$
\text { 6. } \begin{array}{r}
3 x-8=9 \\
3 x=17 \\
x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } 7 x+3=x+7
$$

$$
\begin{array}{r}
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{array}
$$

$$
\begin{aligned}
& \text { 8. } 3 x-2=7 x-8 \\
& -4 x-2=-8 \\
& -4 x
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
\begin{aligned}
6 x & =20 \\
x & =\frac{10}{3}
\end{aligned}
$$

$$
\text { 6. } \begin{array}{r}
3 x-8=9 \\
3 x=17 \\
x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{gathered}
7 x+3=x+7 \\
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{gathered}
$$

$$
\text { 8. } \begin{aligned}
3 x-2 & =7 x-8 \\
-4 x-2 & =-8 \\
-4 x & =
\end{aligned}
$$

Add 2 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
\begin{aligned}
6 x & =20 \\
x & =\frac{10}{3}
\end{aligned}
$$

$$
\text { 6. } \begin{array}{r}
3 x-8=9 \\
3 x=17 \\
x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{gathered}
7 x+3=x+7 \\
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{gathered}
$$

$$
\text { 8. } \begin{aligned}
3 x-2 & =7 x-8 \\
-4 x-2 & =-8 \\
-4 x & =-6
\end{aligned}
$$

Add 2 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
\begin{aligned}
6 x & =20 \\
x & =\frac{10}{3}
\end{aligned}
$$

$$
\text { 6. } \begin{array}{r}
3 x-8=9 \\
3 x=17 \\
x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } 7 x+3=x+7
$$

$$
6 x+3=7
$$

$$
6 x=4
$$

$$
\text { 8. } \begin{aligned}
3 x-2 & =7 x-8 \\
-4 x-2 & =-8 \\
-4 x & =-6
\end{aligned}
$$

$$
x=\frac{2}{3}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{gathered}
7 x+3=x+7 \\
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{gathered}
$$

$$
\text { 8. } \begin{aligned}
3 x-2 & =7 x-8 \\
-4 x-2 & =-8 \\
-4 x & =-6
\end{aligned}
$$

Divide both sides by -4.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } \mathbf{6 x}+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{gathered}
7 x+3=x+7 \\
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{gathered}
$$

$$
\begin{gathered}
\text { 8. } 3 x-2=7 x-8 \\
-4 x-2=-8 \\
-4 x=-6 \\
x
\end{gathered}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } \mathbf{6 x}+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{gathered}
7 x+3=x+7 \\
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{gathered}
$$

$$
\text { 8. } \begin{aligned}
3 x-2 & =7 x-8 \\
-4 x-2 & =-8 \\
-4 x & =-6 \\
x & =
\end{aligned}
$$

Divide both sides by -4 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{array}{cr}
\text { 5. } 6 x+7=27 & \text { 6. } 3 x-8=9 \\
6 x=20 & 3 x=17 \\
x=\frac{10}{3} & x=\frac{17}{3}
\end{array}
$$

$$
\text { 7. } \begin{gathered}
7 x+3=x+7 \\
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{gathered}
$$

$$
\text { 8. } \begin{aligned}
3 x-2 & =7 x-8 \\
-4 x-2 & =-8 \\
-4 x & =-6 \\
x & =\frac{3}{2}
\end{aligned}
$$

Divide both sides by -4 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.
5. $6 x+7=27$

$$
\begin{gathered}
6 x=20 \\
x=\frac{10}{3}
\end{gathered}
$$

$$
\text { 6. } \begin{array}{r}
3 x-8=9 \\
3 x=17 \\
x=\frac{17}{3}
\end{array}
$$

7. $7 x+3=x+7$

$$
\begin{array}{r}
6 x+3=7 \\
6 x=4 \\
x=\frac{2}{3}
\end{array}
$$

$$
\text { 8. } \begin{aligned}
3 x-2 & =7 x-8 \\
-4 x-2 & =-8 \\
-4 x & =-6 \\
x & =\frac{3}{2}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } 2 x+2(3 x+1)=34
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } 2 x+2(3 x+1)=34
$$

The SID method is used to solve linear equations with 1 variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } 2 x+2(3 x+1)=34
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{gathered}
\text { 9. } 2 x+2(3 x+1)=34 \\
2 x+6 x+
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{gathered}
\text { 9. } 2 x+2(3 x+1)=34 \\
2 x+6 x+2
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2 x+2(3 x+1)=34 \\
2 x+6 x+2=
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2 x+2(3 x+1)=34 \\
2 x+6 x+2=34
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2 x+2(3 x+1)=34 \\
2 x+6 x+2=34
\end{gathered}
$$

$$
\mathbf{8 x}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } 2 x+2(3 x+1)=34+34
$$

$$
\mathbf{8 x}+
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2 x+2(3 x+1)=34 \\
2 x+6 x+2=34
\end{gathered}
$$

$$
8 x+2
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{array}{r}
2 x+2(3 x+1)=34 \\
2 x+6 x+2=34
\end{array}
$$

$$
8 x+2=
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{array}{r}
2 x+2(3 x+1)=34 \\
2 x+6 x+2=34
\end{array}
$$

$$
8 x+2=34
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 x+2=34
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.

Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 \mathrm{x}+2=34
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 x+2=34 \\
& \text { 8x }
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 x+2=34 \\
& 8 \mathrm{x}=
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 x+2=34 \\
& 8 \mathrm{x}=32
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 x+2=34 \\
& 8 \mathrm{x}=32
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 x+2=34 \\
& 8 \mathrm{x}=32
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 x+2=34 \\
& 8 \mathrm{x}=32 \\
& \text { x }
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 x+2=34 \\
& 8 \mathrm{x}=32 \\
& \mathbf{x}=
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 9. } \begin{gathered}
2 x+2(3 x+1)=34 \\
2 x+6 x+2=34 \\
8 x+2=34 \\
8 x=32 \\
x=4
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 9. } 2 x+2(3 x+1)=34 \\
& 2 x+6 x+2=34 \\
& 8 x+2=34 \\
& 8 \mathrm{x}=32 \\
& x=4
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable.

$$
\text { 10. } x+(5 x+2)+(3 x-3)=62
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\text { 10. } x+(5 x+2)+(3 x-3)=62
$$

The SID method is used to solve linear equations with 1 variable.

S : Simplify the expressions on each side of the equation.

I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{aligned}
& \text { 10. } x+(5 x+2)+(3 x-3)=62 \\
& 9 x
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable.

S : Simplify the expressions on each side of the equation.

I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{aligned}
& \text { 10. } \quad x+(5 x+2)+(3 x-3)=62 \\
& 9 x-
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable.

S : Simplify the expressions on each side of the equation.

I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{aligned}
& \text { 10. } x+(5 x+2)+(3 x-3)=62 \\
& 9 x-1
\end{aligned}
$$

The SID method is used to solve linear equations with 1 variable.

S : Simplify the expressions on each side of the equation.

I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.

S : Simplify the expressions on each side of the equation.

I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.

S : Simplify the expressions on each side of the equation.

I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62 \\
9 x
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62 \\
9 x=
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62 \\
9 x=63
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62 \\
9 x=63
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62 \\
9 x=63
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62 \\
9 x=63 \\
x
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. Solve each of the following equations. Show your process steps neatly organized.

$$
\begin{gathered}
\text { 10. } x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62 \\
9 x=63 \\
x=
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } \begin{array}{r}
x+(5 x+2)+(3 x-3)=62 \\
9 x-1=62 \\
9 x=63 \\
x=7
\end{array}
$$

The SID method is used to solve linear equations with 1 variable.
S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable. Solve each of the following equations. Show your process steps neatly organized.

$$
\text { 10. } x+(5 x+2)+(3 x-3)=62 \text { } \begin{gathered}
x x-1=62 \\
9 x=63 \\
x=7
\end{gathered}
$$

The SID method is used to solve linear equations with 1 variable. S : Simplify the expressions on each side of the equation.
I : Isolate the variable on one side of the equation.
D : Divide both sides of the equation by the coefficient of the variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

11. $a x+b y=c$ solve for y

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 11. } a x+b y=c \quad \text { solve for } y
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 11. } a x+b y=c \quad \text { solve for } y
$$

Subtract ax from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

11. $a x+b y=c \quad$ solve for y

by

Subtract ax from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } a x+b y=c \quad \text { solve for } y \\
& b y=
\end{aligned}
$$

Subtract ax from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } a x+b y=c \quad \text { solve for } y \\
& b y=c
\end{aligned}
$$

Subtract ax from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } a x+b y=c \quad \text { solve for } y \\
& b y=c-
\end{aligned}
$$

Subtract ax from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } a x+b y=c \quad \text { solve for } y \\
& b y=c-a x
\end{aligned}
$$

Subtract ax from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } a x+b y=c \quad \text { solve for } y \\
& b y=c-a x
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } a x+b y=c \quad \text { solve for } y \\
& b y=c-a x
\end{aligned}
$$

Divide both sides by b.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \begin{array}{l}
a x+b y=c \quad \text { solve for } y \\
b y=c-a x \\
y
\end{array}
\end{aligned}
$$

Divide both sides by b.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \begin{array}{l}
a x+b y=c \quad \text { solve for } y \\
b y=c-a x \\
y=
\end{array}
\end{aligned}
$$

Divide both sides by b.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } a x+b y=c \quad \text { solve for } y \\
& b y=c-a x \\
& y=c
\end{aligned}
$$

Divide both sides by b.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \begin{array}{l}
a x+b y=c \quad \text { solve for } y \\
b y=c-a x \\
y=c-
\end{array}
\end{aligned}
$$

Divide both sides by b.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } a x+b y=c \quad \text { solve for } y \\
& b y=c-a x \\
& y=c-a x
\end{aligned}
$$

Divide both sides by b.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \begin{array}{l}
a x+b y=c \quad \text { solve for } y \\
b y=c-a x \\
y=\underline{c-a x}
\end{array}
\end{aligned}
$$

Divide both sides by b.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } a x+b y=c \quad \text { solve for } y \\
& b y=c-a x \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

Divide both sides by b.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

11. $a x+b y=c \quad$ solve for y

$$
\mathbf{b y}=\mathbf{c}-\mathbf{a x}
$$

$$
y=\frac{\mathbf{c}-\mathbf{a x}}{\mathbf{b}}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

11. $a x+b y=c \quad$ solve for y

$$
\mathbf{b y}=\mathbf{c}-\mathbf{a x}
$$

$$
\mathbf{y}=\frac{\mathbf{c}-\mathbf{a x}}{\mathbf{b}}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

$$
\text { 12. } A=\pi r^{2}+2 \pi r h \quad \text { solve for } h
$$

Subtract πr^{2} from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

Subtract $\pi \mathbf{r}^{2}$ from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

A -

Subtract πr^{2} from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
\mathbf{A}-\pi \mathbf{r}^{2}
$$

Subtract πr^{2} from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
\mathbf{A}-\pi \mathbf{r}^{2}=
$$

Subtract πr^{2} from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

Subtract πr^{2} from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

11. $a x+b y=c \quad$ solve for y

$$
\begin{aligned}
& b y=c-a x \\
& y=\frac{\mathbf{c}-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

Divide both sides by $\mathbf{2} \pi$ r.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

Divide both sides by 2π r.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

$$
\mathbf{h}=
$$

Divide both sides by $\mathbf{2} \pi$ r.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

$$
\mathbf{h}=\mathbf{A}
$$

Divide both sides by 2π r.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

$$
\mathbf{h}=\mathbf{A}-
$$

Divide both sides by 2π r.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

$$
\mathbf{h}=\mathbf{A}-\pi \mathbf{r}^{2}
$$

Divide both sides by $\mathbf{2} \pi$ r.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

$$
\mathbf{h}=\underline{\mathbf{A}-\pi \mathbf{r}^{2}}
$$

Divide both sides by 2π r.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
A-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h}
$$

$$
\mathbf{h}=\frac{\mathbf{A}-\pi \mathbf{r}^{2}}{2 \pi \mathbf{r}}
$$

Divide both sides by 2π r.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
\begin{gathered}
\mathbf{A}-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h} \\
\mathbf{h}=\frac{\mathbf{A}-\pi \mathbf{r}^{2}}{2 \pi \mathbf{r}}
\end{gathered}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 11. } \\
& \text { ax }+b y=c \\
& b y=c-a x \\
& \\
& y=\frac{c-a x}{b}
\end{aligned}
$$

12. $A=\pi r^{2}+2 \pi r h \quad$ solve for h

$$
\begin{gathered}
\mathbf{A}-\pi \mathbf{r}^{2}=2 \pi \mathbf{r h} \\
\mathbf{h}=\frac{\mathbf{A}-\pi \mathbf{r}^{2}}{2 \pi \mathbf{r}}
\end{gathered}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

13. $A=p(1+r t)$ solve for r

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

13. $A=p(1+r t)$ solve for r

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

13. $A=p(1+r t)$ solve for r

Multiply $\mathbf{p}(1+\mathbf{r t})$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

13. $A=p(1+r t)$ solve for r

Multiply p(1 + rt)

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

13. $A=p(1+r t)$ solve for r

$$
\mathbf{A}=
$$

Multiply p(1 + rt)

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
A & =p(1+r t) \quad \text { solve for } r \\
A & =p
\end{aligned}
$$

Multiply p(1 + rt)

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
A & =p(1+r t) \quad \text { solve for } r \\
A & =p+
\end{aligned}
$$

Multiply p(1 + rt)

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
A & =p(1+r t) \quad \text { solve for } r \\
A & =p+p r t
\end{aligned}
$$

Multiply p(1 + rt)

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
13. $A=p(1+r t)$ solve for r

$$
\mathbf{A}=\mathbf{p}+\mathbf{p r t}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
A & =p(1+r t) \quad \text { solve for } r \\
A & =p+p r t
\end{aligned}
$$

Subtract p from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathrm{A}=\mathbf{p}(\mathbf{1}+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathbf{p r t} \\
& \mathbf{A}
\end{aligned}
$$

Subtract p from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(1+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathbf{p r t} \\
& \mathbf{A}-
\end{aligned}
$$

Subtract p from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& A=p(1+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathrm{prt} \\
& \mathbf{A}-\mathbf{p}
\end{aligned}
$$

Subtract p from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
A & =p(1+\mathbf{r t}) \quad \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathbf{p r t} \\
& \mathrm{A}
\end{aligned}
$$

Subtract p from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathrm{A}=\mathbf{p}(1+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathrm{prt} \\
& \mathbf{A}-\mathbf{p}=\mathrm{prt}
\end{aligned}
$$

Subtract p from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathrm{A}=\mathrm{p}(1+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathrm{prt} \\
& \mathbf{A}-\mathbf{p}=\mathrm{prt}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathrm{A}=\mathbf{p}(1+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathrm{prt} \\
& \mathbf{A}-\mathbf{p}=\mathrm{prt}
\end{aligned}
$$

Divide both sides by pt.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(1+\mathbf{r t}) \quad \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathrm{prt} \\
& \mathbf{A}-\mathbf{p}=\mathrm{prt}
\end{aligned}
$$

$$
\mathbf{r}
$$

Divide both sides by pt.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(1+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathrm{prt} \\
& \mathbf{A}-\mathbf{p}=\mathrm{prt} \\
& \mathbf{r}=
\end{aligned}
$$

Divide both sides by pt.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(\mathbf{1}+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathrm{prt} \\
& \mathbf{A}-\mathbf{p}=\mathrm{prt} \\
& \\
& \mathbf{r}=\mathbf{A}
\end{aligned}
$$

Divide both sides by pt.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(\mathbf{1}+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathbf{p r t} \\
& \mathbf{A}-\mathbf{p}=\mathbf{p r t} \\
& \\
& \mathbf{r}=\mathbf{A}-
\end{aligned}
$$

Divide both sides by pt.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(1+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathbf{p r t} \\
& \mathbf{A}-\mathbf{p}=\mathbf{p r t} \\
& \\
& \mathbf{r}=\mathbf{A}-\mathbf{p}
\end{aligned}
$$

Divide both sides by pt.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(1+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathbf{p r t} \\
& \mathbf{A}-\mathbf{p}=\mathrm{prt} \\
& \mathbf{r}=\underline{\mathbf{A}-\mathbf{p}}
\end{aligned}
$$

Divide both sides by pt.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(\mathbf{1}+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathbf{p r t} \\
& \mathbf{A}-\mathbf{p}=\mathbf{p r t} \\
& \mathbf{r}=\frac{\mathbf{A}-\mathbf{p}}{\mathbf{p t}}
\end{aligned}
$$

Divide both sides by pt.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(\mathbf{1}+\mathbf{r t}) \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathbf{p r t} \\
& \mathbf{A}-\mathbf{p}=\mathbf{p r t} \\
& \mathbf{r}=\frac{\mathbf{A}-\mathbf{p}}{\mathbf{p t}}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 13. } \begin{aligned}
& \mathbf{A}=\mathbf{p}(\mathbf{1}+\mathbf{r t}) \quad \text { solve for } \mathbf{r} \\
& \mathbf{A}=\mathbf{p}+\mathbf{p r t} \\
& \mathbf{A}-\mathbf{p}=\mathbf{p r t} \\
& \mathbf{r}=\frac{\mathbf{A}-\mathbf{p}}{\mathbf{p t}}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

Multiply both sides by 9 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

Multiply both sides by 9 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

Multiply both sides by 9 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(
$$

Multiply both sides by 9 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 \mathrm{C}=5(\mathrm{~F}
$$

Multiply both sides by 9 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(F-
$$

Multiply both sides by 9 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(F-32)
$$

Multiply both sides by 9 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(F-32)
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(F-32)
$$

Multiply 5(F-32).

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

Multiply 5(F-32).

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

Multiply 5(F-32).

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(F-32)
$$

$$
9 \mathrm{C}=5 \mathrm{~F}
$$

Multiply 5(F-32).

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(F-32)
$$

$$
9 C=5 F-
$$

Multiply 5(F-32).

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(F-32)
$$

$$
9 C=5 F-160
$$

Multiply 5(F-32).

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{aligned}
& 9 C=5(F-32) \\
& 9 C=5 F-160
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

Add 160 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

Add 160 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

Add 160 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{aligned}
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160
\end{aligned}
$$

Add 160 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{aligned}
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160=
\end{aligned}
$$

Add 160 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{aligned}
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160=5 F
\end{aligned}
$$

Add 160 to both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 14. } C=(5 / 9)(F-32) \text { solve for } F \\
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160=5 F
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{aligned}
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160=5 F
\end{aligned}
$$

Divide both sides by 5 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{aligned}
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160=5 F \\
& F
\end{aligned}
$$

Divide both sides by 5 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 14. } C=(5 / 9)(F-32) \text { solve for } F \\
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160=5 F \\
& F=
\end{aligned}
$$

Divide both sides by 5 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 14. } C=(5 / 9)(F-32) \text { solve for } F \\
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160=5 F \\
& F=9 C
\end{aligned}
$$

Divide both sides by 5 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{aligned}
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160=5 F \\
& F=9 C+
\end{aligned}
$$

Divide both sides by 5 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{gathered}
9 C=5(F-32) \\
9 C=5 F-160 \\
9 C+160=5 F \\
F=9 C+160
\end{gathered}
$$

Divide both sides by 5 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{gathered}
9 C=5(F-32) \\
9 C=5 F-160 \\
9 C+160=5 F \\
F=\underline{9 C+160}
\end{gathered}
$$

Divide both sides by 5 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(F-32)
$$

$$
9 C=5 F-160
$$

$$
9 C+160=5 F
$$

$$
F=\frac{9 C+160}{5}
$$

Divide both sides by 5 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
9 C=5(F-32)
$$

$$
9 C=5 F-160
$$

$$
9 C+160=5 F
$$

$$
F=\frac{9 C+160}{5}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
14. $C=(5 / 9)(F-32)$ solve for F

$$
\begin{aligned}
& 9 C=5(F-32) \\
& 9 C=5 F-160 \\
& 9 C+160=5 F
\end{aligned}
$$

$$
F=\frac{9 C+160}{5}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

15. $P Q=F+V Q$ solve for Q

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
15. $P Q=F+V Q$ solve for Q

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 15. } P Q=F+V Q \text { solve for } Q
$$

Subtract VQ from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

15. $P Q=F+V Q$ solve for Q PQ

Subtract VQ from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } \mathbf{P Q}=\mathbf{F}+\mathrm{VQ} \text { solve for } \mathbf{Q} \\
& \mathrm{PQ}-
\end{aligned}
$$

Subtract VQ from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q
\end{aligned}
$$

Subtract VQ from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=
\end{aligned}
$$

Subtract VQ from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F
\end{aligned}
$$

Subtract VQ from both sides.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F
\end{aligned}
$$

Factor PQ-VQ.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F
\end{aligned}
$$

Factor PQ - VQ.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P
\end{aligned}
$$

Factor PQ - VQ.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } \mathrm{PQ}=\mathrm{F}+\mathrm{VQ} \text { solve for } \mathrm{Q} \\
& \mathrm{PQ}-\mathrm{VQ}=\mathrm{F} \\
& (\mathrm{P}-
\end{aligned}
$$

Factor PQ - VQ.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V)
\end{aligned}
$$

Factor PQ - VQ.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q
\end{aligned}
$$

Factor PQ - VQ.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q=
\end{aligned}
$$

Factor PQ - VQ.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q=F
\end{aligned}
$$

Factor PQ - VQ.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q=F
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q=F
\end{aligned}
$$

Divide both sides by $\mathbf{P}-\mathrm{V}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q=F
\end{aligned}
$$

Q

Divide both sides by \mathbf{P} - V.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q=F \\
& Q=
\end{aligned}
$$

Divide both sides by $\mathbf{P}-\mathrm{V}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q=F
\end{aligned}
$$

$$
\mathbf{Q}=\mathbf{F}
$$

Divide both sides by $\mathbf{P}-\mathrm{V}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q=F \\
& Q=\frac{F}{}
\end{aligned}
$$

Divide both sides by $\mathbf{P}-\mathrm{V}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } \mathbf{P Q}=\mathbf{F}+\mathrm{VQ} \text { solve for } \mathbf{Q} \\
& \mathrm{PQ}-\mathrm{VQ}=\mathrm{F} \\
& (\mathbf{P}-\mathrm{V}) \mathbf{Q}=\mathrm{F} \\
& \mathbf{Q}=\frac{\mathbf{F}}{\mathbf{P}}
\end{aligned}
$$

Divide both sides by P-V.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } \mathbf{P Q}=\mathbf{F}+\mathrm{VQ} \text { solve for } \mathbf{Q} \\
& \mathrm{PQ}-\mathrm{VQ}=\mathrm{F} \\
& (\mathbf{P}-\mathrm{V}) \mathbf{Q}=\mathbf{F} \\
& \mathbf{Q}=\frac{\mathbf{F}}{\mathbf{P}-}
\end{aligned}
$$

Divide both sides by P-V.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } \mathbf{P Q}=\mathbf{F}+\mathrm{VQ} \text { solve for } \mathbf{Q} \\
& \mathrm{PQ}-\mathrm{VQ}=\mathrm{F} \\
& (\mathrm{P}-\mathrm{V}) \mathbf{Q}=\mathbf{F} \\
& \mathbf{Q}=\frac{\mathbf{F}}{\mathbf{P}-\mathbf{V}}
\end{aligned}
$$

Divide both sides by P-V.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 15. } P Q=F+V Q \text { solve for } Q \\
& P Q-V Q=F \\
& (P-V) Q=F \\
& Q=\frac{F}{P-V}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

15. $P Q=F+V Q$ solve for Q

$$
\mathbf{P Q}-\mathbf{V Q}=\mathbf{F}
$$

$$
(\mathbf{P}-\mathbf{V}) \mathbf{Q}=\mathbf{F}
$$

$$
\mathbf{Q}=\frac{\mathbf{F}}{\mathbf{P}-\mathbf{V}}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

16. $S=2 \pi r h$ solve for r

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

16. $S=2 \pi r h$ solve for r

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 16. } S=2 \pi r h \quad \text { solve for } r
$$

Divide both sides by $2 \pi \mathrm{~h}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 16. } S=2 \pi r h \quad \text { solve for } r
$$

Divide both sides by $2 \pi \mathrm{~h}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
16. $S=2 \pi r h$ solve for r

$$
\mathbf{r}=
$$

Divide both sides by $2 \pi \mathrm{~h}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
16. $S=2 \pi r h$ solve for r

$$
\mathbf{r}=\mathbf{S}
$$

Divide both sides by $\mathbf{2} \pi \mathrm{h}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 16. } S=2 \pi r h \quad \text { solve for } r
$$

$$
\mathbf{r}=\underline{\mathbf{S}}
$$

Divide both sides by $2 \pi \mathrm{~h}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 16. } \begin{aligned}
S & =2 \pi r h \text { solve for } r \\
r & =\frac{S}{2 \pi h}
\end{aligned}
$$

Divide both sides by $\mathbf{2} \pi \mathrm{h}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
16. $S=2 \pi r h$ solve for r

$$
\mathbf{r}=\frac{\mathbf{S}}{2 \pi \mathbf{h}}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

16. $S=2 \pi r h$ solve for r

$$
\mathbf{r}=\frac{\mathbf{S}}{2 \pi \mathbf{h}}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

17. $A=(1 / 2) b h$ solve for b

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

17. $A=(1 / 2) b h$ solve for b

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 17. } A=(1 / 2) b h \text { solve for } b
$$

Multiply both sides by 2 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

17. $A=(1 / 2) b h$ solve for b

2A

Multiply both sides by 2 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

17. $A=(1 / 2) b h$ solve for b

$$
\mathbf{2 A}=
$$

Multiply both sides by 2 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 17. } A=(1 / 2) b h \text { solve for } b \\
& 2 A=b h
\end{aligned}
$$

Multiply both sides by 2 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 17. } A=(1 / 2) b h \text { solve for } b \\
& 2 A=b h
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 17. } A=(1 / 2) b h \quad \text { solve for } b \\
& 2 A=b h
\end{aligned}
$$

Divide both sides by h.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 17. } A=(1 / 2) \text { bh solve for } b \\
& 2 A=b h \\
& \text { b }
\end{aligned}
$$

Divide both sides by h.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 17. } \begin{aligned}
A & =(1 / 2) b h \text { solve for } b \\
2 A & =b h \\
b & =
\end{aligned}
$$

Divide both sides by h.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 17. } \begin{aligned}
A & =(1 / 2) b h \quad \text { solve for } b \\
2 A & =b h \\
b & =2 A
\end{aligned}
$$

Divide both sides by h.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 17. } \begin{aligned}
A & =(1 / 2) b h \quad \text { solve for } b \\
2 A & =b h \\
b & =\underline{2 A}
\end{aligned}
$$

Divide both sides by h.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 17. } \begin{aligned}
A & =(1 / 2) b h \quad \text { solve for } b \\
2 A & =b h \\
b & =\frac{2 A}{h}
\end{aligned}
$$

Divide both sides by h.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 17. } \begin{aligned}
A & =(1 / 2) b h \text { solve for } b \\
2 A & =b h \\
b & =\frac{2 A}{h}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

17. $A=(1 / 2) b h$ solve for b

$2 \mathrm{~A}=\mathrm{bh}$

$$
b=\frac{2 A}{h}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
18. $x(y+z)-2(y-z)=1$ solve for z
xy

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+
$$

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z
$$

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
18. $x(y+z)-2(y-z)=1$ solve for z

$$
x y+x z-
$$

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y
$$

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+
$$

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+2 z
$$

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
18. $x(y+z)-2(y-z)=1$ solve for z

$$
x y+x z-2 y+2 z=
$$

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.
18. $x(y+z)-2(y-z)=1$ solve for z

$$
x y+x z-2 y+2 z=1
$$

Simplify the expression on the left side of the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+2 z=1
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+2 z=1
$$

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+2 z=1
$$

XZ

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+2 z=1
$$

$\mathbf{x z}+$

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+2 z=1
$$

$$
\mathbf{x z}+\mathbf{2 z}
$$

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+2 z=1
$$

$$
x z+2 z=
$$

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1
\end{aligned}
$$

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& \mathrm{xz}+2 \mathrm{z}=1-
\end{aligned}
$$

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y
\end{aligned}
$$

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+
\end{aligned}
$$

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y
\end{aligned}
$$

Isolate the ' z terms'.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y
\end{aligned}
$$

Factor $\mathrm{xz}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+2 z=1
$$

$$
x z+2 z=1-x y+2 y
$$

Factor $\mathrm{xz}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z
$$

$$
x y+x z-2 y+2 z=1
$$

$$
x z+2 z=1-x y+2 y
$$

(x

Factor $\mathbf{x z}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } \begin{array}{l}
x(y+z)-2(y-z)=1 \text { solve for } z \\
x y+x z-2 y+2 z=1 \\
x z+2 z=1-x y+2 y \\
(x+
\end{array}
\end{aligned}
$$

Factor $\mathbf{x z}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2)
\end{aligned}
$$

Factor $\mathbf{x z}+\mathbf{2 z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z
\end{aligned}
$$

Factor $\mathrm{xz}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } \begin{array}{l}
x(y+z)-2(y-z)=1 \text { solve for } z \\
x y+x z-2 y+2 z=1 \\
x z+2 z=1-x y+2 y \\
(x+2) z=
\end{array}
\end{aligned}
$$

Factor xz + 2z.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1
\end{aligned}
$$

Factor $\mathrm{xz}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-
\end{aligned}
$$

Factor $\mathrm{xz}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y
\end{aligned}
$$

Factor $\mathrm{xz}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+
\end{aligned}
$$

Factor $\mathrm{xz}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y
\end{aligned}
$$

Factor $\mathrm{xz}+2 \mathrm{z}$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y
\end{aligned}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y
\end{aligned}
$$

Z

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y
\end{aligned}
$$

$$
\mathbf{Z}=
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y
\end{aligned}
$$

$$
z={ }^{1}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=1-
\end{aligned}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=1-x y
\end{aligned}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=1-x y+
\end{aligned}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=1-x y+2 y
\end{aligned}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=1-x y+2 y
\end{aligned}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \quad \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=\frac{1-x y+2 y}{x}
\end{aligned}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=\frac{1-x y+2 y}{x+}
\end{aligned}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\begin{aligned}
& \text { 18. } x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=\frac{1-x y+2 y}{x+2}
\end{aligned}
$$

Divide both sides by $\mathbf{x}+2$.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=\frac{1-x y+2 y}{x+2}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following for the indicated variable. Show your process steps neatly organized.

$$
\text { 18. } \begin{aligned}
& x(y+z)-2(y-z)=1 \text { solve for } z \\
& x y+x z-2 y+2 z=1 \\
& x z+2 z=1-x y+2 y \\
& (x+2) z=1-x y+2 y \\
& z=\frac{1-x y+2 y}{x+2}
\end{aligned}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

\mathbf{X} (inches)

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

\mathbf{X} (inches)

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?
$2 x-3$ (inches)
\mathbf{X} (inches)

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?
$2 x-3$ (inches)
\mathbf{X} (inches)

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?
$\begin{aligned} & 2 x-3 \text { (inches) } \\ & \times \\ & x \text { (inches) }\end{aligned}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

P

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+
$$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+2 \mathrm{~W}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}$
5 feet
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
2(2 x-3)+2 x=
$$

\mathbf{X} (inches)
$\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}$
5 feet =

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}$
5 feet $=\mathbf{6 0}$ inches
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=60$ inches
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{aligned}
& 2(2 x-3)+2 x=60 \\
& 4 x-6+
\end{aligned}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=60$ inches

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$2(2 x-3)+2 x=60$

$$
4 x-6+2 x=60
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}$
5 feet $=\mathbf{6 0}$ inches
Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}$
5 feet $=\mathbf{6 0}$ inches
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=\mathbf{6 0}$ inches
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}$
5 feet $=\mathbf{6 0}$ inches
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}$
5 feet $=\mathbf{6 0}$ inches
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

6x

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+2 \mathbf{W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

$$
6 x=
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66
\end{gathered}
$$

5 feet $=60$ inches
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=60$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66
\end{gathered}
$$

$$
\mathbf{X}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=
\end{gathered}
$$

5 feet $=60$ inches
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$P=\mathbf{2 L}+\mathbf{2 W}$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11
\end{gathered}
$$

5 feet $=60$ inches
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=2 \mathbf{L}+2 \mathbf{W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11
\end{gathered}
$$

5 feet $=60$ inches

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}
$$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11
\end{gathered}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{2 x - 3}$ (inches)	$2(2 x-3)+2 x=60$
\mathbf{X} (inches)	$4 x-6+2 x=60$
	$6 x-6=60$
$\mathbf{P}=2 \mathrm{~L}+2 \mathbf{W}$ Answer the question.	
5 feet $=60$ inches	

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{2 x - 3}$ (inches)	$2(2 x-3)+2 x=60$
\mathbf{X} (inches)	$4 x-6+2 x=60$
	$6 x-6=60$
$P=2 L+2 W$ Answer the question. $6 x=66$	
5 feet $=60$ inches $\quad 2 x$	

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

$P=2 L+2 W$ Answer the question. $6 x=66$
5 feet $=60$ inches

$$
x=11
$$

2x-

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

2x-3 (inches)	0
\mathbf{x} (inches)	$\begin{gathered} 4 x-6+2 x=60 \\ 6 x-6=60 \end{gathered}$
$\mathbf{P}=2 L+2 W^{\text {Answer the question. } 6 x=66}$	
5 feet $=60$ inches	x $2 \mathrm{x}-3$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

$P=2 L+2 W$ Answer the question. $6 x=66$
5 feet $=\mathbf{6 0}$ inches

$$
x=11
$$

$$
2 x-3=
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

$P=2 L+2 W$ Answer the question. $6 x=66$
$x=11$
5 feet $=60$ inches

$$
2 x-3=19
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?
$2 \mathrm{x}-3$ (inches)

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

$P=2 L+2 W$ Answer the question. $6 x=66$
5 feet $=\mathbf{6 0}$ inches

$$
2 x-3=19
$$

The rectangle is 19 inches long

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$ Answer the question.
$6 x=66$ $\mathrm{x}=11$
5 feet $=\mathbf{6 0}$ inches

$$
2 x-3=19
$$

The rectangle is 19 inches long and 11 inches wide.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

P=2L+2W
5 feet $=\mathbf{6 0}$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-3=19
\end{gathered}
$$

The rectangle is 19 inches long and 11 inches wide.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

P=2L+2W
5 feet $=\mathbf{6 0}$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-3=19
\end{gathered}
$$

The rectangle is 19 inches long and 11 inches wide.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$2 x-3$

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60
\end{gathered}
$$

$P=2 L+2 W$
Check the solution. $6 x=66$
$\mathrm{x}=11$
5 feet $=\mathbf{6 0}$ inches

$$
2 x-3=19
$$

The rectangle is 19 inches long and 11 inches wide.

Solve each of the following word problems algebraically. Show your process steps neatly organized.
19. The length of a rectangle is 3 inches less than twice its width. The perimeter of the rectangle is five feet. What are the dimensions of the rectangle?

$\mathbf{P}=\mathbf{2 L}+\mathbf{2 W}$
5 feet $=60$ inches

$$
\begin{gathered}
2(2 x-3)+2 x=60 \\
4 x-6+2 x=60 \\
6 x-6=60 \\
6 x=66 \\
x=11 \\
2 x-3=19
\end{gathered}
$$

The rectangle is 19 inches long and 11 inches wide.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
soda

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
soda
hotdog

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
soda
hotdog
burger

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each
soda
hotdog burger

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each
soda
hotdog burger

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each
soda $\quad X$ (cents)
hotdog burger

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

soda	$X(c e n t s)$
hotdog	X
burger	

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

soda	\mathbf{X} (cents)
hotdog	$\mathbf{X}+$
burger	

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

soda	x (cents)
hotdog	$x+75 ¢$
burger	

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{array}{lc}
\text { soda } & \mathbf{x} \text { (cents) } \\
\text { hotdog } & \mathbf{x}+75 \boldsymbol{c} \\
\text { burger } & \mathbf{3 x}
\end{array}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{array}{lc}
\text { soda } & \mathbf{x} \text { (cents) } \\
\text { hotdog } & x+75 \not \subset \\
\text { burger } & 3 x-
\end{array}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{array}{lc}
\text { soda } & x \text { (cents) } \\
\text { hotdog } & x+75 ¢ \\
\text { burger } & 3 x-20 ¢
\end{array}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

soda	x (cents)
hotdog	$x+75 \not \subset$
burger	$3 x-20 \not \subset$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

soda	x (cents)
hotdog	$x+75 ¢$
burger	$3 x-20 ¢$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

soda $\quad X$ (cents)
$\operatorname{hotdog} \quad x+75 ¢$
burger $3 x-20 ¢$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost? cost each

$$
\begin{array}{lc}
\text { soda } & x \text { (cents) } \\
\text { hotdog } & x+75 ¢ \\
\text { burger } & 3 x-20 ¢
\end{array}
$$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each
4(
soda $\quad X$ (cents)
hotdog $x+75 ¢$ burger $3 x-20$ c

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost? cost each

$$
4(3 x
$$

soda $\quad X$ (cents)
$\operatorname{hotdog} \quad x+75 ¢$ burger $3 x-20 c$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger 3x-20¢

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger $3 x-20 ¢$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)+
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger $3 x-20 ¢$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)+3(
$$

soda $\quad x$ (cents)
hotdog $x+75$ c burger 3x-20

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)+3(x
$$

soda $\quad x$ (cents)
hotdog $x+75$ c burger 3x-20

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)+3(x+
$$

soda $\quad x$ (cents)
hotdog $x+75$ c burger 3x-20

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger $3 x-20 c$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger $3 x-20 ¢$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger $3 x-20 ¢$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger 3x-20¢

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?

cost each

$$
4(3 x-20)+3(x+75)+7 x=
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger $3 x-20 ¢$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?

cost each

$$
4(3 x-20)+3(x+75)+7 x=
$$

$$
\begin{array}{lc}
\text { soda } & x \text { (cents) } \\
\text { hotdog } & x+75 ¢ \\
\text { burger } & 3 x-20 ¢
\end{array}
$$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$.
How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger $3 x-20 ¢$

Write an Equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger $3 x-20 ¢$

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
hotdog $x+75 c$
burger $3 x-20 ¢$

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda	x (cents)
hotdog	$x+75 \not \subset$
burger	$3 x-20 \not \subset$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{lc}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 c\end{array}$ burger 3x-20

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda
\mathbf{x} (cents)
12x -
hotdog $\quad x+75 c$ burger 3x-20c

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{lc}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 ¢\end{array}$ burger 3x-20

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{lc}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 c\end{array}$ burger 3x-20

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{lc}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 ¢\end{array}$ burger 3x-20

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{lc}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 c\end{array}$ burger $3 x-20 ¢$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

$\begin{array}{lc}\text { soda } & x \text { (cents) } \\ \text { hotdog } & x+75 c\end{array}$ burger 3x-20

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
$12 \mathrm{x}-\mathbf{8 0}+\mathbf{3 x}+225+$
hotdog $x+75 c$
burger $3 x-20 ¢$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
$12 x-80+3 x+225+7 x$
hotdog $\quad x+75 d$
burger $3 x-20 ¢$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
$12 x-80+3 x+225+7 x=$
hotdog $\quad x+75 c$
burger $3 x-20 ¢$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
$12 x-80+3 x+225+7 x=1905$
hotdog $\quad x+75 c$
burger 3x-20c

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
\text { soda } \quad X \text { (cents) }
$$

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x
\end{gathered}
$$

hotdog $\quad x+75 c$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+
\end{gathered}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
\text { soda } \quad X \text { (cents) }
$$

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145
\end{gathered}
$$

hotdog $\quad x+75 c$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=
\end{gathered}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\text { soda } \quad X \text { (cents) }
$$

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905
\end{gathered}
$$

hotdog $x+75 \not \subset$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x
\end{gathered}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=
\end{gathered}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760
\end{gathered}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost? cost each

$$
\text { soda } \quad X \text { (cents) }
$$

$$
\text { hotdog } \quad x+75 c
$$

$$
\text { burger } 3 x-20 \mathfrak{c}
$$

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760
\end{gathered}
$$

$$
\mathbf{x}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=
\end{gathered}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80
\end{gathered}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80
\end{gathered}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80
\end{gathered}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(\mathbf{3 x}-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80
\end{gathered}
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(\mathbf{3 x}-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80
\end{gathered}
$$

X

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=\mathbf{1 7 6 0} \\
x=\mathbf{8 0} \\
x+
\end{gathered}
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(\mathbf{3 x}-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75
\end{gathered}
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75=
\end{gathered}
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905 \\
22 x+145=1905 \\
22 x=1760 \\
x=80 \\
x+75=155
\end{gathered}
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905
\end{gathered}
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$

$$
22 x+145=1905
$$

burger 3x-20c

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905
\end{gathered}
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$

$$
22 x+145=1905
$$

burger 3x-20c

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
\text { soda } \quad X \text { (cents) }
$$

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905
\end{gathered}
$$

hotdog $\quad x+75 c$

$$
22 x+145=1905
$$

burger 3x-20c

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

Answer the question.

$$
3 x-20
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
hotdog $x+75 d$
burger 3x-20¢

$$
12 x-80+3 x+225+7 x=1905
$$

$$
22 x+145=1905
$$

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
hotdog $x+75 d$
burger 3x-20¢

$$
12 x-80+3 x+225+7 x=1905
$$

$$
22 x+145=1905
$$

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

> cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905
\end{gathered}
$$

soda $\quad X$ (cents)
hotdog $x+75 c$ burger 3x-20¢

A soda costs 80¢ ,

$$
22 x+145=1905
$$

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

$$
3 x-20=220
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

soda $\quad X$ (cents)
hotdog $\quad x+75 c$
burger $3 x-20 c$
A soda costs 80¢ , a hotdog costs \$1.55,

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905
\end{gathered}
$$

$$
22 x+145=1905
$$

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

$$
3 x-20=220
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

soda $\quad X$ (cents)
hotdog $\quad x+75 c$ burger $3 x-20$ c

A soda costs 80c, a hotdog costs $\$ 1.55$, and a burger costs \$2.20.

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905
\end{gathered}
$$

$$
22 x+145=1905
$$

$$
22 x=1760
$$

$$
x=80
$$

$$
x+75=155
$$

$$
3 x-20=220
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905
\end{gathered}
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$

$$
22 x+145=1905
$$

burger 3x-20¢

$$
22 x=1760
$$

A soda costs 80c, a hotdog

$$
x=80
$$ costs $\$ 1.55$, and a burger

$$
x+75=155
$$ costs \$2.20.

$$
3 x-20=220
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905
\end{gathered}
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$

$$
22 x+145=1905
$$

burger 3x-20¢

$$
22 x=1760
$$

A soda costs 80c, a hotdog

$$
x=80
$$ costs $\$ 1.55$, and a burger

$$
x+75=155
$$ costs \$2.20.

$$
3 x-20=220
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?

cost each

$$
4(3 x-20)+3(x+75)+7 x=1905
$$

soda $\quad X$ (cents)
hotdog $x+75 c$ burger 3x-20¢

A soda costs 80c, a hotdog costs $\$ 1.55$, and a burger costs \$2.20.

Solve each of the following word problems algebraically. Show your process steps neatly organized.
20. A hotdog costs 75 cents more than a soda. A burger costs 20 cents less than three times as much as a soda. 4 burgers, 3 hotdogs, and 7 sodas cost a total of $\$ 19.05$. How much does each item cost?
cost each

$$
\begin{gathered}
4(3 x-20)+3(x+75)+7 x=1905 \\
12 x-80+3 x+225+7 x=1905
\end{gathered}
$$

soda $\quad X$ (cents)
hotdog $\quad x+75 c$

$$
22 x+145=1905
$$

burger $3 x-20$ c

$$
22 x=1760
$$

A soda costs $80 c$, a hotdog

$$
x=80
$$ costs $\$ 1.55$, and a burger

$$
x+75=155
$$ costs \$2.20.

$$
3 x-20=220
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes

quarters

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins

dimes

quarters

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes quarters $\quad \mathbf{x}$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes 4x
quarters $\quad \mathbf{x}$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes $4 x+$
quarters $\quad \mathbf{x}$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes $\quad 4 x+3$
quarters $\quad \mathbf{x}$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes $\quad 4 x+3$
quarters $\quad \mathbf{x}$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes $\quad 4 x+3$
quarters $\quad \mathbf{x}$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes $\quad 4 x+3$
quarters $\quad \mathbf{x}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins
dimes $\quad 4 x+3$
quarters $\quad \mathbf{x}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coin
dimes	$4 x+3$
quarters	x

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	va
dimes	$\mathbf{4 x}+3 \quad \mathbf{1 0}($	
quarters	x	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value
dimes	$\mathbf{4 x}+3$	$\mathbf{1 0}(4 x$
quarters	x	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

$$
\# \text { of coins } \quad \text { value } \boldsymbol{c}
$$

dimes $\quad 4 x+3 \quad 10(4 x+$
quarters $\quad \mathbf{x}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value c
dimes $\quad 4 x+3 \quad 10(4 x+3)$
quarters $\quad \mathbf{x}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value c
dimes $\quad 4 x+3 \quad 10(4 x+3)$
quarters \mathbf{x}

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value c
dimes $\quad 4 x+3 \quad 10(4 x+3)$
quarters $\mathbf{x} \quad \mathbf{2 5 x}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value c

dimes	$\mathbf{4 x}+3$	$\mathbf{1 0 (4 x}+3)$
quarters	x	$\mathbf{2 5 x}$
	total	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
\# of coins value c
dimes $\quad 4 x+3 \quad 10(4 x+3)$

quarters | x | 25 x | |
| :--- | :--- | :---: |
| | total | $1200 ¢$ |

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized

The RESAC Process
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $¢$
dimes	$\mathbf{4 x}+3$	$\mathbf{1 0 (4 x + 3)}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$
	total	$\mathbf{1 2 0 0} ¢$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\$ 12$, then how many coins of each type are there?

	\# of coins	value $¢$
dimes	$\mathbf{4 x}+3$	$\mathbf{1 0 (4 x + 3)}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$
	total	$\mathbf{1 2 0 0}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\$ 12$, then how many coins of each type are there?

dimes quarters	\# of coins	value $¢$
	$4 \mathrm{x}+3$	10(4x+3)
	\mathbf{x}	25x
	total	1200 c

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value c	$10(4 x+3)$
dimes	$4 x+3$	$10(4 x+3)$	
quarters	\mathbf{x}	$\mathbf{2 5 x}$	
	total	$\mathbf{1 2 0 0} \mathfrak{c}$	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\$ 12$, then how many coins of each type are there?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\$ 12$, then how many coins of each type are there?

	\# of coins	value $¢$	$\mathbf{1 0}(4 x+3)+25 x$
dimes	$\mathbf{4 x}+3$	$\mathbf{1 0 (4 x}+3)$	
quarters	\mathbf{x}	$\mathbf{2 5 x}$	
	total	$\mathbf{1 2 0 0} ¢$	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\$ 12$, then how many coins of each type are there?

	\# of coins	value \&	$\mathbf{1 0}(\mathbf{4 x}+3)+\mathbf{2 5 x}=$
dimes	$\mathbf{4 x}+3$	$\mathbf{1 0 (4 x + 3)}$	
quarters	\mathbf{x}	$\mathbf{2 5 x}$	
	total	$\mathbf{1 2 0 0}$	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\$ 12$, then how many coins of each type are there?
$\#$ of coins value $c \quad 10(4 x+3)+25 x=1200$

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

Write an Equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

$$
\# \text { of coins value } ¢ \quad 10(4 x+3)+25 x=1200
$$

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

$$
\# \text { of coins value } ¢ \quad 10(4 x+3)+25 x=1200
$$

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?
$\#$ of coins value $c \quad 10(4 x+3)+25 x=1200$

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	1200

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $¢$	$\mathbf{1 0}(4 x+3)+25 x=1200$
dimes	$4 x+3$	$10(4 x+3)$	$40 x$
quarters	x	$25 x$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value ¢	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x+3)	40x +30
	\mathbf{x}	25x	
	total	$1200 ¢$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $¢$	$\mathbf{1 0 (4 x}+3)+25 x=1200$
dimes	$4 x+3$	$10(4 x+3)$	$40 x+30+$
quarters	x	$25 x$	
	total	$1200 ¢$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $¢$	$\mathbf{1 0 (4 x}+3)+25 x=1200$
dimes	$4 x+3$	$10(4 x+3)$	$40 x+30+25 x$
quarters	x	$25 x$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $¢$	$\mathbf{1 0 (4 x}+3)+25 x=1200$
dimes	$4 x+3$	$10(4 x+3)$	$40 x+30+25 x=$
quarters	x	$25 x$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}$
	total	$\mathbf{1 2 0 0} \boldsymbol{l}$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x+3)	$40 \mathrm{x}+30+\mathbf{2 5 x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+$
	total	1200 c	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x+3)	$40 \mathrm{x}+30+\mathbf{2 5 x}=1200$
	\mathbf{x}	25x	$65 x+30$
	total	1200 c	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=$
	total	$\mathbf{1 2 0 0} \boldsymbol{q}$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x+3)	$40 \mathrm{x}+30+\mathbf{2 5 x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	1200	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0} \boldsymbol{C}$	$\mathbf{6 5 x}$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	\# of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0} \boldsymbol{c}$	$\mathbf{6 5 x}=$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0}$	
		$65 x=1170$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value \mathfrak{c}	$\mathbf{1 0 (4 x}+3)+25 x=1200$
dimes	$4 x+3$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+30+25 x=1200$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$65 x+30=1200$
	total	$\mathbf{1 2 0 0} \boldsymbol{6}$	$65 x=1170$

$$
\mathbf{x}
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0} \boldsymbol{C}$	$\mathbf{6 5 x}=\mathbf{1 1 7 0}$
			$x=$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $\&$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0}$	$\mathbf{6 5 x}=\mathbf{1 1 7 0}$
			$\mathbf{x}=\mathbf{1 8}$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $¢$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0}$	$\mathbf{6 5 x}=\mathbf{1 1 7 0}$
			$\mathbf{x}=\mathbf{1 8}$

Solve each of the following word problems algebraically. Show your process steps neatly organized.

The RESAC Process
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

	$\#$ of coins	value $¢$	$\mathbf{1 0 (4 x}+3)+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
dimes	$\mathbf{4 x}+\mathbf{3}$	$\mathbf{1 0 (4 x + 3)}$	$\mathbf{4 0 x}+\mathbf{3 0}+\mathbf{2 5 x}=\mathbf{1 2 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{6 5 x}+\mathbf{3 0}=\mathbf{1 2 0 0}$
	total	$\mathbf{1 2 0 0}$	$\mathbf{6 5 x}=\mathbf{1 1 7 0}$
			$\mathbf{x}=\mathbf{1 8}$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value $¢$	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 x+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$
			4x
	Answer	the question.	

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value $¢$	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$
			4x +
	Answer	the question.	

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value $¢$	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$
			$4 \mathrm{x}+3$
	Answer	the question.	

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value $¢$	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$
	Answe	the question.	$4 \mathrm{x}+3=$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value $¢$	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 x+30+25 x=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
			$\mathrm{x}=18$
			$4 \mathrm{x}+3=75$
	Answer	the question.	

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	c ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 \mathrm{x}+30=1200$
	total	$1200 ¢$	$65 \mathrm{x}=1170$
There are 18 quarters			$\mathrm{x}=18$
			$4 \mathrm{x}+3=75$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

$10(4 x+3)+25 x=1200$
\# of coins value $¢$

$$
40 x+30+25 x=1200
$$

$$
65 x+30=1200
$$

$$
65 x=1170
$$

There are 18 quarters and 75 dimes.

$$
\begin{aligned}
\mathrm{x} & =18 \\
4 \mathrm{x}+3 & =75
\end{aligned}
$$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

$$
\begin{aligned}
& 10(4 x+3)+25 x=1200 \\
& 40 x+30+25 x=1200 \\
& 65 x+30=1200 \\
& 65 x=1170 \\
& x=18
\end{aligned}
$$

There are 18 quarters and 75 dimes.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes	$4 x+3$	$10(4 x+3)$
quarters	x	$25 x$
	total	$1200 ¢$

$10(4 x+3)+25 x=1200$
\# of coins value $¢$

$$
40 x+30+25 x=1200
$$

$$
65 x+30=1200
$$

$$
65 x=1170
$$

There are 18 quarters and 75 dimes.

$$
\begin{aligned}
x & =18 \\
4 x+3 & =75
\end{aligned}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

$$
\begin{gathered}
10(4 x+3)+25 x=1200 \\
40 x+30+25 x=1200 \\
65 x+30=1200 \\
65 x=1170 \\
\text { mes. } \quad x=18
\end{gathered}
$$

$$
4 x+3=75
$$

Check the solution.

Solve each of the following word problems algebraically. Show your process steps neatly organized.
21. In a collection of ordinary dimes and quarters, the number of dimes is 3 more than 4 times the number of quarters. If the total value of the collection is $\mathbf{\$ 1 2}$, then how many coins of each type are there?

dimes quarters	\# of coins	value ¢	$10(4 x+3)+25 x=1200$
	$4 \mathrm{x}+3$	10(4x +3)	$40 \mathrm{x}+30+25 \mathrm{x}=1200$
	\mathbf{x}	25x	$65 x+30=1200$
	total	1200 ¢	$65 \mathrm{x}=1170$
There are 18 quarters and 75 dimes.			mes. $\quad x=18$

Solve each of the following word problems algebraically. Show your process steps neatly organized.
22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
short

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
short
middle

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
short
middle
long
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
long
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad \mathbf{x}$
middle
long
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle
long 3x
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle
long $\quad \mathbf{3 x}+$
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle
long $\quad 3 x+2$
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle
long $\quad 3 x+2$
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle $\quad x$
long $\quad 3 x+2$
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad x$
middle $\quad x+$
long $\quad \mathbf{3 x}+2$
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle $\quad x+8$
long $\quad 3 x+2$
Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short X
middle $\quad x+8$
long $3 x+2$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short X
middle $\quad x+8$
long $3 x+2$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle $\quad x+8$
long $\quad 3 x+2$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad x$
middle $\quad x+8$
long $\quad 3 x+2$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
X
middle $\quad x+8$
long $\quad 3 x+2$
total

> Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short X
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches (10 feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad X$
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
X
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)

$$
\mathbf{x}+(\mathbf{x}+
$$

short X
middle $\quad \mathrm{x}+8$
long $\quad 3 \mathrm{x}+2$
total 120 inches ($\mathbf{1 0}$ feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)

$$
x+(x+8)
$$

short X
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches (10 feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)

$$
\mathbf{x}+(\mathbf{x}+\mathbf{8})+
$$

short X
middle $\quad \mathrm{x}+8$
long $\quad 3 \mathrm{x}+2$
total 120 inches ($\mathbf{1 0}$ feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)

$$
x+(x+8)+(3 x
$$

short X
middle $\quad \mathrm{x}+8$
long $\quad 3 \mathrm{x}+2$
total 120 inches ($\mathbf{1 0}$ feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)

$$
\mathbf{x}+(\mathbf{x}+8)+(3 x+
$$

short X
middle $\quad \mathrm{x}+8$
long $\quad 3 x+2$
total 120 inches ($\mathbf{1 0}$ feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)

$$
x+(x+8)+(3 x+2)
$$

short X
middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches (10 feet)
Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short $\quad \mathbf{x}$
middle $\quad \mathrm{x}+8$

$$
x+(x+8)+(3 x+2)=
$$

long $\quad 3 x+2$
total 120 inches ($\mathbf{1 0}$ feet)

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short X
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

Write an Equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short

$$
\mathbf{x}
$$

$$
x+8
$$

middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short

$$
\mathbf{x}
$$

$$
x+8
$$

middle $\quad x+8$
long $\quad \mathbf{3 x}+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short X
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short

$$
5 x
$$

middle $\quad \mathrm{x}+8$
long $\quad 3 x+2$
total 120 inches ($\mathbf{1 0}$ feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

X

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle $\quad \mathbf{x}+8$
long $\quad \mathbf{3 x}+2$
total 120 inches ($\mathbf{1 0}$ feet)
X

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+
$$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short

$$
5 x+10
$$

middle $\quad \mathrm{x}+8$
long $\quad 3 x+2$
total 120 inches ($\mathbf{1 0}$ feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

X

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short

$$
5 x+10=
$$

middle $\quad \mathrm{x}+8$
long $\quad 3 x+2$
total 120 inches ($\mathbf{1 0}$ feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

X

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
X
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
X
long $\quad 3 x+2$
total 120 inches (10 feet)
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
X
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
X
long $\quad \mathbf{3 x}+2$
total 120 inches (10 feet)
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
$\mathbf{x}+8$
long $\quad 3 x+2$
total 120 inches (10 feet)
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
$x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
$x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)
Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
$x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
\begin{gathered}
5 x+10=120 \\
5 x=110 \\
x=22
\end{gathered}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
$\mathrm{x}+8$
long $\quad 3 x+2$
total 120 inches ($\mathbf{1 0}$ feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
\begin{gathered}
5 x+10=120 \\
5 x=110 \\
x=22
\end{gathered}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Answer the question.

$$
\begin{aligned}
5 x & =110 \\
x & =22
\end{aligned}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest
piece. How long is each piece?
length (inches)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

short
middle long $\quad 3 x+2$

Answer the question.

$$
5 x+10=120
$$

X
$x+8$
$3 x+2$

$$
\begin{aligned}
5 x & =110 \\
x & =22
\end{aligned}
$$

X
total 120 inches ($\mathbf{1 0}$ feet)

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
long $\quad 3 x+2$

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Answer the question.

$$
\begin{aligned}
& \mathbf{5 x}=\mathbf{1 1 0} \\
& x=\mathbf{2 2} \\
& \mathbf{x}+
\end{aligned}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
long $\quad 3 x+2$

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Answer the question.

$$
\begin{gathered}
5 x=110 \\
x=22 \\
x+8
\end{gathered}
$$

total 120 inches ($\mathbf{1 0}$ feet)

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
long $\quad 3 x+2$

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Answer the question.

$$
\begin{gathered}
5 x=110 \\
x=22 \\
x+8=
\end{gathered}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
long $\quad 3 x+2$

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Answer the question.

$$
\begin{gathered}
\mathbf{5 x}=\mathbf{1 1 0} \\
x=22 \\
x+8=30
\end{gathered}
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)

$$
x+(x+8)+(3 x+2)=120
$$

short middle long $\quad 3 x+2$

Answer the question.

$$
5 x+10=120
$$

X

$x+8$
$3 x+2$

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

total 120 inches (10 feet)

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short middle long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Answer the question.

$$
\begin{gathered}
\mathbf{5 x}=\mathbf{1 1 0} \\
x=22 \\
x+8=30
\end{gathered}
$$

$$
\mathbf{3 x}+
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short middle long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Answer the question.

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short middle long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Answer the question.

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2=
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short middle long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=\mathbf{1 2 0}
$$

$$
5 x+10=120
$$

Answer the question.

$$
5 x=110
$$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2=68
$$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)

$$
x+(x+8)+(3 x+2)=120
$$

short
middle
X

$$
\begin{gathered}
x+8 \\
3 x+2 \\
\hline
\end{gathered}
$$

$$
5 x=110
$$

long $3 x+2$

$$
x+8=30
$$

total 120 inches (10 feet)
Answer the question.

$$
5 x+10=120
$$

$$
x=22
$$

$$
3 x+2=68
$$

The pieces measure 22 inches,

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
X

$x+8$
$3 x+2$

Answer the question.

$$
5 x+10=120
$$

$$
x+(x+8)+(3 x+2)=120
$$

Answer the question. $5 x=110$
long $\quad \mathbf{3 x}+2$

$$
\begin{aligned}
x+8 & =30 \\
3 x+2 & =68
\end{aligned}
$$

total 120 inches (10 feet)
The pieces measure 22 inches, 30 inches,

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

Answer the question. $\quad \mathbf{5 x}=110$

$$
\mathbf{x}=\mathbf{2 2}
$$

$$
x+8=30
$$

$$
3 x+2=68
$$

The pieces measure 22 inches, 30 inches, and 68 inches.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
\begin{gathered}
5 x+10=120 \\
5 x=110 \\
x=22 \\
x+8=30 \\
3 x+2=68
\end{gathered}
$$

The pieces measure 22 inches, 30 inches, and 68 inches.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
\begin{gathered}
5 x+10=120 \\
5 x=110 \\
x=22 \\
x+8=30 \\
3 x+2=68
\end{gathered}
$$

The pieces measure 22 inches, 30 inches, and 68 inches.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short middle long $\quad 3 x+2$ total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
5 x+10=120
$$

Check the solution $\quad 5 x=110$

$$
x=22
$$

$$
x+8=30
$$

$$
3 x+2=68
$$

The pieces measure 22 inches, 30 inches, and 68 inches.

Solve each of the following word problems algebraically. Show your process steps neatly organized.
22. An iron rod that is ten feet long is cut into three pieces. The length of the longest piece is two inches more than three times the length of the shortest piece. The middle piece is eight inches longer than the shortest piece. How long is each piece?
length (inches)
short
X
middle $\quad x+8$
long $\quad 3 x+2$
total 120 inches (10 feet)

$$
x+(x+8)+(3 x+2)=120
$$

$$
\begin{gathered}
5 x+10=120 \\
5 x=110 \\
x=\mathbf{2 2} \\
x+8=30 \\
3 x+2=68
\end{gathered}
$$

The pieces measure 22 inches, 30 inches, and 68 inches.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters
nickels

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins

quarters
nickels

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

\# of coins
quarters $\quad \mathbf{x}$
nickels

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins

quarters	\mathbf{x}
nickels	$\mathbf{6 0}$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins

nickels 60 -

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins
quarters $\quad x$
nickels 60-x

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins
quarters $\quad x$
nickels 60-x

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?
\# of coins

quarters $\quad x$
 nickels 60-x

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins
quarters	\mathbf{x}
nickels	$60-x$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?
\# of coins value \subset
quarters $\quad x$
nickels 60-x

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$
quarters	\mathbf{x}	$\mathbf{2 5}$
nickels	$60-x$	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$
quarters	\mathbf{x}	$\mathbf{2 5 x}$
nickels	$60-x$	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$
quarters	\mathbf{x}	$\mathbf{2 5 x}$
nickels	$\mathbf{6 0}-\mathbf{x}$	$\mathbf{5 (6 0}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value \boldsymbol{c}
quarters	\mathbf{x}	$\mathbf{2 5 x}$
nickels	$\mathbf{6 0}-\mathbf{x}$	$\mathbf{5 (6 0 -}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value \Varangle
quarters	\mathbf{x}	$\mathbf{2 5 x}$
nickels	$\mathbf{6 0}-\mathbf{x}$	$\mathbf{5 (6 0 - x})$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value \propto
quarters	x	$25 x$
nickels	$60-x$	$5(60-x)$
		total

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$
quarters	\mathbf{x}	$\mathbf{2 5 x}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$
	total	$\mathbf{8 0 0} \boldsymbol{c}$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢
quarters	x	25x
nickels	$60-x$	$5(60-x)$
	total	800 ¢

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$	25x +5 (
quarters	x	25x	
nickels	$60-x$	$5(60-x)$	
	total	800 ¢	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢	$25 x+5(60-x)=$
quarters	X	25x	
nickels	$60-x$	$5(60-x)$	
	total	$800 ¢$	

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢	$\mathbf{2 5 x}+5(60-x)=800$
quarters	\mathbf{x}	25x	
nickels	$60-\mathrm{x}$	$5(60-x)$	
	total	$800 ¢$	

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢	$\mathbf{2 5 x}+5(60-x)=800$
quarters	\mathbf{x}	25x	
nickels	$60-\mathrm{x}$	$5(60-x)$	
	total	$800 ¢$	

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value $¢$	$25 x+5(60-x)=800$
quarters	x	$25 x$	$25 x$
nickels	$\mathbf{6 0 - x}$	$5(60-x)$	
	total	$\mathbf{8 0 0}$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

	\# of coins	value ¢	$25 x+5(60-x)=800$
quarters	X	25x	$25 x+300-5 x=$
nickels	60-x	$5(60-x)$	
	total	$800 ¢$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value $¢$	$25 \mathrm{x}+5(60-\mathrm{x})=800$
quarters	X	25x	$25 \mathrm{x}+300-5 \mathrm{x}=800$
nickels	$60-\mathrm{x}$	$5(60-x)$	20x +
	total	$800 ¢$	

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value $¢$	$25 x+5(60-x)=800$	
quarters	x	$25 x$	$25 x+300-5 x=\mathbf{8 0 0}$	
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x)}$		$20 x+300=$
	total	$\mathbf{8 0 0}$		

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value $¢$	$\mathbf{2 5 x}+\mathbf{5 (6 0 - x})=\mathbf{8 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0}-\mathbf{5 x}=\mathbf{8 0 0}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$	$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0}$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value $¢$	$25 \mathrm{x}+5(60-\mathrm{x})=800$
quarters	x	25x	$25 \mathrm{x}+300-5 \mathrm{x}=800$
nickels	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=800$
	total	800 ¢	20x

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value ¢	$25 \mathrm{x}+5(60-\mathrm{x})=800$
quarters	x	25x	$25 x+300-5 x=800$
nickels	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=800$
	total	$800 ¢$	20x $=$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value ¢	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$	$\mathbf{2 5 x}+\mathbf{5 (6 0}-\mathbf{x})=\mathbf{8 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0}-\mathbf{5 x}=\mathbf{8 0 0}$
nickels	$\mathbf{6 0} \mathbf{x}$	$\mathbf{5 (6 0 - x})$	$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0}$
	total	$\mathbf{8 0 0} \boldsymbol{¢}$	$\mathbf{2 0 x}=\mathbf{5 0 0}$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	$\#$ of coins	value $¢$	$\mathbf{2 5 x}+\mathbf{5 (6 0 - x)}=\mathbf{8 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0 - 5 x}=\mathbf{8 0 0}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x)}$	$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0}$
	total	$\mathbf{8 0 0}$	
			$\mathbf{2 0 x}=\mathbf{5 0 0}$
			$x=\mathbf{2 5}$

Solve the equation.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value \mathfrak{c}	$\mathbf{2 5 x}+\mathbf{5 (6 0 - x})=\mathbf{8 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0}-\mathbf{5 x}=\mathbf{8 0 0}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$	$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0}$
	total	$\mathbf{8 0 0}$	$\mathbf{2 0 x}=\mathbf{5 0 0}$
			$\mathbf{x}=\mathbf{2 5}$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value \mathfrak{c}	$\mathbf{2 5 x}+\mathbf{5 (6 0 - x})=\mathbf{8 0 0}$
quarters	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0}-\mathbf{5 x}=\mathbf{8 0 0}$
nickels	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x})$	$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{8 0 0}$
	total	$\mathbf{8 0 0}$	$\mathbf{2 0 x}=\mathbf{5 0 0}$
			$\mathbf{x}=\mathbf{2 5}$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value $¢$	$25 x+5(60-x)=800$
quarters nickels	x	25x	$25 \mathrm{x}+300-5 \mathrm{x}=800$
	$60-x$	$5(60-x)$	$20 \mathrm{x}+300=800$
	total	800 ¢	20x $=500$
			$\mathrm{x}=25$

Answer the question.

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value ¢	$25 \mathrm{x}+5(60-\mathrm{x})=800$
quarters nickels	\mathbf{x}	25x	$25 \mathrm{x}+300-5 \mathrm{x}=800$
	$60-\mathrm{x}$	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$\begin{gathered} 20 x=500 \\ x=25 \end{gathered}$
	Answ	the	60

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value ¢	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
			$x=25$
			60 -
	Answe	the question	

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value ¢	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
			$x=25$
			$60-\mathrm{x}$
	Answe	the question	

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value ¢	$25 x+5(60-x)=800$
	X	25x	$25 x+300-5 x=800$
	60-x	$5(60-x)$	$20 x+300=800$
	total	800 c	$20 \mathrm{x}=500$
			$x=25$
			$60-\mathrm{x}=$
	Answe	the question	

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

rters	\# of coins	value e 25x	$\begin{aligned} 25 x+5(60-x) & =800 \\ 25 x+300-5 x & =800 \end{aligned}$
nickels	$60-\mathrm{x}$	$5(60-x)$	$20 x+300=800$
	total	800 ¢	$\begin{gathered} 20 x=500 \\ x=25 \\ 60-x=35 \end{gathered}$
Answer the question.			

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value c	$25 x+5(60-x)=800$
quarters	X	25x	$25 x+300-5 x=800$
nickels	$60-x$	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
There are 25 quarters			$x=25$
			$60-x=35$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters nickels	\# of coins	x	$25 \mathrm{x}+5(60-\mathrm{x})=800$
	x	25x	$25 \mathrm{x}+300-5 \mathrm{x}=800$
	$60-x$	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	20x $=500$
There are 25 quarters and 35 nickels.			kels. $\quad x=25$ $60-x=35$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of \$8. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value ${ }^{\text {c }}$	$25 \mathrm{x}+5(60-\mathrm{x})=800$
	X	25x	$25 \mathrm{x}+300-5 \mathrm{x}=800$
	$60-x$	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
There are 25 quarters and 35 nickels.			kels. $\quad x=25$ $60-x=35$

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

quarters nickels	\# of coins	value ¢	25x $+5(60-x)=800$
	\mathbf{x}	25x	$25 \mathrm{x}+300-5 \mathrm{x}=800$
	$60-x$	$5(60-x)$	$20 \mathrm{x}+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
There are 25 quarters and 35 nickels.			kels. $\quad x=25$ $60-x=35$

Solve each of the following word problems algebraically. Show your process steps neatly organized.
23. A collection of sixty ordinary quarters and nickels is worth a total of $\$ 8$. How many coins of each type are there in the collection?

	\# of coins	value c	$25 x+5(60-x)=800$
quarters	X	25x	$25 x+300-5 x=800$
nickels	60-x	$5(60-x)$	$20 x+300=800$
	total	$800 ¢$	$20 \mathrm{x}=500$
There are 25 quarters and 35 nickels.			kels. $\quad x=25$
			60-x $=35$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333 .

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \\
& 2^{\text {nd }}: \\
& 3^{\text {rd }}: \\
& 4^{\text {th }}: \\
& 5^{\text {th }}: \\
& 6^{\text {th }}:
\end{aligned}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \quad \mathbf{X} \\
& 2^{\text {nd }}: \\
& \mathbf{3}^{\text {rd }}: \\
& \mathbf{4}^{\text {th }}: \\
& \mathbf{5}^{\text {th }}: \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \mathbf{x} \\
& 2^{\text {nd }}: \mathbf{x}+1 \\
& \mathbf{3}^{\text {rd }}: \\
& 4^{\text {th }}: \\
& \mathbf{5}^{\text {th }}: \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \mathbf{x} \\
& 2^{\text {nd }}: \\
& \mathbf{3}^{\text {rd }}: \\
& \mathbf{4}^{\text {th }}: \\
& \mathbf{5}^{\text {th }}: \\
& \mathbf{6}^{\text {th }}:
\end{aligned}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \mathbf{x}+1 \\
\mathbf{3}^{\text {rd }}: & \mathbf{x}+\mathbf{2} \\
\mathbf{4}^{\text {th }}: & \mathbf{x}+\mathbf{3} \\
\mathbf{5}^{\text {th }}: & \\
\mathbf{6}^{\text {th }}: &
\end{array}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \mathbf{x}+\mathbf{1} \\
\mathbf{3}^{\text {rd }}: & \mathbf{x}+\mathbf{2} \\
\mathbf{4}^{\text {th }}: & \mathbf{x}+\mathbf{3} \\
\mathbf{5}^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: &
\end{array}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333 .

$$
\begin{aligned}
& 1^{\text {st }} \text { : } \mathbf{X} \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: ~ x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: ~ x+4 \\
& 6^{\text {th }}: x+5
\end{aligned}
$$

Represent all unknowns in term of the same variable.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \mathbf{x}+\mathbf{1} \\
\mathbf{3}^{\text {rd }}: & \mathbf{x}+\mathbf{2} \\
\mathbf{4}^{\text {th }}: & \mathbf{x}+\mathbf{3} \\
\mathbf{5}^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+\mathbf{5}
\end{array}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \mathbf{x}+\mathbf{1} \\
\mathbf{3}^{\text {rd }}: & \mathbf{x}+\mathbf{2} \\
\mathbf{4}^{\text {th }}: & \mathbf{x}+\mathbf{3} \\
\mathbf{5}^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+\mathbf{5}
\end{array}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \mathbf{x}+\mathbf{1} \\
\mathbf{3}^{\text {rd }}: & \mathbf{x}+\mathbf{2} \\
\mathbf{4}^{\text {th }}: & \mathbf{x}+\mathbf{3} \\
\mathbf{5}^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+\mathbf{5}
\end{array}
$$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \mathbf{x}+\mathbf{1} \\
\mathbf{3}^{\text {rd }}: & \mathbf{x}+\mathbf{2} \\
\mathbf{4}^{\text {th }}: & \mathbf{x}+\mathbf{3} \\
\mathbf{5}^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+\mathbf{5}
\end{array}
$$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \mathbf{x}+\mathbf{1} \\
\mathbf{3}^{\text {rd }}: & \mathbf{x}+\mathbf{2} \\
4^{\text {th }}: & \mathbf{x}+3 \\
\mathbf{5}^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+\mathbf{5}
\end{array}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{lll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \mathbf{x}+1 & \\
3^{\text {rd }}: & \mathbf{x}+2 & 6 x+ \\
4^{\text {th }}: & \mathbf{x}+3 & \\
\mathbf{5}^{\text {th }}: & x+4 & \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5 &
\end{array}
$$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \mathbf{x} \\
& 2^{\text {nd }}: \mathbf{x}+1 \\
& 3^{\text {rd }}: \mathbf{x}+\mathbf{2} \\
& \mathbf{4}^{\text {th }}: \mathbf{x}+\mathbf{3} \\
& \mathbf{5}^{\text {th }}: \\
& \mathbf{6}^{\text {th }}: \\
& \mathbf{x}+\mathbf{x}+\mathbf{4} \\
& \\
&
\end{aligned}
$$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \mathbf{x} \\
& 2^{\text {nd }}: \mathbf{x}+1 \\
& 3^{\text {rd }}: \mathbf{x}+2 \\
& 4^{\text {th }}: \mathbf{x}+3 \\
& \mathbf{5}^{\text {th }}: \mathbf{x}+\mathbf{4} \\
& \mathbf{6}^{\text {th }}: \mathbf{x}+5
\end{aligned}
$$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process 24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: X \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5
\end{aligned} \quad 6 x+15=333
$$

Write an Equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \mathbf{x} \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: \mathbf{x}+2 \\
& 4^{\text {th }}: \mathbf{x}+3 \\
& 5^{\text {th }}: \\
& \mathbf{6}^{\text {th }}: \\
& : x+4 \\
& \mathbf{x}+5
\end{aligned} \quad 6 x+15=333
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \mathbf{x} \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: \mathbf{x}+2 \\
& 4^{\text {th }}: \mathbf{x}+3 \\
& 5^{\text {th }}: \\
& \mathbf{6}^{\text {th }}: \\
& : x+4 \\
& \mathbf{x}+5
\end{aligned} \quad 6 x+15=333
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: x \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5
\end{aligned} \quad 6 x+15=333
$$

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }}: \mathbf{x} \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: x+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5+15=333 \\
&
\end{aligned}
$$

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & x+1 \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+4 \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5 \\
6 x & 6 x= \\
\end{array}
$$

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized. The RESAC Process
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{llc}
1^{\text {st }}: & \mathbf{x} & \\
2^{\text {nd }}: & x+1 & 6 x+15=333 \\
3^{\text {rd }}: & \mathbf{x}+2 & 6 x=318 \\
4^{\text {th }}: & \mathbf{x}+3 & \\
5^{\text {th }}: & \mathbf{x}+4 & \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5 &
\end{array}
$$

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }} \text { : } \mathbf{X} \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: \mathbf{x}+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5 \\
& 6 x+15=333 \\
& 6 x=318 \\
& \mathbf{x}
\end{aligned}
$$

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }} \text { : } \mathbf{X} \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: \mathbf{x}+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5 \\
& 6 x+15=333 \\
& 6 x=318 \\
& \mathbf{x}=
\end{aligned}
$$

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4}+\mathbf{1 5}=333 \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

Solve the equation.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4}+\mathbf{1 5}=333 \\
6^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4}+\mathbf{1 5}=333 \\
6^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4}+\mathbf{1 5}=333 \\
6^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

Answer the question.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{llc}
1^{\text {st }}: & x & \\
2^{\text {nd }}: & x+1 & \\
3^{\text {rd }}: & x+2 & 6 x+15=333 \\
4^{\text {th }}: & x+3 & 6 x=318 \\
5^{\text {th }}: & x+4 & x=53 \\
6^{\text {th }}: & x+5 &
\end{array}
$$

The numbers are
Answer the question.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{llc}
1^{\text {st }}: & x & \\
2^{\text {nd }}: & x+1 & \\
3^{\text {rd }}: & x+2 & 6 x+15=333 \\
4^{\text {th }}: & x+3 & 6 x=318 \\
5^{\text {th }}: & x+4 & x=53 \\
6^{\text {th }}: & x+5 &
\end{array}
$$

The numbers are 53,
Answer the question.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & x+1 \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+\mathbf{5}
\end{array}
$$

The numbers are 53, 54,
Answer the question.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & x+1 \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

The numbers are 53, 54, 55,
Answer the question.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & x+1 \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

The numbers are $53,54,55,56$,
Answer the question.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & x+1 \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

The numbers are $53,54,55,56,57$,
Answer the question.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & x+1 \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

The numbers are $53,54,55,56,57$, and 58.
Answer the question.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{aligned}
& 1^{\text {st }} \text { : } \mathbf{X} \\
& 2^{\text {nd }}: x+1 \\
& 3^{\text {rd }}: \mathbf{x}+2 \\
& 4^{\text {th }}: x+3 \\
& 5^{\text {th }}: x+4 \\
& 6^{\text {th }}: x+5 \\
& 6 x+15=333 \\
& 6 x=318 \\
& x=53
\end{aligned}
$$

The numbers are $53,54,55,56,57$, and 58.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & x+1 \\
3^{\text {rd }}: & \mathbf{x}+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4}+15=333 \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

The numbers are $53,54,55,56,57$, and 58.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333.

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & x+1 \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+5
\end{array}
$$

The numbers are $53,54,55,56,57$, and 58.
Check the solution.

Algebra II Class Worksheet \#1 Unit 1

Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333 .

$$
\begin{array}{ll}
1^{\text {st }}: & \mathbf{x} \\
2^{\text {nd }}: & x+1 \\
3^{\text {rd }}: & x+2 \\
4^{\text {th }}: & \mathbf{x}+3 \\
5^{\text {th }}: & \mathbf{x}+\mathbf{4} \\
\mathbf{6}^{\text {th }}: & \mathbf{x}+\mathbf{5}
\end{array}
$$

The numbers are $53,54,55,56,57$, and 58.

Algebra II Class Worksheet \#1 Unit 1
Solve each of the following word problems algebraically. Show your process steps neatly organized.
24. Find six consecutive integers whose sum is 333 .

1 st : \mathbf{X}

Good luck on your homework !!!

$4^{\text {th }}:$	$x+3$	$6 x=318$
$5^{\text {th }}:$	$x+4$	$x=53$
$\mathbf{6}^{\text {th }}:$	$x+5$	

The numbers are 53, 54, 55, 56, 57, and 58.

